Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отпуск упрочняющий

К этой группе термической обработки можно отнести термическое старение, состоящее в том, что в закаленных сплавах при комнатной температуре (естественное термическое старение) или при нагреве (искусственное термическое старение) протекают фазовые превращения, приближающие их к устойчивому состоянию. Однако механические свойства сплавов при старении, по сравнению с отпуском, изменяются в обратном направлении прочность и твердость увеличиваются, а пластичность и вязкость уменьшаются. В связи с этим А. А. Бочвар различает отпуск упрочняющий (термическое старение) и смягчающий (собственно отпуск). Упрочнение сплавов после закалки и термического старения, иногда называют дисперсионным твердением.  [c.112]


Конструкционные стали подвергают двойной упрочняющей термической обработке — закалке + отпуску, причем среднеуглеродистые — обычно высокому отпуску (улучшению), низкоуглеродистые — низкому.  [c.370]

Другой способ упрочнения основан на деформационном старении мартенсита (ДСМ). При этом способе (рис. 86,Э) сталь вначале подвергают упрочняющей обработке (закалке и отпуску при 250 — 400°С), деформируют в холодно.м состоянии при степени деформации 1 — 3% и подвергают старению в течение 1—2 ч при температуре примерно на 100°С ниже температуры отпуска. В процессе старения прочность стали повышается до 200—250 кгс/мм . Отношение предела текучести к пределу прочности становится равным Вследствие  [c.176]

Еще в большей мере повышается сопротивление коррозионно-механическому разрушению стали в условиях малоцикловой усталости на 84 и 97 % соответственно по сравнению с шлифованными образцами (рис. 32). При жестком нагружении фрикционно-упрочняющая обработка не приводит к повышению долговечности стальных образцов или даже снижает ее во всех средах, так как белый слой все же менее пластичен, чем сердцевина, структура которой формируется в результате закалки и среднего отпуска, а поэтому он первым разрушается.  [c.118]

Нами излагаются некоторые результаты исследования путей обеспечения хладостойких свойств стали Ст. 3 при ее упрочняющей обработке. Возможности положительного влияния термической обработки этих сталей были показаны в наших ранних работах [67, 68]. В дополнение к данным, полученным в этих работах, были проведены эксперименты на сталях Ст. 3 с различной степенью раскисленности (табл. 1). Образцы на ударную вязкость были вырезаны поперек прокатки из листов толщиной 12 мм. Микроструктура рассмотренных сталей состояла из феррита и перлита. По ГОСТу 5639—65 величина зерна соответствовала 7—8 баллу. Исследуемые стали подвергались термической обработке по одному из следующих режимов нормализация при 920°С термическое улучшение (нагрев до 890° 10°С с охлаждением в воде отпуск при температуре 560°С с выдержкой 2ч, охлаждение на воздухе). После термической обработки заметно улучшились механические свойства сталей (табл, 2).  [c.44]

Дробеструйная обработка, создавая наклеп шва и околошовной зоны, повышает долговечность сварных соединений, особенно работающих в условиях тряски, вибраций, полностью ликвидирует раз-упрочняющее влияние отпуска, которому подвергаются сварные швы для снятия термических напряжений. Помимо упрочняющего эффекта, дробеструйная обработка используется для очистки сварного шва перед визуальным контролем качества, для подготовки его ПОД окраску.  [c.104]


Основные методы стабилизации структуры и уменьшения внутренних напряжений. Основные операции литья, обработки давлением и упрочняющей термической обработки, обработки резанием и сборки создают структурную неустойчивость и увеличивают напряженность материала деталей отпуск, старение, обработка холодом повышают стабильность структуры и уменьшают напряжения. Для обеспечения постоянства размеров готовых деталей и сборочных единиц предпочтительны такие виды и режимы обработки, которые вызывают меньшие остаточные напряжения и приводят к меньшей неустойчивости структур. Необходимо особо отметить важность правильного выбора режимов упрочняющих термических операций, так как в некоторых случаях высокие закалочные напряжения не удается свести к минимуму, даже после завершения всего цикла стабилизирующей обработки (остаточные напряжения в закаленной детали иногда могут превышать напряжения в незакаленной детали в 10 раз и более).  [c.408]

Упрочнение бериллиевой бронзы происходит в результате закалки с 780° С, когда фиксируется твердый раствор бериллия в меди, и последующего отпуска (облагораживания) при 300—350° С, во время которого происходит выделение упрочняющей фазы Си—Be.  [c.278]

Режим упрочняющего отпуска  [c.132]

Нормализация с отпуском до твердости НВ 180—229 для стали 50 при сечении плунжера до 750 мм и последующим упрочняющим накатыванием до твердости на поверхностном слое НВ 229—287.  [c.282]

Упрочнение сверл диаметром 20 мм, изготовленных из стали Р9, при электромеханической обработке производится при режиме Р=900 Н С/== 6 В о=10,2 м/мин 5=0,2 мм/об и предельном значении силы тока /=1000 А. Превышение предельной силы тока сопровождается выделением такого количества теплоты, которое не успевает отводиться в тело детали, так как быстрорежущие и подобные им высоколегированные стали обладают малой теплопроводностью. При этом происходит отпуск закаленной стали и снижение характеристик упрочняемого инструмента.  [c.58]

К сталям переходного класса, в которых после высокотемпературной закалки образуется аустенит, а их упрочнение достигается отпуском с последующим старением или обработкой холодом с последующим старением, примыкают нержавеющие стали, имеющие мартенситную структуру после проведения высокотемпературного нагрева с последующим охлаждением. Эти стали подвержены дополнительному упрочнению после старения благодаря дальнейшему образованию мартенсита или выделению упрочняющих фаз. Температура мартенситного превращения таких сталей должна быть выше комнатной, так как это позволяет получать повышенные прочностные свойства уже при закалке вследствие протекания мартенситного превращения. Для обеспечения определённой степени мартенситного превращения при закалке нержавеющие мартенситные стали выплавляют с низким содержанием С, а иногда вводят в них Nb или Ti, которые способны связывать С в карбиды.  [c.47]

Объемная закалка и отпуск. Объемную закалку с последующим низким или высоким отпуском для получения требуемых механических свойств широко применяют в машиностроении. Например, Б машиностроении 35—40 % упрочняемых деталей подвергается объемной закалке и отпуску.  [c.326]

Типовые детали машин, упрочняемые объемной закалкой и низким отпуском  [c.327]

Свойства, соответствующие классу A-1V, моогут быть получены в горячекатаном состоянии в легированных сталях марок 20ХГ2Ц или 80С или в простой углеродистой стали марки Ст5 после упрочняющей термической обработки (закалка в воде, отпуск при 400°С).  [c.402]

Сталь 23Х2Г2Т после горячей прокатки и низкотемпературного отпуска (300°С), применяемого главным образом для удаления из металла водорода, получает свойства класса A-V. Арматуру более высоких классов (A-VI—A-VHI) изготавливают только с ирименением упрочняющей термической обработки.  [c.402]

Цементация с последующей термической обработкой повышает предел выносливости стальных изделий вследствие образования в поверхностном слое значительных остаточных напряжений сжатия (до 400—500 МПа) и резко понижает чувствительность к концентраторам напряжений при условии непрерывной протяженности упрочненного слоя по всей упрочняемой поверхности детали. Так, после цементации на глубину 1000 мкм, закалки и отпуска хромомикслепой стали (0,12 % С 1,3 % Сг 3,5 % Ni) предел выносливости образцов без концентраторов напряжений увеличился от 560 до 750 МНа, а при наличии надреза — от 220 до 560 МПа, Цементованная сталь обладает в1)1Сокой износостойкостью и контактной прочностью, которая достигает 2000 МПа.  [c.238]


Алюминиевые бронзы обладают высокими механическими свойствами, повышенной жаропрочностью и антикоррозионной стойкостью. Упрочняющая термическая обработка состоит из закалки с 850— 900° С в воде и последующего отпуска при 400—600°С в течение 1,5 ч. На рис. 16.12 показана микроструктура бронзы Бр.АЖМц10-3-1,5, состоящая из зерен а-кристаллов (светлая составляющая) и а-МЗ-эвтек-тоида (темная составляющая).  [c.299]

Термообработка. Упрочняющая термообработка повыщает предел выносливости примерно пропорционально увеличению показателен статической прочности (рис. 19 1). Наибольший эффект дает закалка с низким отпуском, увеличивающая предел выносливости в 2—2,5 раза по сравнению с негермообработанной сталью (кривые 4)  [c.316]

Упрочняющими фазами в сталях могут быть карбиды разного состава нитриды, карбонитриды, интерметаллиды, чистые металлы, малорастворимые в железе (например, чистая медь). Наиболее эффективное упрочнение достигается такими фазами, которые способны растворяться в твердом растворе (например, в аусгенпге при нагреве), а затем В1,1дсляться из него в мелкодисперсном состоянии и сохранят ься при температурах технологической обрабо кп и использования изделия. К эффективным упрочнителям относятся V , VN, Nb , NbN, МоС и комплексные фазы на их основе. Оптимальное упрочнение от твердых дисперсных частиц достигается при условии, когда эти частицы достаточно малы и когда расстояние между ними в твердом растворе мало. Обеспечивается это соответствую[цим подбором легирующих элементов и режимов термической обработки (закалка и высокий отпуск, закалка и низкий отпуск), позволяющих получить структуру с высокими механическими и триботехническими характеристиками.  [c.16]

Диапазон плотностей мощности лазерного воздействия определяется верхним и нижним пределами, которые связаны соответственно с началом плавления и отпуска материала. При обработке на оптимальном режиме достигается наибольший упрочняющий эффект и глубина модифицированного слоя. Следует отметить, что из-за различающихся химических составов модифицируемых сталей и сплавов, несоблюдения режимов предварительной термической обработки рекомендуется использовать образцы-свидетели для каждой партии облучаемых изделий. Образцы-свидетели необходимы для конкретизации режимов лазерного термоупрочнения и исключения разупрочняю-щих эффектов. Подбор режимов лазерного воздействия проводят, исходя из размеров обрабатываемого образца или изделия. При выборе схемы обработки и соответствую1цего технологического оборудования [145] (табл. 8.4) учитывают геометрию изделия и возможности локал1,ного термоупрочнения  [c.259]

При поверхностной закалке деталь изготовляется из среднеуглеродистой стали. Вначале для придания окончательных свойств сердцевине всю деталь нормалируют или улучшают, а затем упрочняемому месту дают поверхностную закалку на глубину до 2 м. Нагрев под закалку производят чаще всего индуктором, имеющим форму контура упрочняемой поверхности и питающимся током высокой частоты. За очень короткое время обрабатываемая поверхность прогревается до аустенитного состояния на требуемую глубину, после чего охлаждается струями воды. После поверхностной закалки деталь проходит низкий отпуск.  [c.38]

Цементацией называется насыщение упрочняемой поверхности детали углеродом на глубину до 2 мм с целью получения при последующей закалке с низким отпуском высокой твердости и износостойкости. Чтобы сердцевина детали оказалась вязкой и ударостойкой, деталь изготовляется из низкоуглеродистой, как правило, легированной стали 18ХГТ, 20Х и т. д.  [c.39]

Азотированием называется поверхностное упрочнение стали путем ее насыщения азотом. Наиболее твердыми и термостойкими нитридами, образующимися при азотировании и обеспечивающими упрочняемому слою высокую твердость и износостойкость не только при комнатной, но и при повышенной температуре, являются нитриды хрома, алюминия и молибдена ( rN, A1N. MoN), Поэтому детали, подвергающиеся азотированию, должны изготовляться из среднеуглеродистой стали, содержащей упомянутые легирующие элементы, например из стали 35ХМЮА. Так как азотирование производится при температуре 500—600 в газовой среде аммиака (NHj-v 1,5Н2 + Nax) и указанная температура соответствует температуре высокого отпуска, то по существующей технологии перед азотированием деталь улучшают, получая у ее материала прочную и вязкую сорбитную структуру.  [c.39]

Как показали работы Д. А. Прокошкина и др. [101], способ дробления деформации при ТМО на ряд последовательных порций, чередующихся с температурными выдержками упрочняемого металла (далее этот метод упрочнения будем называть ТМО с применением дробной деформации), оказался весьма эффективным для условий ВТМО. При обработке высоколегированной конструкционной стали по режиму нагрев до 900° прокатка при той же температуре немедленная закалка и отпуск при 250° в течение 50 мин., заготовки деформировались на одну и ту же степень обжатия (60%), но при разном (1—3) числе проходов [101]. Изменение механических свойств стали после таких режимов ВТМО показано в табл. 16.  [c.73]

При воздействии ударных волн на углеродистые и легированные стали в их структуре происходят процессы, упрочняющие или разупрочняющие металл. Упрочнение связано с распадом остаточного аустенита в мартенсит. Причиной разупрочнения такаленных сталей (падение твердости) является своеобразный отпуск мартенсита в ударной волне, протекающий вследствие теплового воздействия.  [c.21]

Измерение микротвердости и микроструктуры в де-формированном поверхностном слое образца показало резкую неравномерность ее распределения и различную степень пластической деформации. Формирование структуры рабочего слоя в процессе удара определяется исходной структурой материала, продолжительностью времени контакта, контактной температурой, скоростью приложения нагрузки. При и = 3,2 м/с и W== ,2 Дж максимальная микротвердость на поверхности удара составляет 12 000 МПа, минимальная — 4200 МПа. Измерение микротвердости по поверхности и по глубине образца после удара показало, что распределение микротвердости в зоне удара неравномерное. Неравномерно распределяется и температурное поле. Динамический характер пластического деформирования, во время которого теплообмен в зоне контакта практически отсутствует, вызывает на пятнах фактической площади контакта мгновенные скачки температуры, т. е. температурные вспышки, величина которых при тяжелых режимах намного превышает среднкно температуру. Несмотря на то, что глубина действия температурных вспышек при ударе локализуется в слое толщиной несколько микрометров, они способствуют структурным превращениям и изменению микротвердости. В некоторых случаях удалось наблюдать полоски вторичной закалки. Их микротвердость составила 12 880 МПа. Микротвердость подстилающего слоя на расстоянии 0,01 мм от поверхности меньше мик-ротвердости металлической основы и составляет 3300 МПа, что соответствует приблизительно температуре 400 500° С. Следовательно, при единичном ударе в зоне контакта в отдельных микрообъемах возникают температурные скачки, упрочняющие эти участки. Под ними и вблизи них находятся участки, микротвердость которых ниже исходной, а температура достигает лишь температуры отпуска. Наблюдаемые температурные изменения связаны с изменениями структуры и прочностных свойств соударяющихся материалов.  [c.146]


При любом фpaкtoгpaфичe кoм исследовании, тем более при изучении причин эксплуатационного разрушения, целесообразно, а в ряде случаев совершенно необходимо параллельно изучить структуру материала. При этом важно знать природу различных металлургических и прочих технологических дефектов, а также их влияние на прочность, сопротивление возникновению и развитию разрушения анализируемых материалов. Существенным в анализе разрушения является знание того, каким образом меняется характер разрушения данного материала при изменении технологии изготовления, например при введении упрочняющих видов обработки, при отпуске в различных температурных интервалах, перегревах при штамповке и т. д.  [c.183]

В современном автомобильном двигателе, около 50 /о термически обрабатываемых стальных деталей, а в авиационном двигателе — 85—90°/о- Конструкционные стали проходят двойную упрочняющую обработку закалку — отпуск, причем среднеуглеродистые стали обычно подвергают высокому отпуску, цизкоуглеродистые — низкому. Напрев под закалку производится до температур, на 30—50 С превышающих точку A s (точка на линии со-лидуса диаграммы состояния (Л. 20]). У большинства 108  [c.108]

По сравнению с обыкновенными сталями к качественным сталям предъявляются более строгие требования по химическому составу и механическим свойствам. Сталь 45 широко распространена в машиностроении для деталей, упрочняемых закалкой с Высоким отпуском. После такой термической обработки прочность стали значительно возрастает. Однако из-за низкой прокаливаемости стали 45 с уве-личением сечения деталей ее мехаяичеокие свойства снижаются.  [c.148]

В процессе закалки на мартенсит происходит резкое нарушение регулярности атомной решетки, в пределах одного зерна образуется ряд тоиких пластин (мартенситная структура), каждая из которых имеет мозаичное строение. Этим резко увеличивается суммарная удельная поверхность раздела, что влечет за собой резкое увеличение прочности. Наряду с этим упрочняющее, в пределах каждого блока, влияние оказывают внедренные атомы углерода в пересыщенном растворе. Хрупкий после закалки мартенсит используют лишь после отпуска, уменьшающего неравновесность структуры. При этом уменьшается прочность, но повышается пластичность и ударная вязкость.  [c.268]

Технология изготовления упругих элементов из аустенитных последеформа-ционно-твердеющих сплавов является общей вне зависимости от разнообразия их форы и назначения. Сначала изготовляют упругие элементы из холоднодеформиро-ванной ленты, проволоки или прутка. Степень деформации заготовки выбирают в зависимости от контрольных требований к изделию. Готовые изделия подвергают упрочняющему отпуску (старению при температурах от 300 до 600° С). Термическую обработку рекомендуется проводить в вакууме или защитной атмосфере при обработке в открытых печах изделия приобретают соломенно-желтый цвет. Готовые упругие элементы могут быть укреплены в приборе при помощи аргонодуговой сварки, пайки или механическим креплением, что более желательно с точки зрения сохранения упругих свойств и стабильности материала.  [c.288]

Установлено, что повышение температуры аустенизации стали 11Х12Н2МВФБА перед закалкой с 1020 до 1130 С существенно влияет на величину предела выносливости образцов. Более низкая температура закалки (1020°С) обусловливает более резкое снижение предела выносливости с повышением температуры отпуска (с 660,до 545 МПа), чем сталь, закаленная с 1130°С (с 620 до 580 МПа). Сталь, закаленная с 1020 или 1130°С и отпущенная при 600°С, состоит из мартенсита и мелкодисперсных легированных карбидов, причем в стали, закаленной с 1130°С карбидов меньше, чем в стали, закаленной с 1020°С, так как при низшей температуре аустенизации не происходит полное растворение карбидов ниобия а аустенита. Сталь, закаленная от 1020°С, меняет характеристики прочности и пластичности более заметно с изменением температуры отпуска, чем после закалки от 1130°С, т.е. повышение температуры аустенизации обусловли вает большую стабильность свойств стали при повышенных температурах. Высокий предел выносливости стали 11Х12Н2МВФБА после закалки и отпуска при 600 °С достигается в основном за счет выделения упрочняющей метастабильной фазы (Сг, W, Мо, V )j( N) и карбонитридов ниобия Nb( N). Повышение температуры отпуска до 660 и УОО С обусловило-снижение предела выносливости в воздухе соответственно до 580 и 500 МПа вследствие выделения и коагуляции сложного карбида /№,, С .  [c.59]

С увеличением этого соотношения должно возрастать содержание углерода в мартенсите закалки, а затем в мартенсите отпуска (с упрочняющими карбидами), а следовательно, и в аустените при разогреве шлифуемой поверхности. Быстрорежущие стали Р18, Р12 и ЭИ347 (без карбидов ванадия) имеют разное соотноше-  [c.88]

В промышленности сталь шлифуют после закалки с отпуском. Мйртенсит закалки и мартенсит, упрочненный отпуском (т, е. а-раствор + упрочняющие карбиды) имеют одинаковый состав. При шлифовании мартенсита в аустенит разогреваемой поверхности частично переходят и карбиды. 1 оличество упрочняющей фазы, переходящей в аустенит, зависит от размеров карбидных частиц и температуры нагрева. Температура нагрева определяется технологией шлифования, а размер карбидных частиц — режимом отпуска.  [c.92]

Диалогичная закономерность изменения механических свойств наблюдается у сталей ЗОН 12МФ и ЗОН14МФ. Все стали, упрочняемые распадом мартенсита с образованием специальных карбидов после высокотемпературного отпуска (500° С) при = = 180-т-200 кгс/мм , показали высокие характеристики пластичности и вязкости (й = И -ь 15% ijj = 36-ь53% а = 5- -5-7 кгс-м/см ).  [c.109]

При термической обработке чугунных отливок применяют отжиг, нормализацию, закалку, отпуск, а также химико-термическую обработку (см, раздел Повышение долговечности деталей машин способами упрочняющей технологии ). Рекомендуемая термическая обработка чугун1гых отливок и режимы ее приведены в табл, 322.  [c.421]

Существенной причиной коробления деталей может быть также воздействие на них внешних нагрузок (например, грубая черновая механическая обработка). Для предотвращения этих вредных явлений применяют естественное старение, при котором прошедшие черновую обработку корпусные детали выдерживают в течение шести—двенадцати месяцев, что требует не только наличия больших заделов корпусных деталей, но и соответствующих площадей для их хранения. Для устранения этих недостатков был разработан ряд ускоренных процессов так называемого искусственного старения (статическая перегрузка, вибрационное старение, низкотемпературный отжиг, упрочняющий отпуск, термоудар, ускоренный отжиг). Среди этих методов стабилизации деталей наиболее распространенным является искусственное старение низкотемпературным отжигом в термической печи с использованием электрического, газового или другого источника подогрева (основные режимы для чугуна скорость нагрева 200=С/ч время выдержки 2 ч на каждые 25 мм толщины стенки температура выдержки 520...620°С в зависимости от марки чугуна скорость охлаждения — не более 0...30 -С/ч гемг.ература в печи при выгрузке (50...200°С).  [c.40]

На практике выполнение таких тепловых технологических операций, как химико-термическая обработка, св.чрка, упрочняющая термическая обработка и т. п., может приводить к ряду нежелательных последствий. В частности, отпуск при средних температурах закаленных сплавов критического состава, типа ВТ22, может приводить к самопроизвольному растрескиванию [69]. Всем а + р-сплавам свойственно резкое охрупчивание при отпуске в области средних температур. В тех случаях, когда растрескивания не происходит, возможны значительные поводки (например, при оксидировании двухфазных сплавов). Наконец, при сварке неизбежно образование метастабильных фаз, объемные изменения в которых усиливают охрупчивание зоны термического влияния.  [c.27]


В табл, 20 приведены типовые детали машин, упрочняемые закалкой и высоким отпуском, а также рекомендуемые стали. Для улушпаемых деталей твердость и прочность колеблются в широких пределах в зависимости от температуры отпуска и состава стали (207—350 НВ и = 700-5-1400 МПа).  [c.330]

Рекомевдуемые режимы упрочняющей термической обработки и свой ства сталей. Для достижении высокой прочности среднелегированные стали подвергают обычной закалке на мартенсит и низкому отпуску при 220— 250 С, который улучшает пластичность, вязкость и особенно сопротивление разрушению при сохранении высокого уровня прочности.  [c.24]

К сплавам, упрочняемым холодной пластической деформацией и последующим отпуском или низкотемпературным отжигом, относятся углеродистые и легированные стали перлитного класса с повышенным содержанием углерода (0,4—1,0 %), а также низкоуглеродистые стали аустеннтного класса, подвергаемые упрочнению колодной пластической деформапней (после предварительной термической обработки), затем дополнительному отпуску. В первую группу также входят сплавы меди (однофазные латуни, бронзы), молибдена и рения, ниобия и др.  [c.204]


Смотреть страницы где упоминается термин Отпуск упрочняющий : [c.526]    [c.470]    [c.188]    [c.486]    [c.75]    [c.282]    [c.45]    [c.159]   
Термическая обработка в машиностроении (1980) -- [ c.69 ]

Теория термической обработки металлов (1974) -- [ c.355 ]



ПОИСК



О упрочняющие

Отпуск

Отпуск чугуна упрочняющий

Отпуская ось



© 2025 Mash-xxl.info Реклама на сайте