Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Корпусные Обработка

Если первые автоматические линии, появившиеся после второй мировой войны, предназначались, главным образом, для операций формообразования штамповкой (роторные линии) или резанием (линии для обработки корпусных деталей, валов, зубчатых  [c.581]

Корпусные детали коробчатого типа принято располагать относительно фронтальной плоскости проекций так, чтобы их основные базовые опорные поверхности занимали горизонтальное или (реже) вертикальное положение. При выборе расположения главного вида следует учитывать положение детали в самой машине, а также ее вероятное положение при разметке и при наиболее трудоемкой обработке на станке.  [c.258]


Корпусные детали отличаются большим многообразием форм н размеров обрабатываемых поверхностей и точностью их обработки. В зависимости от этого используют различные конструкции расточных кондукторов для закрепления корпусных заготовок и обеспечения правильного положения инструмента относительно обрабатываемой поверхности.  [c.322]

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ МЕХАНИЧЕСКОЙ ОБРАБОТКИ СТАНИН СТАНКОВ И КОРПУСНЫХ ДЕТАЛЕЙ  [c.398]

Обработка корпусных деталей  [c.411]

В условиях единичного и мелкосерийного производства механическая обработка корпусных деталей начинается с разметки, которую выполняют в следующей последовательности а) риски центровых осей б) от этих осей размечают остальные оси отверстий и контуры детали в) размечают окружности отверстий.  [c.411]

В средне- и крупносерийном производстве обработка корпусных деталей осуществляется при помощи специальных приспособлений, что полностью исключает разметку их.  [c.412]

Фрезерование плоскостей корпусных деталей применяется преимущественно в средне- и крупносерийном производствах. Устанавливая их по возможности группами и одновременно обрабатывая несколькими фрезами, можно значительно сократить время на их обработку. Групповая обработка корпусов пре изводится при установке их в один или два ряда, фрезеруя у всех одни и те же поверхности (рис. 242, а, б). Но можно обрабатывать корпуса группами, обрабатывая у них разные поверхности. На рис. 242, в показано фрезерование в позициях 1 поверхностей /С и Л, а в позициях 2 — поверхностей М и Н. После рабочего хода стола заготовки корпуса, обработанные в позициях 1, перекладываются на позиции 2, а на их место устанавливаются заготовки для фрезерования поверхностей К и Л. В группы можно подбирать и разные детали.  [c.412]

Основные отверстия в корпусных деталях обычно обрабатывают на расточных, карусельно-токарных, радиально- и вертикально-сверлильных и агрегатных станках, а иногда и на токарных станках. В единичном и мелкосерийном производстве при обработке отверстий корпусные детали устанавливают на обработанную основную поверхность по размеченным окружностям отверстий. В серийном и массовом производстве растачивают отверстия с помощью специальных приспособлений, в которых инструмент имеет одностороннее переднее направление (рис. 243, а) или заднее (рис. 243, б) или переднее и заднее одновременно (рис. 243, в). С передним или задним направлением обрабатываются обычно короткие отверстия. Длинные отверстия растачиваются борштангами, имеющими переднее и заднее направления. В мелкосерийном производстве отверстия растачивают с помощью накладных шаблонов, закрепляемых на детали или на основании приспособления. В этом случае шпиндель станка устанавливается соосно отверстию шаблона.  [c.413]


Для обработки отверстий в корпусных деталях в мелкосерийном производстве применяются также вертикально- и радиально-сверлильные (рис. 244, б) станки с программным управлением.  [c.415]

Важным направлением развития конструкций станков с программным управлением является создание станков с автоматической сменой инструментов (рис. 245). Быстродействующие устройства для смены инструментов позволяют использовать при обработке сложных корпусных деталей большие наборы разнообразных инструментов (до 100 штук), сократить вспомогательное время на их переустановку, настройку на размер и дает возможность рабочему обслуживать несколько станков. Он занимается главным образом установкой и снятием обрабатываемых деталей. Сокращение времени на смену обрабатываемых деталей обеспечивается на некоторых станках наличием двухпозиционного стола или двумя столами / и 2 (рис. 246, а). Пока в одной позиции производится обработка, на другой сменяют обработанную деталь. Устройство для смены инструментов показано на рис. 246, б.  [c.415]

Обработка сложных корпусных деталей на таких станках, несмотря на высокую их стоимость, весьма эффективна, так как резко сок-  [c.415]

С помощью многошпиндельных головок агрег.атные станки обрабатывают в корпусных деталях многочисленные крепежные отверстия не только с одной, а с нескольких сторон одновременно, обеспечивая высокую производительность. На агрегатных станках производят черновую, получистовую и чистовую обработку одного или нескольких отверстий с одной установки. В табл. 16 приведен технологический маршрут обработки корпуса коробки скоростей токарного станка в крупносерийном производстве.  [c.417]

В крупносерийном и массовом производстве для обработки корпусных деталей, особенно крупных размеров, широко используются автоматические линии из агрегатных станков. Особенно трудно и сложно проектировать технологический процесс для обработки корпусных деталей на многоинструментальных станках с числовым программным управлением (ЧПУ). Предположим, требуется обработать корпусную деталь с четырех сторон при ее установке на поворотном столе. С каждой стороны детали расположено по нескольку групп одинаковых отверстий.  [c.420]

Автоматические линии применяются для обработки цилиндрических деталей (валов, втулок, колец), корпусных деталей (блоков цилиндров, коробок передач), зубчатых колес, деталей сложной конфигурации, деталей из листового материала и др.  [c.455]

Для достижения указанных целей при обработке деталей на автоматических линиях часто используются искусственные базы в виде дополнительных, специально изготовленных у детали элементов, не требующихся для ее эксплуатации. Предварительная обработка базовой поверхности у корпусных деталей (а иногда и у других) часто производится на станках, не входящих в автоматическую линию.  [c.457]

В конструктивно-технологической группе деталей в качестве условий при выборе операций учитывают разновидности термической обработки, например для ступенчатых валов нормализацию, улучшение, закалку, отпуск и др. для корпусных деталей из чугуна — искусственное старение и т. д. Эти операции назначаются в технологический маршрут при выполнении условий, вытекающих из технических требований на изготовление детали. Условия, характеризующие шероховатость обрабатываемых поверхностей, определяются характером производства. Например, при обработке наружных цилиндрических поверхностей валов выполнение условия, обе-  [c.97]

Примечание. При вычерчивании общего вида многошпиндельной коробки и ее раскатки выводятся дополнительно характеристики оригинальных зубчатых колес, параметры механической обработки корпусных деталей, сборочный чертеж шпиндельной коробки, характеристики шпинделей, перечень конструкторских документов, спецификации, таблицы прочностных характеристик валов, подшипников и зубчатых колес.  [c.179]

Корпусные детали выполняют литыми из серого чугуна и, реже, из стали. Отливки получают чаще всего литьем в песчаные формы. При изготовлении отливок большое значение придается их качеству. До отправки в механический цех у отливок удаляют литники и прибыли, термической обработкой снимают их внутренние напряжения, очищают поверхность, контролируют размеры, качество поверхности, твердость и др.  [c.176]


По второму способу заготовки корпусных деталей обрабатывают в единичном и мелкосерийном производствах, когда проектирование специального приспособления неэкономично. В этом случае до расточных операций производят разметку заготовки. После обработки базовых поверхностей заготовку устанавливают  [c.179]

Какие существуют основные этапы обработки корпусных деталей  [c.185]

К особой группе относят многоцелевые станки для обработки призматических заготовок, на которых может быть выполнена комбинированная сверлильно-фрезерно-расточная обработка корпусных и плоских заготовок, а также многоцелевые станки для обработки заготовок типа тел вращения, на которых наряду с токарной обработкой производится сверление, фрезерование и растачивание.  [c.204]

Процесс достижения заданной точности при обработке заготовок корпусных деталей на станках с ЧПУ показывает, что все параметры можно разделить на две группы параметры, не связанные с точностью отсчета координатных перемещений рабочих органов станка (точность диаметральных размеров и геометрической формы отверстий и др.), и параметры, связанные с точностью отсчета и координатных перемещений рабочих органов станка (точность расстояний между поверхностями, точность линейных размеров и др.).  [c.225]

При относительно большой серийности обработки на станках с ЧПУ используют комбинированный инструмент (например, точные и взаимосвязанные отверстия и поверхности). Применение комбинированного инструмента позволяет сократить штучное время при обработке заготовок корпусных деталей на 10. .. 20% благодаря уменьшению времени резания и вспомогательного времени. Схемы обработки отверстий комбинированным инструментом приведены на рис. 15.10. Двухступенчатое сверло применяют для обработки ступенчатых отверстий (рис. 15.10, й). Многоступенчатый зенкер (рис. 15.10, б) обеспечивает высокую производительность и допускает большое число повторных заточек. Длины ступеней этих зенкеров обычно равны соответствующим размерам обрабатываемых поверхностей. Затылование режущих зубьев зенкеров выполнено одинаковым на всех ступенях, чтобы при повторной заточке диаметры и длины ступеней относительно не изменялись. Комбинированный расточной инструмент (рис. 15.10, в) представляет собой державку 1, несущую сменные головки 2 с резцовыми вставками 3.  [c.232]

Специфические особенности процесса ЭХО обусловливают целесообразность его применения в условиях серийного производства. Наиболее эффективен процесс для производства лопаток газотурбинных двигателей и энергетических турбин. Наряду с этим технологию электрохимической обработки применяют для калибрования отверстий различной формы, изготовления полостей сложной конфигурации (штампов, пресс-форм, литейных форм), обработки заготовок корпусных деталей и др.  [c.306]

В двухопорном варианте опоры центрируются одна относительно другой через стык корпусных деталей, которые по конструкции узла можно зафиксировать один относительно другого только контрольными шрифтами совместная обработка посадочных отверстий затруднительна.  [c.226]

Расточные станки применяют в основном для обработки отверстий с точно ко1)рдипнрор,апнымн осями в крупно- и среднегабаритных заготовках корпусных деталей.  [c.320]

Если в корпусной заготовке имеются внутренняя стенка или отверстия небольнюго диаметра, не позволяющие ввести оправку, то такая конструкция нетехнологична (рис. 6.55, г). Расположение торцов следует предусматривать в одной плоскости (рис. 6.55, д), чтобы обрабатывать их за один проход. Наличие уступов в отверстиях н расположение торцовых поверхностей на разных высогах (рис. 6.55, ё) затрудняют обработку.  [c.327]

Следующее звено автоматизации — оснащение станков с ЧПУ устройствами для размещения (магазинами) и автоматической замены инструмента. Это позволяет последовательно выполнять большое число разных этапов обработки, осуществляемых различными режущими инструментами без снятия заготовки со станка. В магазинах можно разместить до 150 инструментов. Режущий иисгру-мент по команде от программы подается в рабочее положение в лео-бой последовательности с помощью специальной автоматической руки. Все это позволяет обрабатывать, например, сложные корпусные детали с четырех-пяти сторон.  [c.396]

ЭКО применяют при зачистке отливок от заливов, отрезке литниковых систем и прибылей, зачистке проката из снецсплавов, черновом круглом наружном, внутреннем и плоском шлифовании корпусных деталей машин из труднообрабатываемых сплавов (рис. 7.5), шлифовании с одновременной поверхностной закалкой деталей из углеродистых сталей. Метод обработки не обеспечивает высокой точности и качества поверхности, но дает высокую производительность съема металла.  [c.405]

Создание упорных заплечиков в корпусе. Для точной установки наружные кольца подшипников поджимают к заплечику корпусной детали. По рис. 1,2, а упорный заплечик создан непосредственно в корпусе. Однако наличие уступа в отверстии корпусной детали создает определенные трудности при растачивании отверстия. Обработку отверстия корпусной детали можно упростить, если заплечик сделать в стакане (рис. 7.21, б). Но введение дополнительной трудоемкой и точной детали — стакана — может быть оправдано только в том случае, если стакан позволяет решить какую-либо другую констрзчсгорскую задачу упрощение сборки, создание самостоятельной сборочной единицы.  [c.120]

На рис. 15.12 представлена типовая конструкция из стандартного ряда волновых редукторов общего назначения —редуктор Вз-160 (разработка ВНИИредук-тора и МВТУ им. Н.Э. Баумана). Отличительные особенности конструкции двухопорный вал генератора соединение кулачкового генератора с валом с помощью шарнирной муфты (рис. 15.10, б) сварное соединение цилиндра гибкого колеса с дном шлицевое соединение гибкого колеса с валом соединение с натягом жесткого колеса с корпусом цилиндрическая форма внутренней полости корпуса без внутренних углублений и карманов, упрощающая отливку и очистку после литья и механической обработки. Другие рекомендации по проектированию корпусных деталей и крьииек приведены в гл. 17.  [c.244]


У большинства корпусных деталей проверяют 1) прямолинейность и правильность расположения основных (базовых) плоскостей 2) размеры и формы основных отверстий 3) соосность осей отверстий 4) межосевые расстояния, параллельность и перекос осей 5) правильность расположения осей отверстия относительно основных поверхностей 6) неперпендикуляркость осей основных отверстий 7) неперпендику-лярность торцовой плоскости относительно оси отверстия 8) шероховатость обработки поверхностей основных отверстий, основных и других плоскостей.  [c.422]

Пример. Определить коэффициент точности ТС операции обработки корпусной заготовки, закрепленной в приспособлении на сголе вертикально-фрезерного станка торцовой фрезой, установленной в шпинделе (при помощи оправки).  [c.72]

Завод Станкоконструкция в 1945—1947 гг. изготовил ряд АЛ для обработки корпусных деталей тракторов и автомобилей.  [c.89]

Проводится также укрупненный алгоритм типового технологического маршрута обработки литой корпусной детали на многооперационных станках с ЧГ1У (рис. 8.5).  [c.117]

Обработка крепежных и других отверст и й. Эти отверстия обрабатывают сверлением, зенкерованием, цекованнем, развертыванием. В единичном производстве отверстия сверлят по разметке. В серийном и массовом производствах применяют различные кондукторы — коробчатого типа, накладные. Для обработки отверстий с разных сторон применяют поворотные кондукторы. В серийном и единичном производствах корпусные заготовки массой до 30 кг обрабатывают на вертикально- .н рлильных станках, а заготовки массой свыше 30 кг — на радиально-сверлильных. В крупносерийном и массовом производи гтвах обработка выполняется на многошпиндельных аргегатных станках.  [c.182]

Сопоставьте технологические процессы обработки згготовок корпусных деталей, действующие на заводе, с рекомендуемыми в лекции. Составьте план мероприятий, необходимых для осуществления предлагаемых процессов, и согласуйте их с администрацией предприятия.  [c.186]

Схема базирования и обработки корпусной детали / на вертикальном расточном станке с ЧПУ 2 и схема его размерных связей, возникающих при обработке, приведена на рис. 15.6, где видны три системы координат нуль станка, нуль детали, нуль обработки (исходная точка). Координаты программируемых точек Гпрог (рис. 15.6) в общем случае в пространстве представлены прог == г, — Го, где 1 — радиус-вектор текущей координаты опорной точки Го — радиус-вектор размера координаты исходной точки. При подготовке программы возникают размерные связи, представленные векторами.  [c.227]

Решение. Звенья Ау = 55/г8, А2 = = 2,2/iS являются уменьшающими звенья Лз = 20Я9 и Л4 = 40Н9-увеличивающими (на звенья А и назначены допуски из более грубого квали-тета с учетом повышенной сложности обработки корпусных деталей). Допуски звеньев выписываем из табл. П18, мкм ГЛ, = = 46 ТА = ТА = 14 ТА, =- 52 ТА = 62. Предельные отклонения звеньев, мкм Es(/4i) = 0 i(/4i)= -46 Е (А2) = Е А ) =  [c.103]

Чертежи совместно обрабатываемых изделий должны содержать размеры с предельными отклонениями элементов, обрабатываемых совместно. Эти размеры заключают в квадратные скобки и в технических требованиях указывают Обработку по размерам в квадратных скобках производить совместно с В сложных случаях (например, корпусные детали) при указании размеров общих поверхностей рядом с изображением одного из изделий помещают полное или частично упрощенное изобрал<ение другого изделия, выполненное сплошными тонкими линиями.  [c.12]

При большой окружной скорости (более 25...30 м/с) илп при работе с ударами, толчками, вибрацией корпусные детали полу-муфт и другие нагруженные детали выполняют из стали (отливки, прокат, штамповка, ковка). При меньших окружных скоростях применяют чугун (СЧ 21-40, СЧ 32-52, СЧ 35—56). Мелкие детали выполняются из конструкционных углеродистых сталей (прокат), а крупные ответственные детали — из поковок (сталь 40, 40ХН и др.). Рабочие поверхности трения подвергают термической обработке с целью повышения твердости и износостойкости. Упругие элементы изготавливают из пружинной стали, пластмасс, твердой резины. Поверхности трения сцепных муфт могут облицовываться фрикционными материалами (см. табл. 15.4).  [c.375]


Смотреть страницы где упоминается термин Корпусные Обработка : [c.578]    [c.113]    [c.97]    [c.413]    [c.455]    [c.95]    [c.153]    [c.203]   
Справочник машиностроителя Том 2 (1952) -- [ c.850 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте