Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет на прочность по местным напряжениям

Для выбранных стандартных ходовых колес или катков производится поверочный расчет на прочность по местным напряжениям смятия в зоне их контакта с рельсом с учетом характера этого контакта.  [c.44]

На прочность пластичных и хрупких материалов концентрация напряжений влияет по-разному. Существенное значение при этом имеет также характер нагрузки. Если материал пластичный (диаграмма напряжений имеет площадку текучести зна чительной протяженности) и нагрузка статическая, то при увеличении последней рост наибольших местных напряжений приостанавливается, как только они достигнут предела текучести. В остальной части поперечного сечения напряжения будут еще возрастать до величины предела текучести Стт, при этом зона пластичности у концентратора будет увеличиваться (рис. 120). Таким образом, пластичность способствует выравниванию напряжений. На этом основании принято считать, что при статической нагрузке пластичные материалы мало чувствительны к концентрации напряжений. Эффективный коэффициент концентрации для таких материалов близок к единице. При ударных и повторно-переменных нагрузках, когда деформации и напряжения быстро изменяются во времени, выравнивание напряжений произойти не успевает и вредное влияние концентрации напряжений сохраняется. Поэтому в расчетах на прочность учитывать концентрацию напряжений необходимо.  [c.120]


Рассмотренный расчет на прочность по методу предельного состояния [88, 89] не учитывает возможной неравномерности в распределении напряжений и концентрации напряжений в сварной трубе вследствие отклонения сечения от правильной геометрической формы [60] из-за наличия усиления сварного шва, смещения кромок в нем, овальности и т. п. Предполагается, что если указанные зоны концентрации напряжений возникают в стенках трубы, то они сглаживаются за счет местной пластической деформации, и это не отражается на общей несущей способности трубы, которая определяется ее прочностью на разрыв от воздействия внутреннего статического давления. Указанное положение об отсутствии влияния концентрации напряжений на несущую способность труб при статическом нагружении было проверено рядо.м экспериментальных исследований.  [c.140]

При статических нагружениях концентрация напряжений не снижает несущей способности деталей, изготовленных из пластичных материалов это объясняется тем, что местные пластические деформации способствуют перераспределению и выравниванию напряжений в сечениях детали. В зоне концентрации при этом наблюдается упрочнение, способствующее повышению прочности. В связи с этим расчеты на прочность при статических напряжениях для деталей из пластичных материалов ведут по номинальным напряжениям.  [c.22]

При расчете зубчатых колес по местным напряжениям допускаемое напряжение, приведенное к расчету по максимальным напряжениям находится как частное от деления предела вЫ носливости собственно зубьев на коэффициент запаса прочности. Величина предела выносливости зубьев устанавливается путем натурных испытаний зубчатых колес на стенде или на пульсаторе. Недостатком расчета по местным напряжениям является то, что при их определении учитывается теоретический коэффициент концентрации напряжений Кт, а при определении экспериментальным путем допускаемых напряжений — эффективный коэффициент концентрации напряжений Кс Для металлов же, в зависимости от их химического состава и структуры и от градиента напряжений, разница между /Сг и /Са получается иногда значительной.  [c.173]

Величина местных напряжений зависит от вида и размеров концентратора. Например, чем меньше радиус отверстия или выкружки в полосе, тем больше максимальные напряжения отличаются от номинальных. В случае весьма малого радиуса отверстия в полосе (рис. 118, а) у краев отверстия наибольшее напряжение равно трем номинальным (а = 3), а у краев полукруглых вырезов (рис. 118, б) — примерно двум номинальным (а = 2). Надрезы с острыми входящими углами дают еще большие коэффициенты концентрации напряжений у вершин углов. Для некоторых распространенных концентраторов напряжений в полосе прямоугольного поперечного сечения значения теоретических коэффициентов концентрации приведены на графике рис. 119, а в стержнях круглого поперечного сечения — в табл. 11. Более подробные данные о теоретических коэффициентах концентрации напряжений приводятся в справочниках по расчету на прочность и в специальных курсах.  [c.109]


В случае однородных хрупких материалов (например, закаленных сталей) при статической нагрузке необходимо учитывать концентрацию напряжений и расчет на прочность вести по наибольшим местным напряжениям. В этом случае условие прочности запишется так  [c.120]

При статических напряжениях. При статическом нагружении деталей (когда число циклов за весь период работы 10 ), изготовленных из пластичных материалов, концентрация напряжений не снижает несущей способности детали, так как местные пластические деформации способствуют перераспределению и выравниванию напряжений по сечению. В этом случае расчеты на прочность выполняют по номинальным напряжениям а или т.  [c.17]

Приведенный выше инженерный метод расчета малоцикловой прочности в номинальных напряжениях требует достаточно сложных экспериментальных исследований на натурных узлах и соединениях конструкций в зависимости от целого ряда факторов вида и способа нагружения, характеристик цикла, температуры, технологии изготовления и т. п. В связи с этим упомянутый выше расчет по местным деформациям (см. гл. 1 и 11) является более универсальным, так как он основан на результатах испытаний лабораторных образцов, используемых для оценки прочности конструкций в зонах концентрации напряжений. Применимость деформационных подходов к расчету сварных конструкций определяется наличием данных по теоретическим коэффициентам концентрации напряжений в сварных швах, циклическим свойствам материала различных зон сварного соединения и по уровню остаточных сварных напряжений. В 2 приведены предложения по определению коэффициентов концентрации напряя ений и деформаций в стыковых и угловых швах листовых конструкций. Для стержневых конструкций, выполняемых из фасонного проката, необходимы дополнительные исследования напряжений и деформаций в зонах их концентрации. Свойства строительных сталей при малоцикловом нагружении изучены достаточно подробно, и по ним получены величины параметров для построения расчетных кривых  [c.189]

Инженерные расчеты на прочность котельных деталей производятся по основной нагрузке — внутреннему или наружному давлению с учетом поддающихся надежной оценке внешних нагрузок. Остальные возможные дополнительные напряжения учитываются запасом прочности, кроме того, предъявляются соответствующие требования к механическим и технологическим свойствам применяемых материалов. Особенно жесткие требования предъявляются к пластичности котельных материалов, высокий уровень которой должен предотвращать разрушение при неизбежном возникновении местных перегрузок. Поэтому для применения в элементах паровых котлов допускаются только материалы, разрешенные Госгортехнадзором.  [c.187]

Так как при эксплуатации оборудования с эмалевым покрытием появление пластических деформаций в металле недопустимо, для расчета на прочность стальной эмалированной аппаратуры можно применять только те методы, которые основаны на определении напряжений в зоне упругой деформации. Методы расчета, допускающие появление местных пластических деформаций (расчеты по предельным нагрузкам, предельным состояниям, несущей способности и т. д.), для расчета конструкций с хрупкими защитными покрытиями (стеклоэмалевыми, стеклокристаллическими и др.) неприменимы.  [c.40]

Предельные состояния, виды и критерии разрушения. Традиционные инженерные расчеты на прочность деталей машин и элементов конструкций при однократном нагружении основаны, с одной стороны, на номинальных напряжениях, определяемых по формулам сопротивления материалов, теории упругости и пластичности, теории пластин и оболочек и, с другой стороны, на характеристиках прочности материалов при однократном нагружении,, определяемых при стандартизированных или унифицированных испытаниях лабораторных образцов из применяемых конструкционных материалов [16]. В зависимости от большого числа конструктивных (вид нагружения, размеры и форма сечений, наличие концентрации напряжений), технологических (.механические свойства применяемых материалов, вид и режимы сварки, термообработки, упрочнения) и эксплуатационных (скорость нагружения, уровень нагрузок, температура, среда) факторов при однократном нагружении возможно возникновение трех основных видов разрушения — хрупкого, квазихрупкого и вязкого 16]. Каждый из этих видов разрушения существенно отличается по уровню номинальных и местных разрушающих напряжений и деформаций, скоростям развития трещин и времени живучести деталей с трещинами, внешнему виду поверхностей разрушения. Применительно к этим видам разрушения выбирают те или иные критерии разрушения из трех основных групп — силовых, деформационных и энергетических.  [c.9]


Концентрация напряжений по-разному влияет на прочность пластичных и хрупких материалов. Существенное значение при этом имеет и характер нагрузки. Если взять пластичный материал, нагруженный статически, то при увеличении нагрузки рост наибольших местных напряжений при достижении предела текучести приостанавливается вследствие местной текучести материала, а в остальной части поперечного сечения напряжения будут возрастать. Следовательно, пластичность материала способствует выравниванию напряжений. Когда напряжения достигнут предела текучести по всему сечению, их распределение можно считать равномерным. Отсюда можно сделать вывод о том, что при статической нагрузке пластичные материалы мало чувствительны к концентрации напряжений. Влияние концентрации напряжений не учитывается в случае статического нагружения при расчетах на прочность заклепочных и резьбовых соединений, а также других деталей подобного рода, изготовляемых из пластичных материалов.  [c.312]

Наряду с упрощенными расчетами широкое распространение получили расчеты на прочность, основанные на более точном учете истинного характера нагружения и действительной несу-ш,ей способности деталей машин. При оценке несущей способности учитывают возможные виды отказов по критерию прочности (см. рис. 9), влияние не только номинальных, но и местных напряжений, технологических способов упрочнения, шероховатости поверхности, масштабного и других конструктивно-технологических и эксплуатационных факторов.  [c.61]

Рельсы подвесных дорог работают в сложных условиях местных и общих напряженных состояний. Их расчет на прочность рекомендуется выполнять по методу допускаемых напряжений. Если исходить из принятых значений коэффициентов перегрузки, однородности материала и условий работы, принимаемых в расчетах по предельному состоянию, то коэффициент запаса при определении допускаемых напряжений по отношению к нижнему значению предела текучести для сталей класса С38/23 можно принять равным 1,35, для сталей более высокого класса прочности 1,45 и для алюминия 1,6 для расчета на выносливость — 1,25. Значения допускаемых напряжений для расчета рельсов и рельсов-балок подвесных путей на прочность при действии основных нагрузок для разных марок стали приведены в табл. 3.1.  [c.37]

Технические критерии статического и усталостного разрушения при сложном напряженном состоянии, применяемые обычно в расчетах на прочность / — IV теории прочности и их обобщения [6]), имеют дело только с макроскопическими напряжениями и деформациями (I рода). Последние являются усредненными величинами, определяемыми для всего поликристаллического образца в целом, В частности, критерием разрушения по первой теории прочности служит равенство максимального главного напряжения его критическому значению Рр, равному сопротивлению разрушению при простом одноосном растяжении поликристаллического образца. Действительная картина разрушения сложнее. Задолго до полного разрушения всего образца, при напряжениях, значительно меньших разрушающего, в нем появляется множество микроскопических трещин, свидетельствующих о разрушении отдельных элементов структуры. Это явление легко понять, если учесть, что макроскопические напряжения являются средними по отношению к структурным или микроскопическим напряжениям (П рода), которые могут быть как меньше, так и значительно больше макроскопических напряжений в любом данном сечении тела. Максимальные из числа микроскопических растягивающих напряжений, достигая местной (локальной) прочности материала, приводят к образованию микротрещин. В связи с этим очевидно, что расчет по обычным техническим критериям прочности противоречив, поскольку в основу его положено предположение, по которому разрушение вызывается средними (макроскопическими), а не максимальными (из числа микроскопических) напряжениями. Дело обстоит точно так же, как если бы расчет на прочность пластинки с отверстием производился по номинальным напряжениям, без учета концентрации напряжений у отверстия и независимо от формы и размеров отверстия. В структуре технических материалов (сталей, чугунов, бетона и даже стекла) роль концентраторов напряжений принадлежит особенностям микроскопической структуры (кристаллитам, неметаллическим включе-50  [c.50]

В последние годы ведутся широкие теоретические и экспериментальные исследования по изучению действительной нагруженности узлов и элементов дорожных машин. Опыт эксплуатации различных машин показывает, что в их элементах зачастую возникают местные разрушения, приводящие иногда к серьезным авариям. Разрушения часто происходят в местах, которые по действующим методикам расчета на прочность и выносливость считаются вполне надежными. Исследования показывают, что напряжения в элементах металлоконструкций одноковшовых экскаваторов, замеренные экспериментально с учетом динамических воздействий, превышают расчетные напряжения от статических нагрузок в несколько раз. Аналогичная картина наблюдается при экспериментальном исследовании напряженного состояния отдельных элементов скреперов, бульдозеров и других машин. В ряде случаев причиной разрушений сварных элементов являлись местные напряжения от сварки, которые в местах с высокими коэффициентами концентрации напряжений достигали значений предела текучести материала.  [c.68]

В методиках расчета, разработанных Институтом машиноведения АН СССР, сделан ряд допущений и упрощений, позволяющих выполнить расчет прочности и долговечности в рамках инженерных возможностей — с использованием аналитических зависимостей для кривых малоциклового разрушения, базовых статических и циклических свойств материала и схематизированных режимов эксплуатационного нагружения. Расчет местных напряжений и упруго-пластических деформаций проводится на базе коэффициентов концентрации напряжений и деформаций в упругой области. Эти коэффициенты устанавливаются по теоретическим коэффициентам для заданных уровней номинальных нагружений с учетом сопротивления материалов неупругим деформациям при статическом и циклическом нагружении. Нестационарность режимов нагружения в инженерных расчетах учитывается по правилу линейного суммирования повреждений. Расчеты выполняются для стадии образования трещины в наиболее нагруженных зонах рассматриваемых элементов конструкций.  [c.371]


Расчет по предельному состоянию с определенным запасом прочности не гарантирует от появления местных пластических деформаций. Последнее еще допустимо при постоянных нагрузках, которые имеют место преимущественно в строительных конструкциях. При переменных нагрузках, на которые чаще всего приходится рассчитывать машиностроительные конструкции, появление пластических деформаций во многих случаях недопустимо. Поэтому в таких случаях следует вести расчет по допускаемым напряжениям.  [c.560]

С другой стороны, для некоторых хрупких материалов в определенных условиях возникновение высоких напряжений в точке влечет за собой разрушение всей конструкции, и расчет по напряженному состоянию в точке вполне оправдан. Точно так же местные напряжения необходимо учитывать при расчетах на усталостную прочность.  [c.45]

Рассмотренные в 1 особенности конструктивных форм роторов и условия их эксплуатации показывают, что наряду с расчетами статической прочности необходимы расчеты на циклическую прочность, особенно на стадии проектирования новых конструкций и при внедрении новых материалов. При этом расчет циклической прочности деталей роторов сепараторов должен основываться на анализе общей и местной напряженности с учетом фактических данных по сопротивлению применяемого материала деформированию и разрушению.  [c.122]

Расчет на циклическую прочность [11, 12] проводится по амплитудам приведенных условных упругих напряжений цикла Оа) равным половине произведения размаха местной деформации на модуль упругости при расчетной температуре.  [c.199]

Если приведенные местные условные упругие напряжения Oai и Отг Определены В соответствии с п. 3.1. по данным расчетов аналитическими или численными методами (например, методом конечных элементов) или по данным испытаний модельной или натурной конструкции при эксплуатационных /-режимах нагружения, то концентрация деформации и напряжений в расчетах не учитывается и расчет на циклическую прочность ведется по указанным выше местным напряжениям.  [c.223]

С учетом параметров эксплуатационного нагружения N, г, t, представленных на рис.2.1.1, эксплуатационных усилий F, определяемых по (2.1.1), напряжений су и деформаций е - по (2.1.2) строят временные, зависимости F, t, а, е по X (рис.2.1.2). Эти зависимости являются исходными для анализа прочности, ресурса и надежности. Величины F, Гит, как правило, задаются режимами эксплуатации и могут регистрироваться контрольно-измерительными системами машин и установок. Параметры а и е общего и местного напряженно-деформированного состояния могут быть получены расчетом по величинам F, Г и X или специально измерены с помощью средств натурной тензометрии и термометрии. По схеме на рис.2.1.2 для представленного блока эксплуатационного нагружения вьщеляют режимы монтаж (М), испытания (И), пуск (П) в эксплуатацию, стационарный (С) режим с поддержанием заданных рабочих параметров, регулирование (Р) базовых параметров, возникновение аварийных (А) ситуаций, срабатывание систем зашиты (3) и оста-  [c.79]

Корпуса современных энергетических установок [1—3] представляют собой ответственные и сложные конструкции, к надежной работе которых предъявляются специальные требования. В соответствии с нормами [4] оценка их прочности проводится по таким предельным состояниям, как пластическая деформация или деформация ползучести по всему сечению, появление макротрещин при циклическом нагружении, разрушение (вязкое и хрупкое) и др. При проведении поверочного расчета, позволяющего уточнить геометрическую форму конструкции и определить допускаемое число циклов нагружения и ресурс эксплуатации. Напряжения рассчитываются, как правило, в предположении упругого поведения материалов и в том случае, если они по расчету превышают предел текучести материала местные напряжения и деформации в зонах концентрации в упругопластической области определяются через номинальные и местные в упругой области. При этом для удобства выполнения расчетов, принятых в инженерной практике, вместо упруго-пластических деформаций рассматриваются условные упругие напряжения, равные произведению этих деформаций на модуль упругости [4].  [c.75]

В основу расчета долговечности при циклическом и длительном статическом нагружениях положен принцип суммирования повреждений, рассмотренный выше. Для определения местных деформаций используются результаты испытания материалов в условиях однородного напряженного состояния и их соответствующие аналитические интерпретации применительно к материалам циклически упрочняющимся, разупрочняющимся и стабилизирующимся в процессе циклического нагружения [29, 101, 117]. При этом пластические циклические и статические свойства определяются для зон концентрации с учетом их стесненности и кинетики в процессе нагружения. Расчет коэффициентов концентрации напряжений Кд и деформации К , производится на основе модифицированной зависимости Нейбера [29, 110, 118, 124]. Запасы прочности по напряжениям принимаются равным Пд = 2 и по числу циклов — = 10.  [c.252]

В связи с изложенным выбор сталей для элементов конструкций, работающих в условиях малоциклового разрушения при различных температурах и различной жесткости нагружения и назначения допускаемых напряжений только по характеристикам статической прочности, оказывается недостаточным. Характеристики пластичности, существенно влияющие на разрушающие амплитуды деформаций и числа циклов до разрушения, не являются расчетными при оценке статической прочности с использованием указанных выше запасов прочности по пределам текучести и прочности. Поэтому в практике проектирования циклически нагружаемых конструкций выбор материалов по характеристикам статической прочности (пределу текучести и прочности) осуществляется на стадии определения основных размеров. Поверочные расчеты сопротивления циклическому разрушению проводятся по критериям местной прочности с использованием как характеристик прочности, так и характеристик пластичности.  [c.260]

В отличие от методов сопротивления материалов в третьем разделе рассмотрены новые, более эффективные подходы к оценке прочности и разрушения. Разрушение материала здесь рассматривается как происходящий во времени процесс при кратковременном, длительном, динамическом и циклическом нагружениях. Изложены теория напряженно-деформированного состояния и критерии разрушения тел с грещи-нами, расчеты на прочность по номинальным и местным напряжениям и деформациям, методы расчега на трещиностойкость.  [c.16]

При расчетах прочности по местным напряжениям и деформаниям на стадии образования трещин в зонах максимальной локальной нагруженности используют рассмотренные в гл.3.1 и 3.2 критерии разрушения. Зоны максимальной локальной нагруженности, в первую очередь, определяются наличием концентрации напряжений - конструктивной (отверстия, выточки, буртики, резьба, канавки и др.), технологической (сварные швы, поры, включения и др.),  [c.165]


Расчеты на прочность в номинальных напряжениях по характеристикам статических свойств с учетом опыта проектирования проводят для обоснования выбора основных размеров элементов конструкций — толщин стенок и диаметров. Для обоснования выбора конструктивных форм (наличие зон концентрации), режимов теплового и механического нагружения, технологии (сварка, термообработка), уровня дефектоскопического контроля с учетом условий эксплуатации следует провести дополнительные поверочные расчеты на прочность и ресурс. Для выполнения этих расчетов рекомендуется использовать деформационные подходы, отражающие роль указанных выше факторов. Кроме того, для наиболее ответственных машин и конструкций проводят модельные и натурные тензометрическне испытания, из которых непосредственно получают значения номинальных и местных деформаций. Для определения соответствующих запасов прочности н ресурса эти значения деформаций сопоставляют с критериальными значениями.  [c.212]

МИ колебаниями от главных циркуляционных насосов, гидродинамическими усилиями от изменения скоростей и направлений потоков теплоносителя в первом контуре, тепловыми пульсациями от недостаточного перемешивания потоков теплоносителя, вибрациями и колебаниями от сейсмических нагрузок. Сложный спектр высокоскоростных и вибрационных механических и тепловых нагрузок имеет место при различных аварийных режимах, связанных с возможным разрывом главных трубопроводов первого контура и динамическим смещением опор корпуса реактора при мощных землетрясениях и разрывах. Характер и анализ перечисленных выше статических и циклических нагрузок и связанных с ними напряжений приведены в нормах расчета на прочность [1,2]. Перечисленные выше нагрузки создают в корпусах и других злементах первого контура водо-водяных реакторов соответствующие номинальные нагфяжения. Учитывая сложность конструктивных форм этих элементов, неравномерное распределение температур по толщине стенок каждого элемента и между отдельными элементами, а также различие в физико-механических свойствах (коэффициенты линейного расширения, теплопроводность), суммарные местные напряжения могут значительно (в 2—3 раза и более) превосходить номинальные. По данным [1, 2, 6, 23, 29—37], коэффициенты концентрации напряжений а от механических нагрузок (равные отношению местных напряжений в различных зонах корпуса реактора к номинальным напряжениям в гладкой цилиндрической или сферической части) составляют величины порядка 1,5—5. Для некоторых из зон корпуса эти коэффициенты приведены в табл. 1.3.  [c.19]

В ФРГ были подвергнуты испытанию внутренним давлением при комнатной температуре с тензометриро-ванием напряжений и доведением до разрушения три демонтированных котельных барабана. В процессе эксплуатации в них были обнаружены трещины около отверстий. Трещины выбрали и затем заварили электро-дуговои сваркой. Все три барабана разрушились хрупко при расчетных напряжениях, вычисленных по нормам расчета на прочность и значительно меньших предела текучести. Концентрация напряжений, местная подкалка, сварочные напряжения и неудовлетворительная тер-  [c.348]

Статические нагрузки. Вследствие существенного различия в запасах прочности спроектированные в разных странах на одинаковые условия работы из материалов с близкими характеристиками прочности барабаны имеют разную толщину стенок. Расчеты показывают, что для барабанов из углеродистой стали с отношением пределов текучести и прочности около 0,5 расхождение толщины стенки, рассчитанной по нормам различных стран, не превышает 20%, в то время как для стали 16ГНМ с более высокими значениями предела текучести при рабочих температурах эта разница составляет более 50%. По нормам расчета на прочность [21 ] считалось, что оценка прочности по предельным нагрузкам, а не по наибольшим местным напряжениям, позволяет обеспечить надежность работы детали, изготовляемой из материалов с достаточно высокой пластичностью и работающей при стационарных нагрузках, при наличии местных пластических деформаций.  [c.12]

Перечислим целесообразные подходы к расчету на прочность элементов жидкостного двигателя. Камеру сгорания ЖРД на общую несущую способность целесообразно рассчить ать по предельным нагрузкам, не считаясь с местными концентрациями напряжений, поскольку обычно камера сгорания выполняется из достаточно пластичных материалов. Расчет охлаждающего тракта на местные прогибы ведут по допускаемым перемещениям [26]. Критерием работоспособности плоской форсуночной головки является герметичность соединения форсунок с пластинами. Поэтому прочностной расчет плоской головки следует вести по допускаемым деформациям. Относительные удлинения, вызываемые изгибом и нагревом плоской головки, следует сравнивать с теми их значениями (определяемыми экспериментально), при кото->ых нарушается герметичность соединения форсунок с пластинами 26]. Кроме того, если в камере имеются сварные или паяные соединения и если материал в зоне пайки обладает повышенной хрупкостью, то расчет этих соединений в некоторых случаях возможен и по допускаемым напряжениям.  [c.359]

Номер профиля ходового пути, обусловливающий толщину ездовой полки, определяют по максимальной расчетной нагрузке на каретку в зависимости от несущей способности ездовой полки пути. Следовательно, для каждого заданного профиля пути можно установить предельные нагрузки на каретку по прочности ездовой полки (см. ниже). При выбранном профиле расчет ходового пути сводится к определению максимального допускаемого расстояния между креплениями различных участков пути конвейера, т. е. свободного пролета балки пути. Пролет балки пути определяют из расчета на прочность от поперечного и местного изгиба, деформацию прогиба и устойчивость. При расчете на прочность следует учитывать, что при работе конвейера возможен значительный износ ездовых поверхностей путевой балки. Для надежной работы конвейера требуется повышенная жесткость ходового пути, особенно на участках, примыкающих к поворотным устройствам. Поэтому для балок из стали СтЗ рекомендуется принимать допускаемое напряжение на изгиб (поперечный и местный) Оп.д 1200 кгс/см , допускаемый прогиб fmax = 1/500 длины пролета коэффициент запаса по устойчивости % = 1,7 -h 2,0. Для стали 14Г2 можно принять Оп.д = 1400 к,гс/см .  [c.101]

Условный предел текучести широко применяют в расчетах на прочность. При дальнейшем нагружении пластическая деформация все больше увеличивается, равномерно распределяясь по всему объему образца. В точке В нагрузка достигает максимального значения, в наиболее слабом месте образца начинается образование шейки — сужения поперечного сечения, деформация из равно-Рис. 54 Диаграмма истинных мерной пврвходит В местную. Напряжсние (S) и условных (о) напряжений g материале В ЭТОТ момент испытания называют пределом прочности.  [c.110]

В качестве тел качения обычно используются шарики и ролики стандартных подшипников качения. Расчет опорных колес, катков, шариков и роликов на прочность производится по местным напряжениям смятия и аналогичен расче-  [c.120]

Иногда преподаватели слишком узко истолковывают понятие нарушение прочности , понимая под этим только разрушение в буквальном смысле слова. К нарушению прочности следует относить и возникновение пластических деформаций. Хотя в расчетной практике встречаются случаи, когда местные пластические деформации считают допустимыми, но это не относится к рассматриваемому в техникумах методу расчета по опасной точке (по допускаемым напряжениям) и не следует акцентировать внимание учащихся на этих особых случаях. А вот о том, что расчет ведется по опасной точке, что нарушение прочности (возникновение пластических дефюрмаций или признаков хрупкого разрушения) хотя бы в одной точке рассматривается как нарушение прочности всей конструкции, следует сказать, несмотря на то, что в дальнейшем к этому придется не раз возвращаться.  [c.52]

На стадии конструирования в качестве исходных данных для решения вопросов прочности и ресурса используются мощности, температуры и давления теплоносителя, основные эксплуатационные режимы, общий временной и цикловой ресурс, характер и параметры рассчитываемых аварийных ситуаций, основные требования по радиационной безопасности, условия и характеристики сейсмичности. Сами расчеты прочности включают расчеты нагруженности (усилий, номинальных и местных напряжений) испытания (стандартные и нестандартные) лабораторных образцов для получения расчетных характеристик механических свойств применяемых конструкционньк материалов  [c.7]

Другим важным вопросом обеспечения прочности и ресурса атомных реакторов, не получавшим отражения в традиционных расчетах энергетических установок по уравнениям (2.1) —(2.3), являлся анализ сопротивления деформациям и разрушению при циклическом нагружении [2,5-7,16]. Как следует из данных гл. 1, в процессе эксплуатации атомных реакторов число циклов нагружения на основных режимах изменяется в достаточно широких пределах - от (2- 5) 10 при гидроиспытаниях до (1 2) Ю при программных изменениях мощности и до 10 —10 с учетом вибро-нагруженности. Систематические исследования прочности в этом диапазоне числа циклов были начаты применительно к энергетическим установкам в середине 50-х годов, а в середине 60-х годов были сформулированы основные (преимущественно деформационные) критерии разрушения и свойства диаграмм циклического деформирования [17,18 и др.]. По опытным данным, полученным на лабораторных образцах, было показано, что при числе циклов до 10 циклические пластические деформации оказываются сопоставимыми (в диапазоне числа циклов 10 —10 ) или существенно большими (в диапазоне числа циклов 10 -5 10 ), чем циклические упругие деформации. При этом в зависимости от типа металлов и условий нагружения (с заданными амплитудами деформаций или напряжений) пластические деформации по мере увеличения числа циклов могут возрастать (циклически разупрочняющиеся металлы), уменьшаться (циклически упрочняющиеся металлы) или оставаться постоянными (циклически стабильные металлы). Указанные особенности поведения металлов при циклическом упругопластическом деформировании обусловливают нестационар-ность местных напряжений и деформащ1Й в зонах концентрации при стационарных режимах внешних нагрузок. Для малоцикловой области уравнения кривых усталости и сами кривые усталости при числах циклов 10 —Ю представлялись не в амплитудах напряжений (как для обычной многоцикловой усталости при числах циклов 10 —10 ), а в амплитудах упругопластических деформаций.  [c.40]


Система экспериментов на лабораторных образцах в середине 60-х годов была дополнена важными опытами при малоцикловом нагружении на моделях сосудов давления (с толщинами стенок до 70—120 мм), трубопроводах (с толщинами стенок до 20 -ь 30 мм), сварных пластинах с отверстиями и патрубками, болтах и шпильках (диаметром до 75-150 мм). Анализ полученных данных (в том числе с учетом рассеяния результатов испытаний) позволил обосновать запасы по местным упругопластическим деформациям и долговечности. Нормированные расчеты прочности атомных ВВЭР с учетом их циклического нагружения в эксплуатации осуществляются [5, 6] с введением запасов по местным условным упругим напряжениям и n v - по числу циклов до образования трещин (по долговечности). В зависимости от рассчитьтаемого элемента, объема исходной информации эти запасы находятся в пределах 1,25 -г 2 и 3 20 соответственно. В дальнейшем по мере накопления данных о прочности при изотермическом и неизотермическом нагружении с программируемыми циклами нагрузок, деформаций и температур для расчетов было предложено использовать условия линейного суммирования циклических повреждений (для различных режимов эксплуатационного повреждения).  [c.41]

Возможность образования в наиболее нагруженных зонах (концентрации, термонапряжений, остаточных напряжений) повторных упругопластических деформаций приводит к образованию малоциклового разрушения с базами по числу циклов 10 —10 . Характерной особенностью малоциклового разрушения является относительно слабая зависимость числа циклов до разрушения от номинальных напряжений на уровне предела текучести и выше. Однако при этих напряжениях существенно изменяются местные пластические деформации. В связи с этим расчеты на малоцикловую прочность проводятся не в напряжениях, а в деформациях [2, 8, 9]. Деформационные подходы в расчетах прочности и ресурса машин и конструкций при малоцикловом нагружении подробно рассмотрены в настоящей монографии.  [c.12]

Для элементов машин и конструкций в экстремальных условиях нагружения (в зонах концентрации, в местах действия высоких температ рны5в и остаточных напряжений, в окрестности трещин) традиционно применяемые в инженерной практике расчеты прочности, основанные на определении номинальных и местных напряжений (методы сопротивления материалов), оказываются недостаточными и в целом ряде случаев неправол1ерньдаи-Поэтому запасы прочности и долговечности в рамках поверочных расчетов устанавливают на базе деформационных критериев разрушения, т. е. по предельным нагрузкам, местным упругопластическим деформациям, коэффициентам интенсивности напряжений и деформаций по размерам дефектов типа трещин.  [c.6]


Смотреть страницы где упоминается термин Расчет на прочность по местным напряжениям : [c.11]    [c.161]    [c.7]    [c.48]    [c.651]    [c.26]    [c.10]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.0 ]



ПОИСК



Местные напряжения

Напряжения местные приведенные при расчете на прочность — Формулы

Расчет по напряжениям

Расчеты прочности по местным напряжениям и деформациям Н.А.Махутов)



© 2025 Mash-xxl.info Реклама на сайте