Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Безопасность радиационная

Отечественные парогенераторы прямоточного типа как докритиче-ских, так и сверхкритических параметров имеют растопочную нагрузку около 30% номинальной, что обеспечивает безопасность радиационных поверхностей нагрева котла при пусках. Такой расход намного превосходит растопочную нагрузку барабанных котлов, и если пользоваться при пусках прямоточных агрегатов обычными методами байпасирования турбины, то это приведет к значительным потерям тепла, особенно по сравнению с пуском блока на скользящих параметрах пара.  [c.44]


Процесс непрерывной замены отработавшего топлива свежим увеличивает глубину выгорания примерно в 1,5 раза по сравнению с глубиной выгорания топлива в неподвижной зоне. Повышается при этом и радиационная безопасность ядерного реактора, поскольку отпадает необходимость в компенсации начальной избыточной реактивности стержнями СУЗ. Реализация принципа одноразового прохождения активной зоны значительно уменьшает удельный расход урана, а также удельную загрузку ядерного горючего.  [c.7]

Для снижения радиационного тепловыделения и радиационных нарушений в корпусе реактора предусматривают внутри-корпусную защиту. Таким образом, эта защита выполняет функции тепловой и противорадиационной защиты корпуса [44]. Она обеспечивает снижение радиационного энерговыделения в корпусе реактора до уровней, удовлетворяющих требованиям безопасности эксплуатации в условиях термических напряжений, и ограничивает потоки нейтронов, падающих на корпус, до величин, соответствующих допустимому накоплению радиационных нарушений за время срока службы корпуса. Кроме того, внутри-корпусная защита должна в максимально возможной степени снижать выход захватного у-излучения из своих элементов и корпуса реактора, которые довольно часто вносят основной вклад в мощность дозы излучения за биологической защитой реактора,  [c.66]

Проектирование радиационной защиты реакторов — комплексный многоступенчатый процесс, состоящий из взаимозависимых этапов и включающий выбор материалов защиты, компоновку защиты, ее конструирование. При этом необходимо учитывать соображения безопасности, экономики и эксплуатационные требования. Неотъемлемой составной частью всех этапов проектирования является анализ полей излучения в защите, проводимый с той или иной степенью подробности и точности.  [c.73]

При определении допустимых уровней излучения в различных зонах учитывается средняя степень посещаемости персоналом различных помещений, средний уровень мощности реактора при этих посещениях. В редко посещаемых местах можно допустить довольно повышенный уровень излучения (с учетом существующих норм радиационной безопасности). После принятия допустимых уровней и простейших оценок интенсивности излучений реактора приближенно определяется (для разных направлений) кратность ослабления, которую должна обеспечить защита.  [c.79]

РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ В ПРОЦЕССЕ ПРОИЗВОДСТВА УРАНА,  [c.203]


В настоящей главе рассматриваются вопросы радиационной безопасности на урановых рудниках, в производствах радия и ТВЭЛОВ из необлученного урана. На рис. 14.1 представлена упрощенная схема комплекса производств атомной промышленности [ ]  [c.203]

На этих стадиях производств, которые можно считать начальными, проблема радиационной безопасности наиболее актуальна на урановых рудниках, в производствах радия и твэлов с высоким обогащением первичным ядерным горючим в последнем случае начинает играть роль генерирование нейтронов. вследствие (а, п)-реакции. В производствах, где основными компонентами являются ир4 и иРе, опасность обусловливается исключительно высокой химической активностью и токсичностью этих соединений, и техника безопасности в этом случае сводится к герметизации процесса и защите органов дыхания и тела работающих.  [c.205]

I РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ НА УРАНОВЫХ РУДНИКАХ  [c.205]

Радиоактивные руды — исходное сырье для производства важнейших естественных радиоактивных элементов — урана и тория. В настоящем параграфе рассматриваются вопросы радиационной безопасности на примере урановых рудников, хотя в принципе они во многом идентичны и для процессов добычи тория.  [c.205]

Нормы радиационной безопасности (НРБ—69). Изд. 2. М., Атомиздат, 1972.  [c.228]

Допустимые уровни излучения регламентируются Нормами радиационной безопасности (НРБ — 69) [1].  [c.230]

В начале этой главы кратко рассматриваются основные источники радиационной опасности в космическом пространстве. При этом главное внимание уделяется тем их характеристикам, которые имеют непосредственное отнощение к проблеме защиты пилотируемы.х космических кораблей. Затем излагается состояние вопроса о критериях радиационной безопасности, применяемых в расчетах защиты пилотируемых космических кораблей.  [c.263]

КРИТЕРИИ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ ПРИ КОСМИЧЕСКИХ ПОЛЕТАХ  [c.271]

Как указывалось, на экипаж космического корабля могут воздействовать разнообразные излучения [18, 19, 21, 22] протоны, а-частицы, более тяжелые ядра, различающиеся по своему происхождению и физическим характеристикам. Для обеспечения радиационной безопасности экипажа приходится применять специальную защиту. В защите космических кораблей наряду с ослаблением потоков заряженных частиц, падающих извне на оболочку космического корабля, происходит образование вторичных излучений протонов, нейтронов, мезонов. Вторичные излучения образуются также в биологической ткани тела космонавта.  [c.271]

Сложность состава первичных и вторичных излучений, воздействующих на космонавта в различных условиях космических полетов, — одно из основных затруднений в проблеме обеспечения радиационной безопасности. Прежде всего это проявляется при выборе критерия радиационной безопасности для экипажей космических кораблей.  [c.271]

Второй из упомянутых выше вопросов сводится к проблеме обоснования количественной стороны критерия радиационной безопасности.  [c.272]

Рассмотрим более подробно эти два аспекта обоснования критерия радиационной безопасности космонавтов по отношению к космическим излучениям.  [c.272]

К выбору критерия радиационной безопасности при космических полетах  [c.274]

Источник радиационной опасности Толщина защиты, Критерий радиационной безопасности  [c.274]

Рассмотрим далее количественный аспект обоснования критериев радиационной безопасности при космических полетах. Количественное выражение критерия радиационной безопасности зависит от условий космического полета, главным образом от его продолжительности.  [c.275]

Жесткие весовые ограничения при расчете защиты космических кораблей обусловливают высокие требования к точности установления величины дозы оправданного риска, которая используется в качестве критерия радиационной безопасности длительных космических полетов. Например, для обитаемого отсека поверхностью 25 толщиной защиты 30—60 г/см неопределенность в дозе порядка 10% приводит к неопределенности в весе защиты около 1,5 Т [21].  [c.275]

Дозы, зарегистрированные индивидуальными дозиметрами космонавтов, намного меньше допустимых (15 бэр). Это свидетельствует о том, что все принятые меры позволили обеспечить радиационную безопасность полета космических кораблей Союз . Аналогичные мероприятия проводили при последующих полетах советских пилотируемых орбитальных станций типа Салют .  [c.285]

Ввиду вероятностного характера солнечных вспышек радиационная опасность характеризуется не величиной дозы, а зависимостью дозы от риска ее превышения. В соответствии с этим использование в качестве критерия радиационной безопасности величины суммарной дозы за полет недостаточно. Поскольку зависимость дозы от риска ее превышения является слабой в указанном диапазоне длительностей полета, в первом приближении достаточно задавать риск превышения величины суммарной дозы. При этом следует иметь в виду, что если, например, при 7 = 600 суток и 6 = 20 г/см риск превышения дозы 50 бэр составляет всего около 10%, то имеется также вероятность порядка 0,1 % превысить дозу 100 бэр.  [c.289]


В связи с длительным пребываиием обслуживающего персонала в лабораториях особое внимание уделено вопросам радиационной безопасности. Радиационно-физическая защита лабораторий обеспечивает снижение мощности дозы -излу-ченпя на расстоянии 1 м от кузова до уровня, не превышающего естественного фона.  [c.190]

Безопасность радиационная 17 Бинодаль 176, 178 Блок-схема 132, 133, 136, 154, 155, 170, 204, 207, 209, 210, 214, 216 Бридер 4, 10—16, 18—27  [c.236]

Баллистика внутренняя ракет на твердом топливе 484 Батареи атомные 610 Безопасность радиационная 537, 539, 543 Блок телеметрический 630, 631 Блокинг-эффект 349  [c.721]

В томе II рассматриваются вопросы радиационной защиты применительно к конкретным источникам излучения и основным ядернотехническим установкам. Освещаются, в частности, такие вопросы, как защита активной зоны реактора и теплоносителя, тепловой расчет защиты, защита от у-излучения при переработке делящихся материалов, радиационная безопасность в производствах урана и радия, защита ускорителей и радиационная защита при космических полетах.  [c.5]

Проблема ремонтоспособности загрязненного оборудования едва ли не самая главная и наиболее трудная проблема радиационной безопасности в атомной промышленности. Причина этого заключается, в частности, в известных трудностях дезактивации оборудования, его демонтажа и транспортировки. Поэтому при проектировании защиты от источников нзлучення необходимо предусматривать решения, обеспечивающие безопасную ремонтоспособность атомной техники. Например, в транспортных галереях с технологическими растворами ревизия за состоянием целостности труб может осуществляться при помощи подвижных защитных камер (так называемых танков) с окнами из свинцовых стекол, или перископами. Пользуясь подобными камерами, можно выполнять и отдельные ремонтные работы смену вентилей, сварку и замену участков труб и т. д. Следует также предусматривать систему дезактивации оборудования и помещений зон I и II, а также специализированные цеха (или мастерские) по ремонту загрязненного оборудования. Все более широкое применение находит контроль за оборудованием и процессами при помощи телевизионной техники. В проблеме ремонтоспособности большую роль играют достаточно мобильные конструкции местных (чаще всего теневых защит). Особое внимание следует уделять защите от излучения при проведении ремонтных работ в аварийных ситуациях.  [c.194]

Перечисленные выше основные параметры — наиболее важные в проектировании биологической защиты от у-излучения продуктов деления. Однако этим не исчерпывается проблема радиационной безопасности. Требуют специального рассмотрения такие вопросы, как тепловыделение и теплосъем в источнике и защите радиационная стойкость конструкций и защитных материалов накопление и удаление продуктов радиолиза, требования к вентиляции, в частности к очистке вентиляционного воздуха от радиоактивных газов и аэрозолей. При переработке высокообогащенных твэлов необходимо обеспечивать ядерную безопасность. На стадии переработки делящихся материалов, особенно в период проведения ремонтных работ, большое значение приобретает проблема защиты от источников внутреннего облучения, которая успешно решается применением средств индивидуальной защиты (спецодежды и спецобуви, респираторов, пневмокостюмов, противогазов, щитков для защиты глаз и лица от р-частиц и тормозного излучения). Этому вопросу посвящена работа [11]. Особого внимания заслуживает также проблема безопасности хранения и локализации жидких высокоактивных отходов, а также защита внешней среды.  [c.195]

Таковы основные принципы проектирования системы обеспечения радиационной безопасности от источников внутреннего облучения урановых рудников. В общем виде при расчете рудничной вентиляции нужно учитывать и такие факторы, как концентрацию пыли и содержание в ней кварца, наличие ядовитых и взрывоопасных газов, необходимость подачи на одного человека 6 м /мин свежего воздуха [П], хотя, как правило, доведение до необходимой концентрации дочерних продуктов эманаций (Кп, Тп, Ап) обеспечивает требования, предъявляемые к рудничной атмосфере и по другим параметрам. Необходимо отметить, что система вентиляции на рудниках обходится очень дорого. Поэтому для более экономичного выбора дебита удаляемого воздуха осуществляют противорадоно-вые мероприятия изолируют нерабочие выработки, производят противорадоновые покрытия, ограничивают использование (для гидрообеспыливания) шахтных вод с высокой концентрацией радона и т. д. Более подробно эти вопросы изложены в работе [11].  [c.215]

Защита от радиации при космических полетах во многой отличается от защиты наземных ядернотехнических установок и источников излучений. Это связано главным образом с особенностями радиационных воздействий космических излучений и условиями космических полетов. Необходимость надежного обеспечения радиационной безопасности космонавтов и жесткие ограничения веса защиты космических кораблей потребовали проведения специальных исследований радиационной обстановки в космическом пространстве, исследований в области радиобиологии и физики защиты.  [c.263]

При обосновании критериев радиационной безопасности применительно к условиям космических полетов возникают два основных вопроса. Первый из них связан с выбором дозовой величины, которую следует использовать при оценке радиационной опасности космических излучений. В качестве такой величины могут быть выбраны экспозиционная доза (поглощенная доза в воздухе), поверхностная доза, среднетканевая доза, доза по  [c.271]

Во многих работах, посвященных проблеме радиационной безопасности космических полетов, в качестве такого критерия использовали локальную поглощенную дозу, т. е. энергию излучения, поглощенную в изолированной массе (1 г) биологической ткани. Этот критерий нельзя признать правильным по ряду причин. Прежде всего, как указывалось выше, из-за неравномерного распределения массы вещества по поверхности корабля локальные дозы в разных точках обитаемых отсеков будут существенно различаться. Это означает, что локальная доза, измеренная в какой-либо из точек, не будет достаточной для характеристики радиационной опасности. В таком неравномерном дозном поле разные участки поверхности тела космонавта будут подвергаться воздействию существенно неодинаковых доз.  [c.272]


На основании сведений о пространственном расположении поясов радиации и данных о траектории полета корабля определяют интегральные потоки и энергетическое распределение заряженных частиц и вычисляют соответствующие тканевые дозы. Для заданной продолжительности полета оценивают ожидаемую тканевую дозу, обусловленную солнечным корпускулярным излучением. Суммарную дозу за полет сравнивают с дозой, установленной в качестве критерия радиационной безопасности. Основным методическим вопросом на этом этапе расчета явля-  [c.285]

В целях уменьшения веса специальную защиту можно создавать только для одного из отсеков корабля, используя этот отсек в качестве радиационного убежища на время протонных солнечных вспыщек и прохождения радиационного пояса Земли. Однако даже при ограниченных размерах этого убежища (диаметр 2—3 м) для снижения уровня облучения при длительном межпланетном полете до 5 бэр в год, как это, например, принимается в расчетах защиты наземных ядернотехнических установок, потребовалась бы защита весом более 100 Т. Это вызывает необходимость тщательного обоснования критерия радиационной безопасности при длительных космических полетах. Расчеты показывают, что при длительности полета 1—2 года и толщине защиты отсека-убежища 30—60 г/см неопределенность в дозе - 10% приводит к неопределенности в весе защиты 1,5 Т [22]. Такая высокая весовая значимость величины дозы за защитой космического корабля обусловливает необходимость детального изучения радиационной обстановки на трассах космических полетов, исследования взаимодействий космических излучений с веществом защиты и ткани, а также обоснования критериев радиационной безопасности.  [c.292]

Весьма заманчивой возможностью для решения проблемы радиационной безопасности при космических полетах является создание так называемой активной защиты, использующей для отклонения заряженных частиц магнитные и электрические поля [30]. Вес такой защиты, как показывают оценки, в ряде случаев может быть сравнимым или меньще веса пассивной защиты. Важно также, что по мере совершенствования конструкционных и сверхпроводящих материалов, криогенной техники и техники сверхвысоких напряжений вес активной защиты будет снижаться [30].  [c.292]


Смотреть страницы где упоминается термин Безопасность радиационная : [c.461]    [c.74]    [c.272]    [c.275]    [c.286]    [c.30]    [c.262]    [c.293]    [c.106]   
Энергетическая, атомная, транспортная и авиационная техника. Космонавтика (1969) -- [ c.173 , c.178 , c.183 , c.429 ]

Быстрые реакторы и теплообменные аппараты АЭС с диссоциирующим теплоносителем (1978) -- [ c.17 ]

Машиностроение энциклопедия ТомI-5 Стандартизация и сертификация в машиностроении РазделI Инженерные методы расчетов Изд2 (2002) -- [ c.233 ]

Космическая техника (1964) -- [ c.537 , c.539 , c.543 ]



ПОИСК



Критерии радиационной безопасности при космических полетах

Нормы радиационной безопасности

Радиационная безопасность в процессе производства урана, радия и твэлов

Радиационная безопасность и дозиметрия

Радиационная безопасность на атомных станциях

Радиационная безопасность на урановых рудниках



© 2025 Mash-xxl.info Реклама на сайте