Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Текучесть местная

Зона текучести местной 70  [c.578]

Как показали эксперименты, о исследованных трубах слои работают почти независимо друг от друга. Благодаря относительно малой толщине каждого слоя, стенка многослойных труб при поперечном их изгибе теряет устойчивость в сжатой зоне мгновенно при напряжениях значительно ниже предела текучести. Местной потере устойчивости способствуют несовершенства формы и деформации труб в местах приложения нагрузки на опорах. Местная потеря устойчивости стенки труб происходила при напряжениях равных 0,7 —0,8 от предела текучести металла труб, а при наличии небольшого смятия  [c.209]


Данное выражение ничем не отличается от расчетного равенства для стержня постоянного сечения, в которого напряжения равномерно распределены с самого начала нагружения. Эго и означает, что в стержнях из пластичного материала, обладающего площадкой текучести, местные напряжения выравниваются при подходе к предельному состоянию и поэтому не подлежат учету.  [c.232]

При расчете иа статическую прочность предельные контактные напряжения по условию полного отсутствия течения материала выбирают для вязких материалов равными 2от> где ат — предел текучести. Местные течения материала в одной точке внутри тела не опасны и не заметны. Если имеет место хотя бы небольшое перекатывание и, следовательно, нет оснований опасаться влияния времени на образование остаточных деформаций, предельные контактные напряжения можно повысить до Зот, а для круговой площадки контакта даже несколько выше.  [c.182]

Между тем при неравномерном распределении напряжений (например, при изгибе, кручении) в статически неопределимых конструкциях, изготовленных из пластичных материалов, появление местных напряжений, равных пределу текучести, в большинстве случаев не является опасным для всей конструкции. Практика показывает, что при появлении местных пластических деформаций конструкция еще может удовлетворять предъявляемым к ней требованиям  [c.487]

Расчеты на прочность при постоянных напряжениях деталей из пластичных материалов обычно производят согласно условию отсутствия общих пластических деформаций, т. е. обеспечивают требуемый коэффициент запаса гю отношению к пределу текучести материала. Коэффициенты концентрации напряжений в расчеты не вводят, так как пики напряжений сглаживаются вследствие местных пластических деформаций, не опасных для прочности детали.  [c.12]

Степень влияния местных напряжений на прочность детали существенно зависит от характера нагружения и материала. При расчете конструкции из пластичных материалов, работающей в условиях статического нагружения, местными напряжениями пренебрегают. Это объясняется тем, что при росте нагрузки напряжения в зоне концентрации, достигнув предела текучести, не возрастают до тех пор, пока во всех соседних точках они не достигнут того же значения, т. е. пока распределение напряжений в рассматриваемом сечении не станет равномерным. Иначе обстоит дело при циклически изменяющихся напряжениях. Многократное изменение напряжений в зоне концентратора напряжений приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением детали. Для оценки снижения прочности вводят эффективный коэффициент концентрации, равный отношению предела выносливости о 1 гладкого полированного образца к пределу выносливости образца с концентратором напряжений, абсолютные размеры которого такие же, как и у гладкого образца  [c.248]


При повторной нагрузке точка С характеризует переход от упругого состояния к пластическому. Соответствующее напряжение a — a t называется местным пределом текучести. Процесс увеличения местного предела текучести называют упрочнением, или наклепом.  [c.40]

Если после разгрузки образцов приложить к нему напряжения противоположного знака, то кривая деформирования в пластической области будет иметь наклон касательных более высокий, чем при прямом нагружении (рис. 1.17, а). Пластические деформации появятся при напряжении (i - , меньшем не только местного предела текучести ас, но и начального предела текучести От. Это понижение предела текучести по отношению к напряжениям противоположного знака называется эффектом Бау-  [c.40]

Определение напряжений по вышеприведенным формулам можно производить во всех точках, за исключением точки приложения силы Р, где местные напряжения могут превышать предел текучести ввиду малости площадки приложения равнодействующей силы.  [c.48]

Пряжения оказываются бесконечно велики. Этот результат нельзя воспринимать буквально. Он получен в предположении, что материал бруса идеально.упруг и следует закону Гука. Реальные же материалы, как известно, при некоторых конечных напряжениях уже не следуют закону Гука и в случае пластичных материалов при достижении ме-дела текучести испытывают заметные пластические деформации. Поэтому действительные повышенные местные напряжения в таких особых точках, как вершины входящих углов, не могут быть определены только методами теории упругости.  [c.177]

На прочность пластичных и хрупких материалов концентрация напряжений влияет по-разному. Существенное значение при этом имеет также характер нагрузки. Если материал пластичный (диаграмма напряжений имеет площадку текучести зна чительной протяженности) и нагрузка статическая, то при увеличении последней рост наибольших местных напряжений приостанавливается, как только они достигнут предела текучести. В остальной части поперечного сечения напряжения будут еще возрастать до величины предела текучести Стт, при этом зона пластичности у концентратора будет увеличиваться (рис. 120). Таким образом, пластичность способствует выравниванию напряжений. На этом основании принято считать, что при статической нагрузке пластичные материалы мало чувствительны к концентрации напряжений. Эффективный коэффициент концентрации для таких материалов близок к единице. При ударных и повторно-переменных нагрузках, когда деформации и напряжения быстро изменяются во времени, выравнивание напряжений произойти не успевает и вредное влияние концентрации напряжений сохраняется. Поэтому в расчетах на прочность учитывать концентрацию напряжений необходимо.  [c.120]

Между тем при неравномерном распределении напряжений (например, при изгибе, кручении) в статически неопределимых конструкциях, изготовленных из пластичных материалов, появление местных напряжений, равных пределу текучести, в большинстве случаев не является опасным для всей конструкции. Практика показывает, что при появлении местных пластических деформаций конструкция еще может удовлетворять предъявляемым к ней требованиям и для перехода ее в предельное состояние требуется дальнейшее возрастание нагрузки. Таким образом, в действительности конструкция обладает запасом прочности, большим, чем при расчете по допускаемым напряжениям.  [c.546]

Зона БС (см. рис, 1.27) называется зоной упрочнения. Здесь удлинение образца сопровождается возрастанием нагрузки, но неизмеримо более медленным (в сотни раз), чем на упругом участке. В стадии упрочнения на образце намечается место будущего разрыва и начинает образовываться так называемая шейка - местное сужение образца (рис. 1.29). Впрочем, место будущего разрыва намечается ранее - при общей текучести. Обнаружить его можно с помощью наклеенных термопар, выявляющих место наиболее интенсивного повышения температуры образца.  [c.69]


По мере растяжения образца утонение шейки прогрессирует. Когда относительное уменьшение площади сечения сравняется с относительным возрастанием напряжения, сила Р достигнет максимума (точка С). В дальнейшем удлинение образца происходит с уменьшением силы, хотя среднее напряжение в поперечном сечении шейки и возрастает. Удлинение образца носит в этом случае местный характер, и поэтому участок кривой D называется зоной местной текучести. Точка D соответствует разрушению образца.  [c.70]

В детали, изготовленной из пластичного материала и находящейся под действием статической нагрузки, рост наибольших местных напряжений прекращается после достижения ими величины предела текучести. Дальнейший рост нагрузки приводит к постепенному выравниванию напряжений в ослабленном сечении.  [c.51]

Условие малоциклового нагружения появляется не только в случае повышения рабочих напряжений в стенке конструкции за предел текучести ( б - общая пластическая деформация), но и в случае местной пластической деформации, когда в концентраторе напряжений (трещина, надрез, резкий переход формы сечения, сварные швы) значения действующих напряжений превышают и рабочие  [c.59]

Для разрушения при напряжении ак, приближающемся к пределу текучести Стт, следует использовать более точное решение (2.18) с учетом перераспределения местных напряжений в пластической зоне  [c.33]

Такие виды обработки образуют остаточные деформации и изменение свойств материала детали на незначительную относительную глубину, распространяющуюся на сотые или десятые доли высоты или диаметра сечений. В результате разгрузки (после местной пластической деформации, увеличения объема вследствие химико-термического насыщения или структурных превращений вследствие закалки) в поверхностном слое образуются значительные остаточные напряжения сжатия, достигающие предела текучести и более высоких значений. Прочность поверхностного слоя увеличивается в некоторых случаях этот слой становится хрупким и возрастает влияние асимметрии цикла нормальных напряжений на усталостное разрушение.  [c.156]

На диаграмме имеют место характерные участки О А — участок пропорциональности, АВ — участок текучести, ВС — участок упрочнения, СО — участок местной пластической деформации (образование сужения)  [c.166]

В этом интервале содержания частиц разрушение считается хрупким, потому что композит разрушается при напряжении ниже действительного (в инженерном представлении) предела текучести матрицы. Так как слои пластичной матрицы очень тонкие, а степень пластического стеснения высокая, поэтому предотвращается релаксация местной концентрации напряжений, что приводит к возникновению трещины. Прочность определяется сопротивлением распространению трещины в композитной структуре, которое в основном зависит от количества и распределения пластичной фазы. Можно утверждать, что увеличение среднего свободного пути в матрице приводит к повьппению прочности вследствие уменьшения степени стеснения.  [c.93]

Перераспределение нагрузки через матрицу приводит к тому, что уменьшение жесткости материала происходит только в крайне ограниченной области, непосредственно примыкающей к месту разрушения волокна. Местная пластичность и текучесть, повышенная деформативность матрицы или поверхности раздела между волокном и матрицей локализуют места разрушения и перераспределяют нагрузку между армирующими элементами. Именно эти качества играют главную роль в обеспечении надежности композиционного материала, подобно пластичности кобальта в цементированном карбиде или трению, обеспечивающему перенос нагрузки в обычном канате, сплетенном так, что растягивающая нагрузка вызывает сжатие между волокнами.  [c.18]

Несмотря на то что элементы системы (конструкции в целом, ее частей или материала) делают все, чтобы выдержать нагрузку, их поведение не соответствует предсказаниям наиболее благоприятных экстремальных теорем, если наступает местная или общая неустойчивость. Явное предположение о неограниченной податливости прн достижении предела текучести, которое составляет сущность предельных теорем, Так же как и неограниченный диапазон упругой связи между возрастающими напряжениями и деформациями, который лежит в основе теорем минимума потенциальной энергии и минимума  [c.25]

При больших скоростях изменения функции нагружения и больших уровнях напряжений, превышающих статический предел текучести, имеет место запаздывание развития пластических деформаций в материале, что вызвало необходимость введения динамического предела текучести. Величина этого параметра тем меньше, чем ближе статический предел текучести (Тт к пределу прочности сгв. Этим фактором объясняется увеличение частоты хрупких разрушений пластических материалов. При этом характерно, что если при статическом нагружении растяжения предельное состояние характеризуется средним по сечению напряжением, то при динамическом раз-рушении — местным значением напряжения в элементе конструкции, которое может существенно превосходить среднее значение напряжения.  [c.41]

В идеальной атомной решетке, свободной от приложенных или остаточных напряжений, атомы находятся в равновесном состоянии под действием внутренних сил. Однако реальная атомная решетка металлов геометрически несовершенна из-за наличия в ней местных дислокаций. Приложенные внешние силы приводят к перемещению атомов в новые положения, что вызывает пластическую деформацию и наклеп. Увеличение пластической деформации за предел текучести приводит к возникновению и развитию трещин. Масло, попадаемое в трещину, играет роль гидравлического клина, ускоряющего процесс развития трещины.  [c.68]


Напряжспнс при достижении им предела текучести вызовет пластическую деформацию, т. е. приведет в движение дислокации. Если препятствий для свободного перемещения дислокаций нет и они не возникают в процессе деформации, то деформация может быть сколь угодно большой. При растяжении образец может удлиниться в десятки и сотни раз, превращаясь в подобие проволок. В некоторых случаях (при определенных температурах и скоростях деформации иек оторых металлов) это наблюдается и носит название сверх-пластичность. Конечно, так удлиниться на многие сотни и даже тысячи нро-цептов образец сможет лишь тогда, когда не возникает местное сужение (Шейка). Если возникает шейка, то деформация локализуется и в таком металле, в конечном итоге, произойдет разделение образца на два куска, но тогда, когда в месте разделения сечение утонилось до нуля. Это не редкий случай (рис. 48).  [c.70]

Средства повышения долговечности. Основные факторы, лимитирующие долговечность и надежность машин, следующие поломки деталей износ трущихся поверхностей повреждения поверхностей в результате действия контактных напряжений, наклепа и коррозии пластические деформации деталей, вызываемые местным или общим переходом напряжений за предел текучести или (при повышенных темпсратура.х) ползучестью.  [c.28]

К числу упрочняющих факторов относятся процессы тренировки материала действием кратковременных Напряжении, превосходящих предел текучести деформационное упрочнение, вызываемое структурными изменениями в напряженных микрообъемах материала самопроизвольно протекающие процессы старения, сопровождающиеся кристаллической перестройкой материала и рассеиванием внутренних напряжений. Положительно влияет приспособляемость конструкции — общие плИ местные Пластические дефор.мапии, возникающие под действием Перегрузок п вызывающие перераспределение нагрузок. Определенный упрочняющий эффект дает износ первых стадий (сглаживание микронеровностей), способствующий увеличению фактической площади контактирующих поверхностей, снижению пиков давлений и выравниванию нагрузки на поверхности.  [c.150]

Напряжения второго рода возникают вследствие неоднородности кристаллического строения и различия физико-механических свойств фаз и структур сплавов. Фазы, например в черных металлах, феррит, аустенит, цементит, графит обладают различной кристаллической решеткой их плотность, прочность и упругость, теплопроводность, теплоемкость, характеристики теплового расширения различные. Структуры, представляющие собой смесь фаз, например перлит в сталях, а также закалочные структуры, в свою очередь, обладают отличными от смежных структур свойствами. Различие кристаллической ориентации зерен металла обусловливает анизотропию физико-механических свойств микрообъемов металла. В результате совместного действия этих факторов возникают внутри-зеренные и межзеренные напряжения еще в нронессе первичной кристаллизации и при последующих прев эащениях во время охлаждения. При высоких температурах напряжения уравновешиваются благодаря пластичности материала. Однако они проявляются в низкотемпературной области, возникая при фазовой перекристаллизации и выпадении вторичных и третичных фаз (фазовый наклеп), при каждом общем или местном повышении температуры (из-за различия теплопроводности и коэффициентов линейного расширения структурных составляющих), приложении внешних нагрузок (из-за различия и анизотропии механических свойств), а также нрп наклепе, наступающем в результате общего или местного перехода напряжений за предел текучести материала.  [c.152]

Испытания на твердость. Данным методом определяют сопротивление поверхностных слоев металла сварного соединения местной пластической деформации, возникающей при внедрении твердого индентора (наконечника). Воздействие на металл при этом минимальное, что позволяет для некоторых видов продукции осуществлять 100%-ный контроль. При испытании на твердость на основе косвенных методов (по числу твердости) могут оцениваться такие характеристики как временное сопротивление (а ), предел текучести (ст , сУог)- модуль упругости (Е). Например, корреляция значения для углеродистых сталей с твердостью по Бриннелю НВ следующая = 0,36 НВ, а для легированных сталей — = 0,33 НВ.  [c.216]

Концентрация нацряжений по-разному влияет на прочность пластичных и хрупких материалов. Существенное значение при этом имеет и характер нагрузки. Если взять пластичный материал, нагруженный статически, то при увеличении нагрузки рост наибольших местных напряжений при достижении предела текучести приостанавливается вследствие местной текучести материала и произойдет выравнивание напряжения по сечению. Отсюда можно сделать вывод, что при статической нагрузке пластичные материалы малочувствительны к концентрации напряжений.  [c.282]

Эксперименты со сталью нокязыпают ), что отношение между пределом текучести на растяжение п пределом текучести на сдвиг находится в очень хорошем согласии с уравнением (л). Вводя в рассмотрение энергию деформации, можно связать принцип Сен-Вепана (см. стр. 57) с накоплением энергии ). Этот принцип эквивалентен утверждению, что самоуравновешенпое распределение усилий на малой части упругого тела вызывает лишь местные напряжения.  [c.258]

Пределу текучести 5т = Ст, пределу прочности Sb и сопротивлению разрыва 5к соответствуют удлинения e-i, вп и вк (бв —предельная равномерная деформация до образования шейки, — местная наибольшая деформация в щейке при разрыве). Для материалов, которым  [c.7]

Упругопластическоё распределение деформации в окрестности трещины является основой для определения деформационных критериев хрупкого разрушения. Ранее приведенное выражение для коэффициента интенсивности напряжений К=Оу Y2ж) позволяет приближенно определить протяженность пластической зоны (зоны текучести) Гт на продолжении трещины. Полагая в конце пластической зоны равенство местных напряжений Оу пределу текучести От, можно записать  [c.30]

ПИИ нагрузки рост наибольших местных напряжений при достижении предела текучести приостанавливается вследствие местной текучести материала, а в остальной части поперечного сечения напряжения будут возрастать. Следовательно, пластичность материала способствует выравниванию напряжений. Когда напряжения достигнут по всему сечению, их распределение можно считать равномерным. Для хрупких мaтepиaJюв при статическом нагружении концентрация напряжений приводит к снижению прочности, так как отсутствует фактор, смягчающий влияние концентрации напряжений, а именно текучесть материала.  [c.21]

При напряжениях, постоянных во времени, коэффициент а достаточно хорошо характеризует прочность детали, изготовленной из хрупкого материала однородной структуры (например, из инструментальной стали). При достижении местными напряжениями а акс величины, равной Оа, произойдет разрушение детали. Для деталей, изготовленных из пластичных материалов, влияние концентрации напряжений при постоянной нагрузке оказывается меньшим, чем это определяется коэффициентом а . В этом случае, после того, как напряжения Омакс достигнут предела текучести, рост их прекращается, материал в точках т начинает течь . Дополнительная нагрузка воспринимается средними волокнами, напряжения в них растут. Процесс роста напряжений в средних голокнах продолжается до тех пор, пока не прекратится течение  [c.200]


Присутствие концентраторов отнюдь не всегда представляет собой опасность для работоспособности конструкции. Во-первых, влияние концентраторов на деформацию всего упругого тела вследствие их малых размеров незначительно, поэтому при расчете упругих смещений в конструкции влияние концентраторов можно не учитывать. Во-вторых, при статическом однократном нагружении сооружения или механизма, выполненного из пластичного материала, появление текучести в зоне концентратора не представляет опасности. Действительно, остаточная деформация, возникающая в малом объеме перенапряженного материала в зоне концентрации, не может вызвать остаточной деформации всего сооружения и, следовательно, повлиять на его проектные размеры. Эта местная деформация приведет лишь к некоторому изменению картины напряженного состояния в зоне концентрации. В результате максимальное напряжение не будет превышать предела текучести, но зато несколько увеличится напряжение в другн.х точках расчетного сечения.  [c.166]

Предельная прочность при циклических нагрузках достигается значительно раньше, чем при статических. Усталостное разрушение может возникнуть при напряжениях ниже предела текучести. Особенность миагоциклоБОй усталости — макродеформация объема металла, как правило, отсутствует. Деталь в целом деформируется упруго, но происходит местная повторная упруго-пластическая деформация отдельных наиболее неблагоприятно ориентированных по отношению к силовому полю кристаллов, сопровождающаяся циклическим наклепам. После достижения критической степени искажения решетки происходит разрыв межатомных связей.  [c.9]

Предшествующие объяснения роли дисперсии частиц при разрушении от скола дают интересную логическую связь наблюдаемых явлений. Считая, что малое расстояние между частицами и малый размер частиц минимизируют местные концентрации напряжений и размер зарождающихся трещин, авторы работ [45, 79] предположили, что обьгчно используемая связь между пределом текучести и прочностью при хрупком разрушении не обязательно применима при дисперсии частиц очень малого размера или для весьма мелкозернистых структур, так как и напряжение текучести, и напряжение разрушения такого сплава могут увеличиваться одно-  [c.82]

Если прикладываемая нагрузка при повторных ударах не превышает первоначальную, то выступы деформируются упруго, и сближение значительно меньше, чем при первом ударе (при первом ударе сближение определяется в основном исходной шероховатостью поверхности, пределом текучести или твердостью, а при повторных сближение зависит от модуля упругости и геометрии поверхности после первоначальной деформации). Пр-и небольшой внешней нагрузке местные давления на площадках фактического контакта при ударе могут достигать высоких значений и приводить область контакта в состояние пластического течения даже у металлов со значительной твердостью. Высокоскоростная пластическая деформация, которой при ударе подвергаются микровыступы, вызывает их мгновенный разогрев до высоких температур. Небольшие геометрические размеры единичной микронеровности (для шлифованой поверхности /г=10 мкм, г=50 мкм) затрудняют, а иногда делают невозможным непосредственное измерение температуры на ней. В таких случаях применяют моделирование, которое позволяет качественно или количественно исследовать интересущий нас процесс на модели. Исследователи, занимающиеся изучением механических процессов на поверхности контакта, для моделирования микровыступа использовали различные модели в виде тел правильной геометрической формы конусоидальные, стержневые, клиновые, эллипсоидальные, цилиндрические, сферические и др.  [c.129]

Г. М. Заморуев считает, что соприкосновение двух твердых тел всегда происходит в отдельных точках, на весьма малых площадках, на которых развиваются очень высокие удельные давления. На участках, где касательные напряжения превышают предел текучести, возникают местные пластические деформации. Многократно повторяясь и суммируясь, они могут вызвать большие макроскопические изменения поверхности.  [c.4]


Смотреть страницы где упоминается термин Текучесть местная : [c.509]    [c.635]    [c.111]    [c.54]    [c.179]    [c.59]    [c.217]    [c.78]   
Пластинки и оболочки (1966) -- [ c.88 ]



ПОИСК



Зона текучести местной

Текучесть



© 2025 Mash-xxl.info Реклама на сайте