Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нагружение эксплуатационное - Параметры

Таким образом, проведение испытаний с целью определения сопротивления материала деформации при эксплуатационном режиме нагружения требует обеспечения параметра испытания, соответствующего этому режиму. Построенные по результатам  [c.23]

Метод прогнозирования долговечности манжет следует выбирать в зависимости от конкретных условий их применения. Если манжета длительное время работает в условиях статического нагружения и только в конце срока службы совершает некоторую наработку, то метод прогнозирования должен назначаться с учетом релаксации напряжения в статических условиях. В том случае, если манжета длительное время работает в условиях циклического нагружения и значение параметра Y 0,2, то метод прогнозирования долговечности должен учитывать ускорение процессов химической релаксации вследствие низкочастотного реверсивного воздействия. Если следует определить долговечность манжеты, для которой у > 0,2, то, как указывалось выше, необходимо проводить ее испытания в условиях, близких к эксплуатационным.  [c.82]


Интенсивное развитие механики разрушения обусловлено универсальностью и простотой исходных концепций, в соответствии с которыми самые разнообразные эксплуатационные нагружения твердых тел с трещинами и вызванные ими напряженные состояния могут быть описаны коэффициентами интенсивности напряжений, а различные предельные состояния — критическими и пороговыми значениями этих коэффициентов. Важной для практического использования является убедительно доказанная для различных материалов инвариантность предельных значений коэффициентов интенсивности напряжений при определенных условиях нагружения. Таким образом, параметры трещиностойкости можно использовать как новые важные механические характеристики металлов и сплавов.  [c.4]

Использование рассмотренных уравнений для оценки долговечности конструкций с существенно неоднородными полями напряжений связано со значительными трудностями, так как эти поля изменяют характер деформирования материала у вершины трещины. Например, в сварных тавровых соединениях остаточные напряжения приводят к ситуации, когда при действии циклической эксплуатационной нагрузки с коэффициентом асимметрии, равным нулю, коэффициент асимметрии нагружения материала в вершине трещины по мере ее развития изменяется от 0,8 до О, при этом КИН может принимать значения от пороговых до близких к критическим [198]. Следовательно, оценка долговечности такого рода конструкций может выполняться только с помощью уравнений, учитывающих переменную вдоль траектории развития трещины асимметрию нагружения в широком диапазоне СРТ. Как видно из выполненного обзора, такие уравнения являются в основном эмпирическими, содержащими большое количество взаимосвязанных параметров, определяемых только экспериментально на основании статистической обработки данных, что приводит к значительной сложности в получении и использовании этих зависимостей. Поэтому  [c.192]

ГО давления к рабочему, который по действующим НД составляет от 1,1 до 1,5. При определенных условиях эти значения коэффициента запаса прочности могут обеспечивать безопасность эксплуатации оборудования. Но, однако, действующие НД не дают ответа на главный вопрос в течение какого времени эксплуатации будет обеспечена работоспособность и при каких эксплуатационных условиях. Другими словами кроме величины пробного и рабочего давления в технических паспортах или сертификатах на нефтегазохимическое оборудование должны быть регламентированы значения расчетного ресурса (время или число циклов нагружения до наступления того или иного предельного состояния) с конкретизацией условий эксплуатации (температуры, скорости коррозии, параметров изменения режима силовых нагрузок и ДР)-  [c.329]


В практике исследования эксплуатационных разрушений помимо определения вида разрушения возникают и другие задачи. Они вытекают из требования проведения контроля над состоянием детали в эксплуатации и устранения несовершенств конструкции или изменения режимов ее работы. Эти стратегические задачи решаются в рамках количественной фрактографии. При количественных оценках силового и температурного нагружения элементов конструкций исходят из того, что изменение режима или условий внешнего воздействия приводит к изменению напряженного состояния материала в вершине трещины. Формирование того или иного параметра рельефа  [c.80]

Процесс разрушения элемента конструкции в эксплуатации отражен в реакции материала на все многообразие условий его нагружения, выраженное в формировании определенной морфологии рельефа излома в направлении развития усталостной трещины. По параметрам рельефа излома, таким, например, как усталостные бороздки, может быть восстановлена кинетика распространения усталостной трещины в терминах — скорость процесса разрушения по длине трещины. Если исходить из того, что каждому диапазону воздействия или условиям нагружения, или их сочетанию соответствует своя реакция материала, приводящая к реализации определенного механизма разрушения, то тогда по параметрам рельефа излома легко определить, в каком диапазоне воздействия работал материал. Но в таком случае для каждого диапазона или условий нагружения должна быть построена своя базовая или тестовая кинетическая кривая, и уже она может быть использована для описания процесса роста усталостных трещин в строго установленных границах ее использования. При рассмотрении реализованного процесса роста трещины на основе изучения, например, параметров рельефа излома или слежения за ростом трещины в ходе периодического эксплуатационного контроля получаемой информации достаточно, чтобы по данным эксплуатационного контроля решать вопросы об обеспечении  [c.187]

Условия нагружения элемента конструкции, как правило, могут быть реализованы в широком диапазоне варьирования температуры, частоты нагружения, асимметрии цикла путем силового воздействия на элемент конструкции по нескольким осям при разном соотношении между величинами компонент нагружения и т. д. Реальные условия многопараметрического эксплуатационного нагружения материала, воплощенного в том или ином элементе конструкции, ставят вопрос об использовании интегральной оценки роли условий нагружения в развитии процесса разрушения. В связи с этим необходимо введение представления об эквивалентном уровне напряжения для проведения расчетов с использованием новой характеристики напряженного состояния материала в виде эквивалентного КИН. Использование эквивалентной величины в свою очередь требует получения сведений о закономерностях процесса разрушения в некоторых тестовых или стандартных условиях циклического нагружения материала, в которых осуществлено построение базовой или единой кинетической кривой. Параметры кинетической кривой в стандартных условиях опыта становятся характеристиками только свойств материала. Разнообразие реальных условий нагружения материала, в том числе и влияние геометрии элемента конструкции, рассматривается в условиях подобия путем сведения всех получаемых кинетических кривых к базовой или единой кинетической кривой. Поэтому влияние того или иного параметра воздействия на кинетику усталостной трещины в измененных условиях опыта по отношению к тестовым условиям испытаний может быть учтено через некоторые константы подобия. Они выступают в качестве безразмерного множителя.  [c.190]

Уравнения (5.6) и (5.7) совпадают между собой с точностью до коэффициента пропорциональности, поскольку КИН полностью определен параметрами нагружения, длиной трещины и формой образца или детали. Однако в уравнении (5.7) имеется дополнительный функционал /(я), зависимый от длины трещины. Применительно к анализу эксплуатационных разрушений Хоппер [19] предлагает использовать уравнение вида (5.6) и подчеркивает, что все условия внешнего воздействия и свойства среды, в которой распространяется усталостная трещина, полностью определяются коэффициентом пропорциональности Сг. В дальнейшем изложении, чтобы упростить написание, мы будем рассматривать управляющие параметры без поправочной функции, принимая ее равной единице. Такое упрощение правомерно для размеров трещины, когда в большей мере реализуется первое синергетическое уравнение, эквивалентное соотношению (5.5).  [c.236]


Перейдем теперь к рассмотрению роли параметров цикла нагружения в кинетике усталостных трещины применительно к эксплуатационным условиям развития разрушений в элементах авиационных конструкций.  [c.271]

Рассмотренная методология позволяет управлять процессом распространения усталостных трещин в эксплуатации и осуществлять моделирование этого процесса при сложном многопараметрическом эксплуатационном нагружении. Прежде чем рассмотреть этот вопрос, покажем принципиальную возможность аналогичного описания кинетики усталостных трещин и при других параметрах цикла нагружения.  [c.336]

Рассмотренные закономерности роста трещин в двух сечениях одного и того же элемента конструкции — основной стойке шасси самолета Ан-24 свидетельствуют о том, что длительность накопления усталостных повреждений и продолжительность роста трещин могут существенно различаться для разных сечений детали из-за различия в реализуемых механизмах разрушения области мало- или многоцикловой усталости. Сопоставление данных о росте трещин в эксплуатации и на стенде по программам, имитирующим эксплуатационное нагружение детали блоками нагрузок по схеме уборка-выпуск шасси, указывают на правомерность использования параметров рельефа излома в виде шага усталостных бороздок для оценки длительности роста трещин в количестве посадок ВС из условия одна бороздка — одна посадка.  [c.783]

Оценка основных параметров случайного эксплуатационного режима нагружения (математическое ожидание, дисперсия, коэффициент вариации, нормированная корреляционная функция, спектральная плотность н др.) производится на основе анализа и статистической обработки эксплуатационной информации о нагруженности изделий.  [c.90]

Если при использовании фрактографии для оценки качества и структуры материала нельзя не учитывать условия получения излома, поскольку сама выявляемость и вид дефекта зависят от условий разрушения, а при изучении кинетики разрушения по излому помимо условий нагружения необходимо учитывать состояние материала, то при анализе эксплуатационных изломов тем более важно знать особенности строения изломов, обусловленных как параметрами нагружения, так и свойствами и структурой материала, в том числе различными дефектами материала.  [c.7]

В книге систематизированы причины, вызывающие остановку развития усталостных трещин, освещены современные методики исследования таких трещин. Подробно проанализировано влияние металлургических, технологических и эксплуатационных факторов на параметры, нераспространяющихся усталостных, трещин. Приведены экспериментальные результаты исследований нераспространяющихся трещин в деталях из разных материалов при различных схемах нагружения.  [c.2]

Для оценки неизотермической малоцикловой прочности при различных (а в общем случае производных) сочетаниях режимов нагрева и нагружения, свойственных эксплуатационным характеристикам реального конструктивного элемента, должен быть получен, с одной стороны, комплекс исходной информации кинетика параметров процесса циклического упругопластического деформирования (в опасной зоне) и прежде всего изменение полной (или необратимой) деформации с числом циклов нагружения, и данные, характеризующие развитие односторонне накопленной деформации по числу циклов, а  [c.41]

Эксплуатационный процесс нагружения и плотность его вероятности показаны на рис. 1, значения амплитуд гармонических циклов, соответствующих типичному блоку эксплуатационной нагрузки,— на рис. 2 и кривые долговечности, вычисленные для значений X, равных 2, 5 и 10 %, вместе с экспериментальными результатами, приведены на рис. 3. Величины параметра Р(2%) =1,77 Р(5 %) = 1,6 Р(Ю%) = 1,434.  [c.109]

Очевидно, одним иэ важнейших предположений успешной лабораторной оценки усталостной долговечности является качественная репродукция (имитация) эксплуатационной нагрузки или эквивалентность имитированной и эксплуатационной нагрузок. Теоретически можно, правда, требовать, чтобы эти процессы совпадали во всех характеристиках, но практически целый ряд причин приводит к тому, что имитируются только некоторые свойства случайного процесса. Это, естественно, ставит новые проблемы по выяснению влияния отдельных параметров нагрузки на усталость и формулировок гипотез накопления усталостного повреждения при случайном нагружении.  [c.325]

Другим довольно важным обстоятельством является способ нагрузки мягкий или жесткий. Хотя при воспроизведении действительной эксплуатационной нагрузки нет различия между этими способами, при теоретическом исследовании влияния параметров нагрузки на долговечность материала его циклические деформационные свойства могут значительно зависеть от способа управления машиной. При мягком нагружении, например па циклической кривой деформирования, появляется разрыв, который не наблюдается при жестком нагружении [2]. С практической точки зрения, однако, следует учесть, что процесс повреждения в наиболее критических местах конструкции, т. е. в корнях концентраторов, независимо от природы внешней нагрузки всегда больше соответствует жесткому, чем мягкому нагружению.  [c.326]

Существует мнение, что на усталостную прочность оказывает влияние весь комплекс параметров качества поверхности и, в первую очередь, шероховатость, наклеп и остаточные напряжения, причем в зависимости от свойств материала и условий эксплуатации влияние каждого из них различно. При этом доминирующее значение может иметь какой-либо один из параметров качества поверхности. Поэтому для практики машиностроения важно знать закономерности комплексного и раздельного влияния параметров качества поверхностного слоя на характеристики усталости конструкционных материалов в эксплуатационных условиях циклического нагружения материала (изгиб, кручение, растяжение и сжатие, широкий интервал частот нагружения при комнатной и высокой температуре, в воздушной и коррозионной средах).  [c.165]


При назначении режимов обработки различных жаропрочных материалов нельзя исходить только из производительности или стойкости инструмента. Из указанных материалов изготовляют наиболее ответственные и нагруженные детали машин и приборов. Режим обработки влияет на величину и характер шероховатости поверхности, степень и глубину наклепа, знак и величину внутренних напряжений, т. е. на те свойства, которые объединяются понятием качество поверхности и от которых во многом зависят эксплуатационные качества и надежность деталей. Учет влияния режимов обработки на качество поверхности затруднен большим разнообразием рассматриваемых сталей и сплавов, и сложностью и неоднозначностью зависимости эксплуатационных свойств поверхностей деталей от различных параметров режима обработки. При обработке жаро-  [c.39]

Развитие методов моделирования эксплуатационных нагрузок при испытаниях на усталость идет по двум основным направлениям. Первое направление характеризуется тем, что программной режим моделирует осредненные по времени распределения величин одного или нескольких параметров циклов нагружения реального процесса. В соответствии со вторым направлением моделируются основные закономерности процессов изменения нагрузок во времени.  [c.16]

Методика ускоренной оценки надежности передней оси включает следущие этапы определение кривой распределения изгиба-юш,их моментов оси в эксплуатационных условиях, анализ режимов нагружения и выбор программы испытаний проведение испытаний на резонансном стенде Шенк и определение параметров кривой усталости определение надежности оси по результатам стендовых испытаний и эксплуатационным режимам нагружения.  [c.228]

При обосновании прочности и ресурса элементов конструкций важное место занимают исследования сопротивления материалов хрупкому и циклическому нагружению на стадиях возникновения и развития трещин. Получение данных о скоростях развития и критических размерах трещин в связи с напряженно-деформированным состоянием, характеристиками материала, температурой и другими эксплуатационными параметрами позволяет надежно оценить живучесть конструкции и в ряде случаев, при наличии соответствующего контроля по состоянию, существенно увеличить срок службы элементов конструкций.  [c.445]

Продление ресурса первых промышленных атомных реакторов, срок эксплуатации которых приближается к предельному проектному, является важнейшей задачей. Учитывая практическое отсутствие опыта длительной эксплуатации реакторов за предельной расчетной долговечностью, в качестве основных следует считать не только задачи разработки новых методов расчета прочности и ресурса вновь проектируемых реакторов, но и задачи надлежащего определения израсходованного и остаточного ресурса эксплуатируемых реакторов. Решение последних задач должно основываться на анализе реальной эксплуатационной нагруженности несущих элементов реакторов и контроле их состояния на различных стадиях эксплуатации. Развитие методов и средств определения основных параметров эксплуатационной нагруженности и накопленных повреждений для работающих атомных реакторов должно способствовать проектированию и созданию систем контроля указанных параметров, входящих в состав общих систем по обеспечению работоспособности и безопасности атомных энергетических установок.  [c.10]

Анализ нестационарных температурных полей и полей напряжений для рассмотренных переходных эксплуатационных режимов проводится отдельно для каждого из элементов оборудования первого контура АЭС. При этом используется полученная вьпие история его силового и температурного нагружения F(t), T t). Процессы деформирования элементов конструкций АЭУ, соответствующие этим воздействиям (исключая вибрационные), полагаются квазистатическими (время t играет роль параметра). Основные уравнения и методы решения подобных задач будут рассмотрены ниже.  [c.94]

Поведение (свойства) материала, как известно, определяется его обобщенным термодинамическим потенциалом. Сообразно исследование свойств штамповых сталей на образцах должно проводиться в условиях, близких по параметрам нагружения к эксплуатационным. Для указанных целей в Куйбышевском политехническом институте создан ряд установок квазианалогового класса  [c.146]

Скорость деформации и температура аналогичным образом влияют на параметры процесса разрушения через изменение жесткости напряженного состояния, не меняя самого процесса в определенном диапазоне изменения указанных факторов. Сочетание низкой скорости деформации и высокой степени стеснения пластической деформации может изменить механизм вязкого разрушения, например от преимущественного формирования ямочного рельефа в условиях отрыва до вязкого внутризеренного, путем сдвига при нарушении сплошности по одной из кристаллографических плоскостей. Указанный переход в развитии процесса разрушения был выявлен при испытании круглых образцов диаметром 5 мм с надрезом из жаропрочного сплава ЭИ437БУВД при температуре 650 °С. Медленный рост трещины характеризовался следующими элементами рельефа гладкие фасетки со следами внутризеренного множественного скольжения по взаимно пересекающимся кристаллографическим плоскостям, вышедшим в плоскость разрушения, и волнистый рельеф в виде пересекающихся ступенек, которые также отражают процесс кристаллографического скольжения (рис. 2.6а). Аналогичный характер формирования поверхности разрушения был выявлен в изломе на участке ускоренного роста трещины при эксплуатационном разрушении диска турбины двигателя (рис. 2.66). Диск был изготовлен из того же жаропрочного сплава ЭИ437БУВД. Разрушение диска было усталостным. Сопоставление описываемых. элементов рельефа в ситуации монотонного растяжения с низкой скоростью деформации и повторное циклическое нагружение дисрса в эксплуатации привели к идентичному процессу разрушения. В отличие от разрушения образца в диске развитие трещины происходило при медленном возрастании нагрузки в момент за-  [c.91]

Протекающие в материале процессы в случае эксплуатационных разрушений могут протекать не в строгом соответствии с диаграммами или картами Эшби. Это обусловлено существованием критических условий по масштабному уровню протекания процесса эволюции открытых систем в соответствии с принципами синергетики [43-46]. При различном сочетании одновременно действующих нескольких факторов в результате эффекта их суммарного воздействия, взаимного влияния друг на друга может измениться критическая величина используемого (одного) параметра, который применяется для определения границы смены механизма разрушения. Многофакторная оценка поведения материала при различном сочетании параметров внешнего воздействия подразумевает комплексное изучение границ перехода от одних протекаемых процессов разрушения материала к другим с использоваттем интегральных характеристик эволюции поведения материала и рельефа излома в оценке условий его нагружения в эксплуатации.  [c.99]

Эксплуатационное воздействие на элемеит конструкции реализуется при переменных параметрах цикла нагружения во времени. Порож.цае-мый при таком нагружении поток энергии является нестационарным. Такой вид нагружения, согласно принципам синергетики об упорядоченности ступеней самоорганизации, позволяет осуществлять многократное повторение тех или иных механизмов эволюции, присущих данной системе. Применительно к распространению усталостных трещин это означает, что причины переходов от одних механизмов разрушения к другим могут быть следствием изменения величины управляющего параметра, однако в направлении роста трещины можно реализовать только те механизмы, которые характеризовали рост трещины при стационарном режиме нагружения. Эта ситуапия имеет место, если переходные режимы внешнего воздействия вызвали дискретные изменения реак-  [c.125]


Рассматриваемая ситуация является наиболее приближенной к условиям, в которых находится материал при эксплуатационном нагружении. Химический состав окружающей среды оказывает решающее влияние на рост трещин в широком диапазоне изменения частоты нагружения и асимметрии цикла, что определяет возможность обильного и неограниченного поступления агрессивных продуктов из окружающей среды в вершину трещины. Во всех работах по изз гению роли окружающей (афессивной) среды на кинетику усталостных трещин подчеркивается, что это синергетическая ситуация, в которой именно взаимное влияние среды и параметров цикла нагружения на поведение материала в вершине трещины определяет эффект в реализации того или иного механизма ее продвижения.  [c.385]

Фактически речь идет о возможности конструирования узлов многосвязных конструкций таким образом, чтобы при достижении развивающейся трещиной предкритических размеров в одном из элементов кардинальным образом менялись параметры реализуемого воздействия, что привело бы к снижению скорости роста трещины. Эта задача может быть решена после того, как реализовано моделирование роста трещины в известных или предполагаемых условиях многопараметрического эксплуатационного нагружения. Осуществить прогнозирование можно на основе еди-14 - 2061  [c.401]

В процессе эксплуатации авиационных ГТД случаи малоциклового усталостного разрушения двухфазных титановых дисков разных ступеней компрессоров имеют повторяющийся характер. Отличительной особенностью эксплуатационных разрушений титановых дисков в области МЦУ является возможность раздельной или совместной реализации при одинаковых условиях нагружения вязкого внутризеренного и хрупкого межсубзерен-ного механизма разрушения материала с формированием соответственно бороздчатого и фасеточного рельефа излома. При этом кинетические параметры разрушения, характеризующие рост трещины при реализации только одного механизма, могут изменяться от диска к диску в несколько раз, а при разных механизмах интервал наблюдаемых скоростей даже в пределах одного диска может достигать порядка и более. При таком разнообразии возможных реакций титановых сплавов на однотипное внешнее воздействие при оценках длительности эксплуатационных разрушений дисков главное значение приобретает точность определения соответствия того или иного числа элементов излома в виде усталостных бороздок одному ПЦН.  [c.477]

Фирма MTS (США) выпускает универсальные гидравлические и гидрорезонансные испытательные машины различной мощности — от 0,1 до 5 Мн (от 10 до 500 тс), предназначенные для проведения испытаний на статическое растяжение, сжатие и изгиб, на малоцикловую усталость, кратковременные или длительные испытания на ползучесть, усталостные испытания при постоянной амплитуде с различной формой цикла (синусоидальная, треугольная, трапецевидная и др.), усталостные испытания с программным изменением ам плиту-ды, среднего уровня напряжений и частоты, а также с изменением указанных параметров по случайному закону. Кроме того, машины оборудованы системой обратной связи и могут воспроизводить эксплуатационный цикл нагружения, записанный на магнитофонную ленту или перфоленту. При усталостных испытаниях всех видов осуществляют регистрацию скорости роста трещин, накопления усталостных повреждений и пластических деформаций и оценивают чувствительность металла к концентрации напряжений по динамической петле гистерезиса. Частота циклов может изменяться от 0,0000 1 до 990 Гц. Особенность компоновки машин этой фирмы — разделение на отдельные независимые блоки исполнительного, силозадающего и програм-мно-регистрирующего агрегатов.  [c.206]

Увеличение рабочих параметров современных машин и аппаратов (рост единичных мощностей, уровня температур, грузоспособ-ности, маневренности, а также работа изделий в условиях переходных и форсированных эксплуатационных режимов и т. д.) при одновременном снижении металлоемкости конструкций и использовании новых металлических материалов повышенной прочности приводит к возрастанию как общей, так и местной напряженности конструкции с выходом в зонах концентрации металла за пределы упругости. Эксплуатационная нестационарность (тепловая и механическая) нагружения изделий сопровождается работой материала в условиях циклического упругопластического деформирования. Такое нагружение характерно для конструкций энергетического, транспортного и химического машиностроения, авиации, ракетной техники, реакторостроения и т. д. [127, 170].  [c.3]

Общая для всего мира тенденция улучшения рабочих параметров ГТД за счет увеличения степеней сжатия как следствие приводит к появлению большого числа коротких лопаток с собственными частотами колебаний даже по первой форме в области высоких звуковых частот циклов. Увеличение частоты / при данном ресурсе эксплуатации Тэ автоматически приводит к росту циклической наработки N. Поскольку ресурс Тэ также имеет тенденцию к росту, увеличивается относительное число усталостных повреждений среди возможных нарушений работоспособности деталей ГТД. Стала актуальной проблема оптимизации технологии коротких лопаток и связанных с ними элементов дисков по характеристикам сопротивления усталости на высоких звуковых частотах и эксплуатационных температурах, которые, как и частота нагружения, становятся все более высокими. Из-за жестких требований к весу деталей и сложности их конструкции в каждой из них имеет место около десятка примерно равноопасных зон, включающих различные по форме поверхности и концентраторы напряжений гладкие участки клиновидной формы, елочные пазы, тонкие скругленные кромки, га.лтели переходные поверхности), ребра охлаждения, малые отверстия, резьба и др. Даже при одинаковых методах изготовления, например при отливке лопаток, поля механических свойств, остаточных напряжений, структуры и других параметров физико-химического состояния поверхностного слоя в них получаются различными. К этому следует добавить, что из-за различий в форме обрабатывать их приходится разными методами. Комплексная оптимизация технологии изготовления таких деталей по характеристикам сопротивления усталости сразу всех равноопасных зон без использования ЭВМ невозможна. Поэтому была разработана система методик, рабочих алгоритмов и программ [1], которые за счет применения ЭВМ позволяют на несколько порядков сократить число технологических испытаний на усталость, необходимых для отыскания области оптимума методов изготовления деталей, а главное строить математические модели зависимости показателей прочности и долговечности типовых опасных зон деталей от обобщенных технологических факторов для определенных классов операций с общим механизмом процессов в поверхностном слое. Накапливая в магнитной памяти ЭВМ эти модели, можно применять их для прогнозирования наивыгоднейших режимов обработки новых деталей, которые в авиадвигателестроении часто меняются без трудоемких испытаний на усталость. Построение  [c.392]

Предложен метод определения долговечности прп случайной эксплуатационной нагрузке, основанный па энергетическом критерии усталостной долговечности. Сущность метода состоит в трансформации случайной нагрузки в фиктивное эквивалентное гармоническое нагружение, причем критерием трансформации является одинаковое усталостное повреждение за некоторое время г, выраженное через энергию гистерезиса. Вычисление учитывает наиболее важные характеристики материала (кривая циклической деформации), включает влияние параметров процесса пагруакп (статические характеристики) и позволяет определить долговечность для. заданной вероятности усталостного разрушения.  [c.424]

Рассматривается проблема оптимизации с помощью ЭВМ технологии из-готовлешш деталей ГТД по критериям прочности с учетом действия высоких звуковых частот нагружения и эксплуатационных температур. Дается методика учета охлаждения заделки (для иодавления ползучести) ири расчете цаиряжений в образцах, моделирующих перо лопаток при испытаниях по схеме поиеречны.х колебаний на высоких звуковых и ультразвуковых частотах. Предложена математическая модель и дан пример ее практического использования для оптимизации режимов и законов программного или адаптивного управления операциями. На основе аналитического исследования деформаций в характерных концентраторах напряжений найдены обобщенные параметры для контроля состояния поверхностного слоя, отражающие влияние технологии на сопротивление усталости детали.  [c.438]

Испытание образцов с надрезами при однократном нагружении. Ввиду наличия в различных деталях машин и других изделиях всевозможных канавок, вьггочек, отверстий, нарезок, галтелей, необходимых для конструктивных и эксплуатационных целей, возникла необходимость выяснить чувствительность материала к надрезам, для чего производится сопоставление результатов испытания материала в гладких образцах и образцах с надрезом. Наряду с этим определяют и абсолютные значения характеристик материала при наличии надреза в образце. В большинстве случаев налрез снижает пластичность и вязкость материала и мало влияет на прочность. Испытания производят при различных видах деформации образца (растяжение, сжатие, кручение, изгиб), различных геометрических параметрах надрезов, различных абсолютных размерах образцов все эти факторы оказывают существенное влияние на чувствительность к надрезу. Рассматривают чувствительность материала к надрезу по признаку прочности, деформации, вязкости. Наибольшее значение имеют исследования, в которых образцы доводятся до разрушения. В надрезанных образцах, в силу концентрации напряжений, пластические деформации локализуются областью надреза и характер разрушения образца, хрупкий при неинструментальном осмотре, оказывается на самом деле пластичным, что обнаруживается при микроскопическом изучении.  [c.301]


Использование характеристик сопротивления усталости, полученных при стационарных испытаниях, не может обеспечить высокой точности расчета на прочность деталей, работающих в условиях случайного нагружения — наиболее типичного для современных ответственных конструкций. Методы расчета деталей при нестационарной напряженности, разрабатываемые академиком АН УССР С. В. Серенсеном и его учениками, предполагают использование характеристик усталости, учитывающих влияние изменчивости величины действующих напряжений. Такие характеристики определяют с помощью программных испытательных машин, на которых исследуются закономерности накопления усталостного повреждения в зависимости от эксплуатационных, конструктивных и технологических факторов, определяются параметры вторичных кривых усталости, а также выясняются активные части спектра эксплуатационных напряжений.  [c.3]

Опыт показал, что испытания на служебную выносливость во многих случаях не могут быть проведены из-за высокой стоимости испытаний натуральных объектов. Кроме того, получить результаты в более короткое, чем при естественной эксплуатации, время можно лишь при форсировании режима нагрузки. Однако это приводит к изменению первоначальной цели служебных испытаний, так как вопрос о долговечности окончательно не будет выяснен. Поэтому испытание на служебную выносливость обычно сопровождается опытами по изучению накопления усталостного повреждения, проводимыми на образцах материала конструкций, на отдельных деталях или их моделях. Цель таких испытаний состоит не в точной передаче режима эксплуатационной нагрузки, а в выяснении принципиальных вопросов накопления повреждения и эквивалентности режимов. В связи с этим для испытаний могут назначаться разнообразные условия чередования нагрузок и спектры. Служебные испытания и опыты на накопление повреждения квляются экспериментальной проверкой гипотез, положенных в основу расчетной оценки долговечности при нестационарных режимах нагружения. По иолученным результатам можно уточнить параметры расчетных соотношений.  [c.13]

Следует иметь в виду, что рассмотренный вариант симметричного нестационарного нагружения не является единственным. В гл. II показано, что, многие конструкции имеют более сложную структуру эксплуатационной нагруженности. В этих случаях чередование экстремальных значений нагрузок также подчиняется вероятностным 21акономерностям, однако в схематизированном виде процесс " нагружения с достаточной степенью точности может быть представлен как регулярный процесс с постоянной или варьируемой асимметрией цикла или бигармони-ческий процесс с различными соотношениями параметров частотных составляющих или с их варьированием.  [c.55]

При проведении испытаний на усталость наиболее сложные задачи управления процессом испытаний возникают при воспроизведении программных или случайных нагружений, имитирующих эксплуатационную нагрузку. Рассмотрим два основных направления, Одно из них, которое условно можно назвать воспроизведением спектра эксплуатационных нагрузок и частот, состоит в измерении параметров нестационарного случайного процесса и их приближенном воспроизведении в квазистационар-  [c.505]

На стадии конструирования в качестве исходных данных для решения вопросов прочности и ресурса используются мощности, температуры и давления теплоносителя, основные эксплуатационные режимы, общий временной и цикловой ресурс, характер и параметры рассчитываемых аварийных ситуаций, основные требования по радиационной безопасности, условия и характеристики сейсмичности. Сами расчеты прочности включают расчеты нагруженности (усилий, номинальных и местных напряжений) испытания (стандартные и нестандартные) лабораторных образцов для получения расчетных характеристик механических свойств применяемых конструкционньк материалов  [c.7]


Смотреть страницы где упоминается термин Нагружение эксплуатационное - Параметры : [c.188]    [c.95]    [c.20]    [c.100]    [c.101]    [c.235]    [c.639]   
Машиностроение Энциклопедия Т IV-3 (1998) -- [ c.71 ]



ПОИСК



Эксплуатационные параметры



© 2025 Mash-xxl.info Реклама на сайте