Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гальванические Твердость

Для повышения износостойкости трущихся поверхностей новых деталей наряду с гальваническими покрытиями широко применяют их термическую обработку поверхностную закалку с нагревом газовым пламенем (для поверхностного упрочнения стальных зубчатых колес, червяков, шеек коленчатых валов и пр.), высокочастотную закалку (кулачковые валы, шестерни, шейки валов, гильзы цилиндров, станины станков и др.). С этой же целью применяют обработку поверхностным пластическим деформированием, в процессе которого повышается твердость поверхностных слоев и достигается нужный класс шероховатости поверхности (обкатывание и раскатывание цилиндрических и плоских поверхностей, прошивание, калибрование и др.).  [c.247]


В деталях, подвергающихся в процессе эксплуатации истиранию и переменным нагрузкам в коррозионных средах, часто используется гальваническое хромирование, но хромирование понижает прочность материала при коррозионной усталости, что ограничивает его применение в ответственных, сильно нагруженных деталях. Понижение прочности в основном связано с остаточными растягивающими усилиями в хромовом покрытии. Поэтому с понижением прочности необходимо бороться путем нейтрализации остаточных напряжений и повышения твердости поверхности основного металла.  [c.103]

Износостойкость КЭП в несколько, а иногда и в десятки раз больше, чем износостойкость чистых покрытий. Известно, что повышение твердости гальванических покрытий на 10—20% часто приводит к многократному повышению их износостойкости. Так, включение карборунда в серебро, а карбидов титана, вольфрама и хрома — в никель уменьшает износ в десятки раз. Однако увеличение твердости иногда сопровождается повышением хрупкости или внутренних напряжений осадков. Чаще всего это происходит у покрытий, полученных из электролитов (С органическими добавками.  [c.97]

Из сульфатного электролита при концентрациях корунда М14 50—100 кг/м образуются покрытия с содержанием 0,4—0,6% (масс.) частиц второй фазы и твердостью около 500 МПа. При осаждении из цинкатного электролита с порошком никеля получаются коррозионно-стойкие покрытия, так как частицы никеля обладают экранирующим действием по отношению к матрице. Применение КЭП позволило бы снизить расход никеля, так как обычно кислотостойкие покрытия получают гальваническим осаждением чистого сплава Zn—Ni с содержанием никеля 18—20%.  [c.207]

Покрытия на основе свинца. Соосаждение частиц со свинцом производят для повышения твердости свинцового покрытия, которое является самым мягким из применяемых гальванических покрытий. Осаждают КЭП на основе свинца из фторборатного или фенолсульфоново-го электролитов .  [c.212]

Способ включает обработку многослойного гальванического покрытия, содержащего кроме внешнего слоя хрома также Си, Ni, Ni—Со, латунь или бронзу. Для воздействия на покрытия применяют кремнезем (речной песок), АЬОз, стеклянные бусинки, пластики, покрытые абразивом, и другие частицы с твердостью, достаточной для деформации (образования пор, вмятин или трещин) хромового покрытия. Трещины возникают в случае высоконапряженного состояния хромового покрытия. Не исключено образование микропористости на слое хрома, если предварительно до хромирования обрабатывать абразивом подслой никеля или другого металла.  [c.244]

Наибольшее распространение в настоящее время получило хромовое покрытие, так как металлический хром, осаждаемый на поверхность детали гальваническим путем, отличается высокой твердостью и износостойкостью [38]. Разработан и успешно применяется метод осталивания поверхностей деталей двигателя. Электролитическое осаждение используется и при нанесении радиоактивных индикаторов диффузионным методом. Например, если нанести электролитически цинк-65 на поверхность алюминиевой детали, подлежащей исследованию, а затем эту деталь выдержать определенное время при температуре 200— 250 °С, то цинк хорошо продиффундирует в глубь поверхности детали.  [c.135]


Родий мало пластичен, но имеет низкую твердость в отожженном состоянии. Холодная обработка может повысить его твердость в 5 раз. Твердость гальванически осажденного родия высока.  [c.302]

Для устранения опасности заедания болт (шпильку) и гайку делают из материалов различной твердости (материал гайки меньшей твердости) или применяют гальванические покрытия мягкими металлами оловом, кадмием, медью, циком и др. Заедание в значительной мере предотвращается также масляной пленкой, создаваемой между сопрягающимися поверхностями. Среди применяемых для этой цели смазок лучшие результаты дает двусернистый молибден. Эту смазку можно применять и для резьбовых соединений, работающих в условиях повышенных температур (до 850° С).  [c.155]

Большинство применяемых в настоящее время покрытий являются индивидуальными металлами, хотя, как известно, сплавы обладают свойствами, сильно отличающимися от свойств исходных металлов (твердость, коррозионная стойкость идр.). Поэтому неудивительно, что в течение последних лет все чаще стали применять гальванические покрытия электролитическими сплавами [57 ]. Одновременно обращает на себя внимание тот факт, что все большее внимание стало уделяться влиянию гальванопокрытий на механические свойства основного материала детали, особенно в связи с расширяющимся применением сплавов с высокой прочностью.  [c.124]

Покрытие белой бронзой отличается высокой твердостью (500— 600 кГ/мм ) сравнительно с твердостью гальванических покрытий медью и оловом (90—100 кГ/мм и 45—50 кГ/мм ) соответственно. Одновременно оно имеет высокую стойкость относительно материалов, содержащих серу и некоторые другие коррозионные вещества.  [c.125]

Таблицы экономической точности 590 Такт на автоматических линиях 719 Тахогенераторы — Схемы 728 Твердость гальванических покрытий — Контроль 424  [c.462]

Покрытия, полученные химическим никелированием, представляют собой сплав никеля с 10—15% фосфора и отличаются рядом преимуществ по сравнению с гальваническими никелевыми покрытиями, в частности равномерностью с.тоя на деталях любой сложной конфигурации, отсутствием пор, высокими защитными, свойствами в условиях атмосферной и высокотемпературной газовой коррозии, твердостью до НРс 50—55 и износостойкостью, сравнимой с износостойкостью электролитических слоев хрома.  [c.228]

Твердость гальванических покрытий контролируют на приборе типа ПМТ-3 или с помощью твердомера Виккерса, В гальванических цехах систематически контролируют состав электролитов, оборудование, режим процесса, качество подготовительных операций.  [c.79]

Шлифование деталей производят на круглошлифовальных станках, установленных вне гальванического отделения. Шлифование ведется обычно кругом, имеющим зернистость 46—60, среднюю твердость — С скорость вращения круга принимается = 25—30 м/сек, а скорость вращения изделия 12—20 м/мин.  [c.43]

В общем случае структура восстановленного слоя может быть гомогенной и композиционной. Гомогенные покрытия представляют собой однофазную систему. Это могут быть боридные фазы, полученные в результате химико-термической обработки, слои твердого раствора хрома, гальванически осажденного на восстанавливаемую поверхность, однородное керамическое или полимерное покрытие и т.д. Гомогенные покрытия находят широкое применение в ремонтном производстве. Их высокая однородность обусловливает высокую химическую стойкость. Ряд гомогенных покрытий, например напыленные керамические покрытия и диффузионные слои, обладают высокой твердостью и обеспечивают высокую износостойкость.  [c.145]

Основная область применения гальванических покрытий в ремонтном производстве - восстановление многочисленных деталей с небольшим износом, но с высокими требованиями к износостойкости, твердости и сплошности покрытия и прочности его соединения с основой. Учитывают, что -65 % деталей ремонтного фонда имеют износ на сторону 0,14 мм. Гальванические покрытия наносят на восстанавливаемые поверхности клапанов, поршневых пальцев, шатунов, отверстий под подшипники в корпусных деталях и др.  [c.411]


Служебные свойства деталей, восстановленных нанесением гальванических покрытий, определяются прочностью соединения покрытия с поверхностью детали, твердостью, износостойкостью, внутренними напряжениями и усталостной прочностью. Наиболее критичны для указанных свойств следующие величины процесса плотность и вид тока, вид и массовая доля составляющих электролита, температура и скорость перемещения электролита у поверхности катода.  [c.437]

Восстановительно-упрочняющие покрытия отличаются особыми свойствами. Наплавленные покрытия, например, имеют высокую твердость, неоднородны по строению и химическому составу, являются пористыми, а их наружная поверхность неровная. Ряд гальванических покрытий обладает высокой твердостью, и в них присутствуют гидроксиды, однако покрытия железнения, наоборот, мягкие и имеют значительную вязкость. Для многих газотермических покрытий характерны большая пористость и низкая прочность соединения с основой. Полимерные покрытия хрупкие, отличаются плохой теплопроводностью и низкой температурой плавления или начала разрушения. Эти причины объясняют назначение иных режимов обработки ремонтных заготовок, видов и геометрии инструмента, а также применяемых СОЖ.  [c.457]

Поверхность под алмазное выглаживание предварительно шлифуют или растачивают. Усилие выглаживания < 300 Н. В зону обработки подают индустриальное масло И-20А. Скорость выглаживания для сталей с твердостью 35....67 HR 200...280 м/мин, а подача 0,02...0,05 мм/об. Качество выглаживания определяется формой и радиусом рабочей части инструмента, величиной радиального усилия, числом ходов, подачей и скоростью выглаживания. Рабочая часть иглы имеет радиус сферы 0,8... 3 мм. Крепление инструмента пружинное. Шероховатость обработанной поверхности достигает Ra 0,1...0,05 мкм, микротвердость увеличивается на 50...60 %, глубина наклепанного слоя достигает 400 мкм, на поверхности остаются значительные напряжения сжатия. Алмазное выглаживание рекомендуется для упрочнения наплавленных и гальванических покрытий. Усталостная прочность при этом повышается более чем в 2 раза.  [c.541]

Никелевые и хромовые гальванические покрытия являются одновременно защитно-декоративными и покрытиями, повышающими поверхностную твердость металла и его стойкость к износу. К защитно-декоративным покрытиям относятся также гальванические покрытия серебром, золотом, кобальтом бронзами, латунями и другими металлами. Для восстановления размеров деталей применяют электролитическое хромирование, железнение и меднение. . -  [c.134]

Электромагнитные метод накладной катушки метод проходной катушки экранный метод Лакокрасочные и гальванические покрытия, стенки листов и труб Проволока, прутки, трубы контроль по маркам Листы, сварные соединения Толщина покрытий и стенок, несплошности, трещины, электропроводность поверхностных слоев Вытянутые в длину несплошности твердость, поверхностное содержание углерода, размеры Скоростной контроль толщины, качество точечной сварки выяв-, ленне несплошностей  [c.476]

В процессе нагрева в Со — В-покрытиях протекают необратимые структурно-фазовые превращения с выделением фазы борнда Со В в области температуры 215 °С и фазы С02В в области температур 425—460 °С Свойства химически восстановленных Со — В сплавов сильно отличаются как от гальванического кобальта, так и от сплавов Со—Р Это относится к таким свойствам, как твердость, износостойкость и магнитные характеристики  [c.63]

Кроме вышеперечисленных достоинств диффузионных цинковых покрытий, они обладают повышенной твердостью и износостойкостью по сравнению с цинковыми покрытиями, полученными гальваническим или металлизатшонным способами.  [c.174]

Гальванический метод обычно используется для нанесения покрытий на простые и небольшие детали. Наиболее часто он применяется для нанесения покрытия в барабанах или для непрерывного покрытия листов и проволоки. Диффузионный метод чаще всего используется для нанесения цинкового покрытия на -небольшие, сложной формы, детали. Покрытия атим методом обладают повышенной твердостью.  [c.81]

Важным преимуществом КЭП по сравнению с твердыми гальваническими покрытиями (в том числе и сплавами) является сохранение у них повышенных значений твердости В0 времени, в то время как обычные покрытия с начальной высокой твердостью теряют таердость уже в первые часы и дни после получения.  [c.97]

Для изготовления подшипников, воспринимающих весьма высокие удельные давления (втулки шатунов и поршневых пальцев, подшипники редукторов и т. п,), фирма Карл Шмидт использует эвтектический поршневой сплав KS1275 с твердостью по Бринелю 70—120 кПмм . Сплав применяется главным образом в виде прессованных труб. Иногда используется и в литом состоянии. Добавки никеля и меди способствуют повышению теплостойкости сплава. Максимальная рабочая температура подшипников из этого сплава составляет 200° С, Сплав применяется главным образом для монометаллических вкладышей и втулок, а иногда и в биметаллическом варианте конструкции (для работы при температурах до 180—200° С). Для улучшения приработки вкладышей из этого твердого сплава рекомендуется покрывать их рабочую поверхность свинцово-оловянным слоем. Покрытие наносится гальваническим способом. После отжига сплав имеет твердость НВ 60— 65 кПмм" . Искусственное старение при 160—200° С повышает его твердость до 120—140 ед,  [c.124]

Оценка прирабатываемости покрытий. Способность к приработке тонких гальванических покрытий возможно оценить на машине трения АЕ-5. Так, например, была произведена оценка способности к приработке пористого хрома в зависимости от характера пористости. Испытывались три стальных цилиндрических образца из стали 40ХНМА с твердостью HR -32, диаметром рабочей части 2,5 мм при трении о стальные кольца, покрытые хромом с различной сеткой пористости.  [c.59]


Гальваническое покрытие, применяемое для повышения поверхностной твердости, сопротивления износу металла, а также коррозио-стойкости блестящая поверхность  [c.188]

Упрочнение методами электроискровой обработки применяют для повышения износостойкости и твердости поверхности деталей машин, работающих в условиях повышенных температур в инертных газах жаростойкости и коррозионной стойкости поверхности долговечности металлорежущего, деревообрабатывающего, слесарного и другого инструмента создания шероховатости под последующее гальваническое покрытие облегчения пайки обычным припоем труднопаяемых материалов (нанесение промежуточного слоя, например меди) увеличения размеров изношенных деталей машин при ремонте изменения свойств поверхностей изделий из цветных металлов и инструментальных сталей.  [c.274]

Насьш1ение поверхностного слоя стали хромом (Сг) повышает коррозионную устойчивость. твердость. Процесс проводят в твердых (порошок хрома или феррохром, глинозем или каолин, хлористый аммоний, пасты, гальванопокрытия), газообразных (хлорид хрома с хлористым водородом или водородом) и жидких (расплав солей щелочных и щелочноземельных металлов с хлоридом хрома) средах. Хромирование в твердой среде (порошок хрома XI или Х2) дает больший эффект при разрежении около 10-5 рт. ст. Наиболее эффективно термодиффузионное хромирование в пастах с нагревом ТВЧ, а также гальванически нанесенных слоев с нагревом ТВЧ.  [c.85]

Нанесение хромовых покрытий на различные металлы — широко развитая область гальванотехники. Основная цель этой операции — придание высокой твердости и сопротивления износу поверхности из более мягких металлов, создание декоративной внешности, длительно сохраняющейся и в неблагоприятных в отношении коррозии условиях. Ниже приводятся рецепты и режимы применения некоторых составов для гальванического хромирования из нагретых электролитов (горячее хромирова-  [c.228]

Приложение разборочного момента Подача деталей Ориентирование деталей Базирование деталей Закрепление деталей Основное движение при обработке Движение подачи при обработке Измерение момента Приложение разборочного усилия Межоперационное перемещение Нанесение материала наплавкой Измерение углов Измерение формы Измерение расположения Измерение жесткости Измерение твердости Внуп иоперацнонное перемещение Нанесение материала напылением Нанесение гальванических покрытий Измерение частоты Измерение силы Измерение массы Измерение расхода среды Измерение давления среды Воздействие очищающей среды Обнаружение течей Нанесение материала наплавкой Измерение дисбаланса Приложение деформирующего усилия  [c.46]

При обработке оплавленных покрытий из никельборкремниевых сплавов рекомендуются круги 64С с зернистостью М28, М40, твердостью СМ...СТ1. Кругами из зеленого и черного карбида кремния хорошо обрабатываются неоплавленные порошковые покрытия типа ПГ-СР4, нанесенные плазменным или газопламенным способом, а также покрытия ПГ-12Н-01, ПГ-12Р-02, полученные детонационным способом. Гальванические покрытия шлифуют абразивными кругами из нормального или белого электрокорунда марок 12А...25А. Напыленные покрытия и поверхности деталей из алюминиевого сплава шлифуют кругами из хромисто-титанистого электрокорунда марок 91 А...95А.  [c.471]

В ряде случаев после операций восстановления геометрии и размеров деталей машин путем пластической деформации, наплавки, например низкоуглеродистой сварочной проволокой типа Св-08кп, гальванического железнения с целью придания поверхности максимальной твердости и износостойкости проводят ХТО, к примеру цементацию, цианирование или другие виды ХТО. В табл. 4.21 приведены такие примеры.  [c.507]

Прочно занял свое место процесс жидкостного азотирования в расплавленных цианистых солях (40 % K NO и 60 % Na N), через которые при 570 °С в течение 1-3 ч пропускают кислород. Толщина азотированного слоя 0,15-0,5 мм. В результате распада солей в сталь диффундирует азот, на поверхности деталей образуется тонкий слой карбонитрида Feg( N) с высоким сопротивлением изнашиванию и коррозии. Азотированный слой не склонен к хрупкому разрушению. Твердость азотированного слоя углеродистых сталей до 350 HV, легированных — до 1100 HV. Недостатки процесса — токсичность и высокая стоимость цианистых солей. Жидкостное азотирование рекомендуется для зубчатых колес, штампов, пресс-форм и других деталей. Защита участков поверхности от насыщения азотом производится нанесением олова (гальваническим методом или методом окунания толщина слоя 10 мкм), обмазкой жидким стеклом с наполнителем (мел, тальк, асбест, окись хрома и др.), химическим никелированием и заделкой отверстий металлическими пробками.  [c.225]

Логан выявил, что усталостная прочность хромированных деталей может быть увеличена последующей термообработкой, или прокаливанием (рис. 14.9). При увеличении температуры прокаливания усталостная прочность сначала уменьшается, но при температуре выше 200° С она быстро возрастает до тех пор, пока при 440° С не становится значительно больше первоначальной. Уильямс и Хэммонд [346] подтвердили эти общие тенденции, хотя для получения самой высокой усталостной прочности была необходима температура прокаливания 520° С. Однако Старек е коллегами [345] установил, что для стали с очень высоким сопротивлением разрыву 203 кГ/мм прокаливание хромированных образцов при температуре 230° С уменьшало усталостную прочность лишь на 2% по сравнению с образцами без гальванического покрытия и что для сталей с меньшим сопротивлением разрыву 158 кГ1мм можно получить значительное улучшение усталостной прочности путем прокаливания при температуре 228° С. Увеличение температуры приводит к прогрессирующему уменьшению твердости хромированного слоя, к вы-  [c.387]

В отличие от хромирования, твердость никелированного слоя может изменяться от 150 до 500 по Виккерсу в зависимости от условий, однако Мур [131] приводит результаты, показывающие, что твердость не оказывает влияния на усталостную прочность. Мур также приводит данные, свидетельствующие о том, что усталостную прочность можно значительно повысить, покрывая поверхность оловом толщиной 0,0127 мм с последующим омеднением до никелирования. Предел выносливости стали SAE 4330 без гальванического покрытия составляет 55,5 кГ1мм , а после никелирования на толщину 0,025 мм уменьшался до 30,9 однако после покрытия оловом  [c.390]

Хром отличается высокой твердостью, большой прочностью сцепления со сталью и химической стойкостью. Свойства его в значительной степени зависят от режима осаждения. По данным Г. С. Левитского, варьируя только плотностью тока и температурой раствора электролита, можно изменять твердость осадков в пределах НВ 450. .. 1000. При этом износостойкость покрытия может изменяться почти в 10 раз. Хром имеет более отрицательный потенциал, чем железо, но не защищает последний ни на воздухе, ни в оксили-тельной среде. Дело в том, что окисная пленка, покрывающая поверхность хрома, сдвигает его потенциал и положительную сторону, так что в гальванической паре с железом хром является катодом.  [c.359]


Посадочные поверхности и шейки под подшипники до номинального размера или размера, превышающего номинальный, восстанавливают электроискровой обработкой, гальваническими способами, металлизацией или электровибрациоиной (виброконтактно ) наплавкой. После наращивания шейки валов шлифуют алундовыми или электрокорундовыми шлифовальными кругами твердостью СМ2 и зернистостью 46—60.  [c.330]

Для шлифования зубчатых колес часто используют абразивные шлифовальные круги, изготовленные из керамически связанного корунда. Для зубчатых колес из незакаленных и закаленных легированных сталей и чугуна с твердостью до 63 HR применяют шлифовальные круги из белого электрокорунда высшею качества. Зубчатые колеса из закаленных с твердостью более 63 HR и других плохо обрабатываемых сталей, в том числе быстрорежущих, шлифуют кругами из смеси монокри-сталлического корунда и белого электрокорунда высшего качества. Круги из монокристалли-ческого корунда применяют только для шлифования быстрорежущих сталей. Шлифовальные круги из сверхтвердого материала - кубического нитрида бора (эльбора) для обработки зубчатых колес применяют двух видов на керамической связке и на металлической основе с гальваническим покрытием.  [c.275]


Смотреть страницы где упоминается термин Гальванические Твердость : [c.95]    [c.119]    [c.343]    [c.197]    [c.119]    [c.302]    [c.195]    [c.252]    [c.293]    [c.147]   
Справочник машиностроителя Том 5 Изд.2 (1955) -- [ c.729 ]



ПОИСК



Гальванический цех

Твердость абразивного инструмента Шкала гальванических покрытий

Твердость гальванических осадков

Твердость гальванических покрытий Контроль

Твердость гальванических покрытий Контроль температуры отпуска

Твердость гальванических покрытий металлокерамики

Твердость гальванических покрытий стали после закалки

Твердость гальванических покрытий стали — Зависимость от температуры отпуска

Твердость гальванических покрытий чугуна высокопрочного— Влияние

Твердость — Значения 6—15, 16 Определение гальванических покрытий



© 2025 Mash-xxl.info Реклама на сайте