Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обработка результатов измерений процессов

Приведенные в предыдущих параграфах формулы используются при первичной обработке результатов измерений процесса теплообмена.  [c.177]

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ ПРОЦЕССОВ  [c.121]

Технологический процесс геодезического контроля подкрановых путей представляет совокупность приемов и способов получения и обработки информации о планово-высотном положении крановых рельсов. Он включает такие основные операции, как определение прямолинейности и горизонтальности рельсов и ширины колеи кранового пути обработку результатов измерений составление графической документации проектирование оптимального положения рельсов в плане и по высоте.  [c.132]


Вторая серия опытов проводится при обратном ходе процесса кипения, когда пленочный режим переходит в пузырьковый. Рабочий ток уменьшается с. тем же шагом, что и в первой серии опытов, с максимального значения, равного 30 А, до минимального, составляющего 2—3 А. После проведения второй серии опытов экспериментальная установка выключается, в порядке, обратном включению. Обработку результатов измерений рекомендуется осуществлять последовательно по мере проведения опытов. Плотность теплового потока Вт/м вычисляют по соотношению  [c.181]

Построив процессы, происходящие в сушильной установке, следует определить значения относительной влажности и влаго-содержание в характерных точках процессов и приступить к обработке результатов измерений.  [c.101]

Обработка результатов измерений. Измерения производятся на стационарном режиме установки, соответствующем определенному значению температуры поверхности исследуемой проволоки, поэтому проволока и оболочка (внутренняя поверхность калориметра) участвуют в процессе установившегося лучистого теплообмена. В этом случае количество энергии, затраченное в процессе нагревания проволоки, представляет собой результирующий поток излучения, а так как / i< < р2, то коэффициент излучения определяется соотношением  [c.181]

При выполнении измерений имеют место случайные и систематические погрешности измеряемых величин. Методика обработки результатов измерений, способы определения и исключения систематических погрешностей, оценка точности автоматических измерительных систем относятся к тому направлению теоретической метрологии, которое называется теорией погрешностей. Теория погрешностей постоянно совершенствуется, поскольку практическое применение ее выдвигает все новые задачи, требующие разрешения. К числу таких задач относятся оценка точности измерения нестационарных процессов, исследование точности работы сложных измерительных комплексов и т. п.  [c.80]

Обработка результатов измерений. После окончания опыта следует вычислить средние за время опыта значения исследуемых величин. Затем на к, -диаграмму нанести все процессы, протекающие в экспериментальной установке (рис. 8.8).  [c.225]

Классификация методов измерения износа< Существуют разнообразные методы измерения износа от простейших, когда обычными средствами производят измерение размеров изнашивающихся деталей, до методов, использующих ядерно-физические процессы. Область применения тех или иных методов измерения износа определяют поставленная цель исследования, требуемая точность измерения, возможность измерения малых износов, время, необходимое для измерения износа, возможность измерения износа в условиях эксплуатации без разборки, а в ряде случаев без остановки машины, затраты времени и средств, необходимые для всего цикла подготовки, осуществления и обработки результатов измерения [144].  [c.254]


Обоснование и выбор характеристик воспроизводимого ударного воздействия однозначно определяют требования к контрольно-измерительной аппаратуре, типу датчика, способу его крепления на рабочем столе испытательного стенда или монтажного приспособления или самого испытуемого изделия, а также к амплитудно-частотной характеристике тракта измерения и регистрации, анализирующей аппаратуре и другим средствам обработки результатов измерения как в процессе испытания изделия, так и при последующем анализе этих результатов.  [c.337]

До принятия стратегии управления точностью обработки должны быть предварительно изучены и учтены точностные характеристики технологического процесса. При этом ЭВМ используется для изучения процесса. Этому этапу соответствуют алгоритмы математической обработки результатов измерений параметров изделий с целью получения характеристик, необходимых для определения оптимальных условий статистического управления технологическими процессами. К таким характеристикам относятся законы распределения размеров и отклонений формы параметров изделий и автокорреляционные функции случайного процесса. Существенная часть алгоритмов статистического управления точностью — алгоритмы по определению границ регулирования случайных процессов с учетом автокорреляционных функций. Имея  [c.28]

Процесс определения технического состояния включает в себя несколько этапов, среди Которых важное место занимает обработка результатов измерения диагностических параметров. Она сводится к решению задачи оценивания параметров распределения.  [c.199]

Систематический контроль качества материалов и параметров изделий весьма важен на всех этапах технологического процесса их изготовления. Контроль должен быть неразрушающим и обеспечивать достаточную локальность измерений, высокие точность и воспроизводимость, возможность получения количественных значений измеряемой величины без дополнительной обработки результатов и высокую производительность. Важной задачей является создание автоматических систем контроля с машинной обработкой результатов измерения.  [c.177]

Важным аспектом применения системы 1002/10 является возможность устройства интерфейса для создания связи с миникомпьютером. В сопряжении с ЭВМ, оснащенной накопителями на магнитной ленте или другими носителями информации, система может работать исключительно оперативно. Быстрое накопление объемного потока информации с последующим сжатием и экспресс-обработкой результатов измерений позволяет существенно интенсифицировать процесс опыта. Получение промежуточной информации в ходе процесса исследования дает возможность внесения изменений в план опыта или обнаружения неисправности оборудования, прибора или датчика.  [c.136]

Установление соответствия показателей точности требованиям обеспечения оптимальных режимов технологического процесса, оценка правильности выбора средств измерений, определение целесообразности обработки результатов измерения на ЭВМ. полнота описания методов контроля  [c.114]

Основной измерительной аппаратурой системы являются специальный многоточечный тензометрический комплекс для измерений деформаций и температур [И] и серийные регистрирующие приборы типа КС. В систему также входит ЭВМ вместе с дополнительными устройствами для оперативной обработки результатов измерений в процессе натурного эксперимента.  [c.68]

Известно, что процесс измерений, в результате которого получают информацию о значениях измеряемых физических величин (измерительная информация), является процессом информационным. Обработка результатов измерений проводится с использованием аппарата теории вероятностей и математической статистики, положений теории информации, при этом погрешности подразделяются на случайные и систематические. Совокупность возможных сведений о множестве значений физических величин хи хг,. .., л , уподобляют полю случайного события Е с различными элементарными возможными исходными Е, El,. .., имеющими соответственно вероятности р, р2, р.,. Мерой неопределенности измерений этого поля дискретных величин служит энтропия  [c.194]


Для статистической обработки результатов измерений эксплуатационной нагруженности, представленных в виде вариационных рядов тех или иных случайных величин (мгновенных значений, числа пересечений, амплитуд напряжений и т. д.), полученных путем схематизации осциллограмм случайных процессов одним из перечисленных методов, применяют методы математической статистики [18, 70].  [c.143]

Чувствительность метода должна быть достаточной для исследований неупругости при напряжениях, равных и выше предела выносливости большинства металлов. Характеристики неупругости должны определяться на основе прямых, а не косвенных измерений, требующих вычислений, которые могут привести к существенным погрешностям. Метод должен позволять автоматизировать процесс исследования и обработку результатов измерений.  [c.99]

Обработка результатов измерения случайных процессов. Эти задачи связаны с определением зависимостей между значениями результатов измерений при получении статистических характеристик случайных процессов. Полученные характеристики случайных процессов включают и погрешность измерения из-за сложности ее выделения в измеренной случайной величине. А так как обрабатываются дискретные значения результатов измерения, полученные в различные моменты времени (для различных значений аргументов), то характеристики будут зависеть от шага дискретности при измерении.  [c.714]

Обычно распределение отклонений размеров при хорошо отлаженном технологическом процессе, особенно когда при обработке деталей получение размера обеспечивается автоматически, подчиняется закону Гаусса. При определенных условиях на результат изготовления деталей, кроме прочих, могут оказывать воздействие различные доминирующие факторы, систематически изменяющиеся во времени по разным законам (износ режущего инструмента и др.). В этих случаях рассеяние размеров деталей подчиняется другим законам равной вероятности, равномерно возрастающей или равномерно убывающей вероятности, Симпсона, Релея, Максвелла и др. Данные табл. 6.1 характеризуют некоторые теоретические законы распределения и соответствующие значения коэффициентов а. Значения этих коэффициентов на практике получают после математической обработки результатов измерения истинных размеров достаточно большой партии деталей [8].  [c.511]

В принципе возможно получение твердого раствора с концентрацией, превышающей максимальный предел равновесной растворимости. Однако подобное пересыщение твердых растворов в сплавах систем Al-Si, Al-Mg и других возможно только при сверхвысоких скоростях охлаждения в процессе кристаллизации. При литье в кокиль, предварительно подогретый до 200—250 °С, указанное пересыщение практически исключено, так как скорость охлаждения при этом сравнительно невысока. Диаметр области возбуждения рентгеновского излучения во-время исследования составлял 2—3 мкм. Локальность анализа за счет взаимодействия электронов с веществом по поверхности и глубине не превышала 5 мкм. Чувствительность прибора данного класса 10 —10 г [40 при точности 1—4 %, зависящей от определяемой концентрации. Дальнейшую обработку результатов измерений проводили на ЭВМ, входящей в состав микроанализатора.  [c.33]

Разностная частота, являющаяся функцией измеряемого перемещения, может подаваться на вход цифровой вычислительной машины 9 для обработки результатов измерения и активного воздействия на ход технологического процесса, на вход электронно-счетного частотомера 8, имеющею цифровую индикацию результатов измерения в натуральных единицах, а также на вход стабилизатора 10.  [c.320]

Писать отчет следует аккуратно и сразу начисто.Пер-вые три пункта отчета и таблица для записи результатов измерений пишутся перед выполнением лабораторной работы в порядке подготовки к ней, пункт четвертый— в процессе ведения опыта и по его окончании, пункт пятый — после обработки результатов измерений.  [c.9]

Поверочная установка мыслится как конструктивно завершенное устройство, обеспечивающее осуществление в автоматизированном режиме, без привлечения дополнительного оборудования, поверку одной или нескольких групп средств измерений, обработку результатов измерений в реальном масштабе времени с выдачей протокола поверки, а также при условии технической реализации — программируемое управление процессом поверки.  [c.55]

В книге рассмотрены основные вопросы современной теории технических исследований оценка совершенства процессов в объектах исследований, организация и планирование экспериментов, выбор и использование измерительной аппаратуры, регистрация и автоматическая обработка результатов измерений, а также некоторые методики статистического анализа экспериментальных данных.  [c.2]

В зависимости от форм представления или использования измерительных сигналов в измерительной цепи могут осуществляться все или некоторые из процессов физического и функционального преобразования, дискретизации, квантования кодирования и модуляции. На рис. 21 приведена схема, иллюстрирующая некоторые возможные варианты последовательности операций, осуществляемых в измерительных цепях. Первая цепь соответствует непрерывной записи измерительного сигнала во время измерения на носитель регистрирующего устройства (например, запись на шлейфный осциллограф или магнитограф). Во второй цепи модулирующий первичный преобразователь создает сигналы, поступающие на шкальные приборы визуального считывания. Фиксация результатов при этом производился по квантам шкалы. Перенос сигналов в регистрирующие устройства с таких приборов можно проводить непрерывно, используя дополнительные промежуточные преобразователи, или дискретным образом, например с помощью фото- или киносъемки. Регистрация результатов измерений в третьей цепи осуществляется с помощью цифровых приборов, поэтому здесь необходимо предварительное квантование сигнала, поступающего с первичного преобразователя. Лучшая помехоустойчивость в этом случае достигается при квантовании до подачи сигналов в линию связи. Запись сигналов цифровых приборов производится через отрезки времени, необходимые для удержания и сброса показаний регистрирующего прибора. Четвертая цепь изображает последовательность операций при машинной обработке результатов измерений в темпе проведения эксперимента. При этом возникает необходимость в кодировании измерительных сигналов перед вводами их в ЭВМ. В четвертой цепи возможно оперативное управление процессами в объекте исследования.  [c.94]


Обработка результатов измерения процессов. Значительная часть задач измерения процессов офаничивается восстановлением зависимости по результатам измерения. При этом если вид функции известен с точностью до постоянных, то задача сводится к косвенным измерениям. Но существует широкий класс задач, когда вид зависимости трудно предположить. В частности, такие задачи возникают при измерении отклонения текущего размера поверхности как изготовленной детали, так и в процессе обработки. Например, при измерении отклонений формы. При решении этого класса задач часто необходимо представить измеряемую зависимость в форме аналитического выражения. В основу такого подхода положено предположение о каких-либо свойствах функции, описьшающей измеряемую зависимость. Например, о ее периодичности или дифферен-цируемости. Цель, как правило, состоит в том, чтобы представить измеряемую зависимость в виде суммы относительно простых функций, постоянные параметры которых определяют в результате измерений. Для этого широко используется представление измеряемой зависимости в форме степенного или тригонометрического полинома.  [c.713]

Задачи обработки экспериментальных данных могут быть различны вычисление статистических показателей качества, поэлементных II суммарных погрешностей, критериев оценки ногреш-ности измерения, а также сравнение точности процессов и др. 17ро-гресс в области вычислительной техники позволяет решать эти задачи с помощью стандартных программ не только весьма производительно, но и эффективно в смысле оперативного воздействия на проиесс (обработки, эксплуатации или контроля) в целях его коррекции. Рассмотрим здесь лишь примеры аналитической обработки результатов измерений путем вычисления статистических характеристик (см. рис. 4.6). Составим алгоритм вычисления коэффициентов технологического запаса точности см. формулу (4.22) двух процессов н сравним их точность, вычислив коэффициент увеличения точности по формуле  [c.168]

В статье (Новиков Ю. П. Об определении угла i в процессе исследования нивелира // Геод. работы в стр-ве. Куйбышев, 1988. С. 80-87) предлагается методика математической обработки результатов измерений для определения наиболее вероятнейшего значения угла / при наличии избыточных данных с оценкой точности самого определения.  [c.92]

Обработка результатов измерений. По окончании эксперимента необходимо осреднить результаты измерений и на di-диаграм-му нанести процессы, протекающие в сушильной установке (рис. 8.10).  [c.101]

Измерительные системы в отличие от измерительных установок вырабатывают измерительную инфорнадию в форме, удобной для автоматической обработки результатов измерений, передачи ее на расстояние и использования в АСУ технологическими процессами.  [c.105]

Для улучшения дешифрирования информационных моделей операторами в практику радиационного контроля широко внедряют методы оценки геометрических характеристик дефектов. В частности, автоматическая телевизионная установка прикладного назначения Измеритель-1 позволяет автоматизировать процесс бесконтактного измерения и контроля геометрических параметров фрагментов светотеневых картин и. обеспечивает возможность вывода значений параметров для обработки результатов измерения на электронно-вычислительную машину. В клчестве датчика видеосигнала в установке Измеритель-1 используется установка ПТУ-43, хотя можно использовать ПТУ любого типа, имеющую на выходе сигнал в соответствии с ГОСТ 22006—76. Установка измеряет геометрические параметры фрагментов светотеневых картин, которые составляют не менее Г % от линейного размера поля зрения телевизионной камеры при контрастности фрагментов, не менее 30 % по отношению к черно-белому перепаду.  [c.367]

Перейдем к анализу второй составляющей критерия (8.31) — СП изменения в ходе эксплуатации сопротивляемости элемента г (t) Эти изменения связаны с изменением предельных технических и физико-механических свойств элемента в результате взаимодействий его с внешними факторами и в большинстве случаев происходят необратимо. Процесс необратимых изменений предельных свойств элемента в ходе его эксплуатации будем называть процессом старения сопротивляемости. Изучение конкретных свойств элементов и законов их изменений в ходе эксплуатации является предметом различных научных дисциплин, таких, как сопротивление материалов, трение и износ материалов, долговечность механизмов и машин и т. п. Исследование и формирование моделей потоков отказов АПМП требует введения типовой формы описания СП старения сопротивляемости. Такая форма должна содержать наиболее общие черты процессов старения, позволять производить типовую обработку результатов измерения сопротивляемости и отвечать задаче наиболее удобного описания этих процессов в рассматриваемой модели потока отказов.  [c.129]

Первые восемь глав книги, в которых изложены основы поляризационно-оптического метода, могут быть использованы в качестве руководства без привлечения материала из других источников. Вторая часть книги посвящена приложениям поляриза-ционпо-оптического метода. Авторы и их сотрудники в процессе своей работы решили этим методом сотни задач. В книге рассмотрены примеры, иллюстрирующие методику исследования некоторых типовых задач. Одна их часть интересна преимущественно в академическом плане, в то время как другая имеет практическое значение. Рассмотрены решения плоских и пространственных задач, а также статических и динамических задач с некоторыми особенностями в технике эксперимента и методике обработки результатов измерения. Более подробные сведения и результаты других применений метода читатель сможет найти в различных журнальных статьях, на которые в книге дается много ссылок. Эта вторая часть книги интересна прежде всего для приступающих к изучению поляризационно-оптического метода, но авторы надеются, что она заинтересует и специалистов, работающих в рассматриваемой области.  [c.10]

Основное преимущество первого метода калибровки — возможность абсолютной градуировки ударного акселерометра. При этом чувствительность ударного акселерометра и коэффициент усиления измерительного тракта не имеют существенного значения при определении ударного ускорения. Важное вначение при калибровке ударных акселерометров по первому методу имеет форма ударного импульса, воспроизводимого при соударении тел. Обычно на калибровочных установках воспроизводят ударные импульсы, закон изменения которых близок к полусинусоидальному закону изменения ударного ускорения во времени. Однако для получения большей достоверности измерений в особо ответственных случаях желательно калибровку ударного акселерометра осуществлять при воспроизведении ударного импульса, близкого по форме, длительности и максимальному ударному ускорению к исследуемому ударному процессу. Это связано с влиянием (особенно при измерении ударных искореннй больших уровней) упругих деформаций корпуса акселерометра на его показания. Кроме того, метод позволяет при калибровке ударных акселерометров с известной чувствительностью вносить поправки при обработке результатов измерения.  [c.363]

Применяются разработанные в Институте машиноведения высоко-температурные привариваемые тензорезисторы, схемная компенсация температурного приращения сопротивления тензорезисторов и свободно деформируемые тензорезисторы- свидетели . Для резко нестационарных процессов, особенно на внутренних поверхностях корпусов, в потоке пароводяного и жидкометаллического теплоносителя разработаны и применяются малоинерционные гермотензодатчики. Для проведения измерений и оперативной обработки результатов в процессе осуществления режимов на натурных объектах используется передвижной информационно-измерительный комплекс, включающий тензометрическую аппаратуру и ЭВМ.  [c.125]


При кажущейся простоте использования этих датчиков на практике встречается ряд сложных проблем реализации процесса измерения с повышенной точностью. Достаточно сказать, что все примененные термопары, даже однотипные, как было установлено путем тщательной проверки, обладают индивидуальными характеристиками с разницей в показаниях на 2—3 К. Это потребовало проведения тарировок всех приборов и использования тарировоч-ных характеристик при обработке результатов измерений. Тем не менее статистический анализ погрешности косвенных измерений показал меньшую точность измерений термопарами, чем лабораторными ртутными термометрами.  [c.128]

В настоящее время КИМ выпускают с ручным управлением и автоматизированной обработкой результатов измерения, а также с полностью автоматизированным процессом обработки, измерения и управления. Разрабатываются возможности сочетания КИМ с технологическим оборудованием (в первую очередь, со станками с числовым программным управлением). Дальнейшее развитие КИМ происходит в направлении создания измерительно-информационных систем с полной или частичной автоматизацией, с математической обработкой результатов измерения при установке детали без ее ориентации в пространстве и измерении в динамическом режиме [2]. В информационную систему КИМ вводятся данные чертежа, создаются КИМ самообучающего типа, корректирующие программу по мере измерения деталей. Многие КИМ входят в комплексные участки с дистанционным централизованным управлением от ЭВМ. Современные КИМ пригодны для решения широкого спектра измерительных задач в различных отраслях промышленности.  [c.318]

Лабораторная валковая переработка как вискозиметрическое испытание характеризуется значительно большей неоднородностью и сложностью поля скоростей деформации резиновой смеси в области проводимых измерений, чем капиллярная вискозиметрия. Обработка результатов измерений здесь основана на применении математической модели процесса с конкретной аналитической формой реологического уравнения, содержащего малое число параметров, например в виде степенного уравнения (2.1). Несмотря на указанные ограничения, данным методом определения вязкостных свойств оценивается состояние эластомеров, непосредственно моделирующее некоторые виды переработки ка-ландрование, вальцевание, переработку в роторных смесителях закрытого типа.  [c.85]

Применение при исследованиях на моделях автоматической цифровой тензометрической аппаратуры и ЭЦВМ дает по сравнению с ручным способом измерения и обработки экспериментальных данных следующие преимущества ускорение в 5—10 раз процесса измерений и обработки цифровой информации повышение надежности тензоизмерений в результате устранения появления субъективных ошибок и проведения оценки средних значений по ряду измерений устранение влияния на показания тензодатчиков внешних факторов и исключение влияния ползучести за счет стабильности и сокращения интервала времени между нулевым и грузовым отсчетами в одном цикле нагружения и между началом и концом измерения по всем тензодатчикам, установленным на модели [18] оперативное введение в обработку результатов измерений параметров влияния температуры на метрологические характеристики тензодатчиков возможность анализа и оценки результатов в процессе эксперимента.  [c.73]

Применение автоматической цифровой тензоапнаратуры и ЭЦВМ позволяет реализовать приведенный здесь алгоритм обработки результатов измерений деформаций нй тензометрических моделях из органического стекла. При этом осуществляется учет таких факторов, как ужесточающее влияние тензодатчиков, влияние температуры, поперечная тензочувстви-тельность. Определяются в месте установки тензодатчиков напряжения на поверхности, средние но толщине, и изгибающие моменты и поперечные силы в рассматриваемых сечениях. Приведенная блок-схема позволяет в процессе обработки экспериментальных данных выявлять возможные повреждения тензосхемы и стабильность работы модели и нагрузочных устройств, а также вносить корректировку в результате измерений.  [c.73]

На этот предмет в [36] произведена статистическая обработка результатов измерений углов для большого числа противолежащих (0)II) и стыкующихся (сох) границ. Построена корреляционная кривая распределения вероятности отношений углов /((й ./ю)//(сйц/о)) в функции отношения Иц/ох, где —полный зггол разориентации для произвольной пробной границы, Их и соц — углы разориентации для границы, стыкующейся под углом ((Bj.) и противолежащей, па-раллельной (соц) пробной . Такая функция изображена на рис. 14. Если бы не было корреляции между-углами разориентации противолежащих и стыкующих границ, распределение по углам здесь было бы невероятным. В действительности есть отчетливый максимум, означающий, что у поперечных границ углы разориентации, чаще всего вдвое меньше, чем у продольных . Это обстоятельство служит дополнительным аргументом в пользу следующего утверждения фрагментированная структура не есть простое следствие накопления разорионтаций за счет статистически равновероятного поглощения границами элементарных сдвигов и не является следствием процессов, аналогичных полигонизации или рекристаллизации, а возникает из-за самосогласованцого, коллективного массопереноса, который, как указано в [36], скорее всего лимитируется требованиями энергетики для эволюции таких крупномасштабных объектов, как частичные дисклинации. Иначе говоря, приведенная иллюстрация подтверждает точку зрения об определяющей роли в формоизменении кристаллов, деформирующихся фрагментацией, крупномасштабных структурных взаимодействий.  [c.51]

По виду точечной диаграммы можно судить, хотя и грубо, о поведения процесса обработки во времени. Обработка результатов измерения изделий позволяет определить смещение во времени центра настройки (как характеристики оисте-, матических погрешностей) и характеристик рассеяния— случайных погрешностей, -определяюш, их мгновенное рассеяние .  [c.244]

В качестве основного объекта планирования в программе оснащения приняты рабочие места поверителей, поверочные установки и поверочные лаборатории. Под рабочим местом поверителя понимается оптимальная совокупность основного и вспомогательного, а также обшелабораторного оборудования, рационально размещенного на необходимой для этого рабочей площади, которая обеспечивала бы реализацию поверки одной или нескольких групп средств измерений. Подразумевается, что при этом будет обеспечиваться механизация и автоматизация тяжелых, монотонных, сложных и трудоемких как основных, так и вспомогательных процессов и операций, включая обработку результатов измерений и выдачу протоколов поверки, а также создаваться благоприятные условия для работы поверителей при обязательном выполнении требований технической безопасности и эргономики.  [c.55]

Исследование суммарных погрешностей какого-либо технологического процесса производят путем измерения размеров партии обрабатываемых деталей. Величина партии должна достаточно полно характеризовать изучаемый процесс. Статистические характеристики процесса определяются путем математической обработки результатов измерений. Зоной рассеивания (размахом) отклонений V называют разность между наибольшим и наименьшим значениями отклонений размеров партии деталей V = Хтах — х,п1п- Для упрощения математической обработки зона делится на 6—10 интервалов. Среднее значение отклонений (центр группирования) X характеризует систематическую погрешность процесса  [c.159]


Смотреть страницы где упоминается термин Обработка результатов измерений процессов : [c.44]    [c.201]    [c.14]    [c.705]   
Смотреть главы в:

Машиностроение энциклопедия ТомIII-7 Измерения контроль испытания и диагностика РазделIII Технология производства машин  -> Обработка результатов измерений процессов



ПОИСК



Автоматизация обработки результатов измерений и проектирования процессов контроля

Обработка измерений

Обработка результатов

Обработка результатов измерений

Обработка результатов измерения случайных процессов (В.Н. Филинов)

Процесс обработки

Результат измерения



© 2025 Mash-xxl.info Реклама на сайте