Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точность обработки и качество поверхности детали

Точность обработки и качество поверхности детали  [c.108]

Одной из задач сопротивления материалов является оценка жесткости конструкции, т. е. степени искажения ее формы под действием нагрузки. Если балка под нагрузкой сильно прогнется, то при ее эксплуатации появятся затруднения. Например, в металлорежущих станках значительные упругие перемещения снижают точность обработки и качество поверхности детали. В отсчетных механизмах упругие перемещения снижают точность измерений. Кроме того, конструктор должен обеспечить минимальный прогиб сечения вала под зубчатым колесом, чтобы избежать преждевременного выхода из строя зубчатой передачи.  [c.225]


Проектируя технологический процесс изготовления детали, выбирают методы обработки каждой обрабатываемой поверхности ее. При этом выборе исходят из технологических возможностей метода, к которым в первую очередь относят возможности этого метода по точности обработки и качеству поверхности, величину припуска, необходимого для выполнения данного вида обработки, и время обработки в соответствии с заданной производительностью.  [c.108]

При создании классификатора необходимо решить следующие задачи. Во-первых, нужно выявить признаки классификации. Для этого необходимо определить,какие из параметров являются существенными технологическими характеристиками деталей, которые в сочетании с конструкторскими признаками определяют их технологическое подобие. Такими признаками могут быть геометрия детали и ее размеры, точность обработки и качество поверхности, материал детали, объем выпуска и т.д. Во-вторых, необходимо весь диапазон его значений каждого параметра разбить на интервалы, каждому из которых нужно сопоставить некоторое значение соответствующих элементов кода. В-третьих, нужно установить взаимосвязь между конструкторскими классами и структурой кода, так как у различных деталей определяющими являются различные параметры. Поскольку система ориентирована на использование принципа групповой технологии, который позволяет объединять детали в классы по конструкторским и технологическим признакам, эта идея должна лечь в основу данного классификатора.  [c.72]

Холодной объемной штамповкой можно изготовлять пространственные детали сложных форм (сплошные и с отверстиями). Холодная объемная штамповка обеспечивает также получение деталей со сравнительно высокими точностью размеров и качеством поверхности. Это уменьшает объем обработки резанием или даже исключает ее. Так как штампуют обычно за один ход ползуна пресса, то холодная штамповка (даже при использовании нескольких переходов со своими штампами) характеризуется большей производительностью по сравнению с обработкой резанием. Однако, учитывая, что изготовление штампов трудоемко и дороже изготовления инструмента, используемого при обработке резанием, холодную штамповку следует применять лишь при достаточно большой серийности производства.  [c.102]

Холодной объемной штамповкой можно изготовлять пространственные детали сложных форм (сплошные и с отверстиями). Холодная объемная штамповка обеспечивает также получение деталей со сравнительно высокими точностью размеров и качеством поверхности. Это уменьшает объем обработки резанием или даже исключает ее. Так как штампуют обычно  [c.106]


Точность и чистота поверхности обрабатываемой детали также имеет большое значение при разработке технологического процесса. Чем выше требования к точности размеров и качеству поверхностей обрабатываемых деталей, тем большее количество операций, проходов и переходов необходимо иметь для их обработки.  [c.49]

Точность обработки. Изменение размера поверхности при обкатывании и раскатывании связано со смятием микронеровностей и пластической объемной деформацией детали. Таким образом, точность обработанной детали будет зависеть от ее конструкции и конструкции инструмента, режимов обработки, а также от точности размеров, формы и качества поверхности детали, полученных при обработке на предшествующем переходе.  [c.490]

Титановые сплавы дорогие, поэтому к качеству структуры металла, к ориентировке волокон и зерен относительно контура детали, а также к точности размеров и качеству поверхности поковок предъявляют высокие требования, чтобы максимально или, если возможно, полностью исключить последующую механическую обработку.  [c.284]

Размеры поковок по сравнению с размерами готовых деталей увеличивают на величину припусков (см. рис. 1У-19), срезаемых затем обработкой резанием. Величины припусков устанавливают такими, чтобы после удаления поверхностного слоя металла, поврежденного при ковке, обеспечить необходимую точность, чистоту и качество поверхностей изготовляемой детали.  [c.189]

Для получения требуемой по чертежу формы, размеров и качества поверхности детали при механической обработке производят последовательное срезание с заготовки некоторых слоев материала, называемых припуском на обработку. При составлении технологического процесса обработки заготовки необходимо правильно выбирать величину припусков, так как их завышенный размер приводит к увеличению трудоемкости процесса обработки, нерациональным затратам материалов, электроэнергии, рабочего инструмента. Заниженный размер припусков не позволяет удалить дефектный поверхностный слой заготовки и получить требуемую чертежом точность и качество поверхности детали, что приводит к увеличению брака.  [c.213]

А. П. Соколовский считал, что технологический процесс изготовления детали определяется формой детали, размерами детали, точностью обработки и качеством обработанной поверхности, материалом детали, объемом общего производственного задания и общей производственной обстановкой к последней относятся наличный парк оборудования, инструментальная база, расположение оборудования, схема организации цеха и т. д.  [c.14]

Исходной информацией при проектировании маршрута обработки поверхности детали являются класс (тип) детали размер партии годовая программа масса детали и ее размеры вид обрабатываемых поверхностей детали и их размеры требуемая точность и качество поверхности детали особенности геометрических параметров поверхностей вид термической обработки вид заготовки, ее точность и размеры схема установки заготовки тип приспособления характеристика режущего инструмента.  [c.398]

В связи с тем, что выбранный метод окончательной обработки отдельных поверхностей, как правило, не может обеспечить экономичное получение требуемых точности и качества поверхности непосредственно из исходной заготовки, то возникает необходимость создания промежуточных операций или переходов, по мере выполнения которых достигается постепенное повьпиение точности размеров и качество поверхностей до требуемых значений в соответствии с чертежом детали. Так, например, требуется обработать наружную поверхность вала с точностью по 5-му квалитету и с параметром щероховатости Ка=0,08 мкм, а заготовкой служит прокат. Данная точность размера и щероховатость поверхности в соответствии со справочными данными достигается одним из методов доводки. Однако известно, что доводка экономична лишь при условии снятия припуска 0,01...0,02 мм на диаметр. Это означает, что предыдущая операция должна дать точность заготовки под доводку в пределах допуска 0,003...0,005 мм (операционный допуск должен быть в 2-4 раза меньше припуска на последующую операцию) при шероховатости Ка=0,3 мкм. Методом обработки, обеспечивающим достижение такой точности является чистовое щлифование, снимающее припуск порядка 0,05 мм на диаметр.  [c.757]


Качество поверхности детали после обработки может существенно влиять на точность показаний при измерении. Если поверхность детали после обработки имеет большую шероховатость, то при контроле размера детали измерение производят по вершинам гребешков 0( (неровностей) или по впадинам Ог (рис. 22), что не дает правильного, определенного представления о размере. Гребешки шероховатостей поверхности при сопряжении с поверхностью другой детали (особенно при прессовой посадке и повторных соединениях) сминаются, и действительный размер детали, таким образом, отличается от размера, полученного при измерении после обработки. Из этого видно, что точность обработки становится неопределенной, если качество поверхности после обработки не соответствует условиям работы детали. Чтобы достичь заданной точности размеров детали и установить при контроле, действительно ли получен заданный размер, необходимо обеспечить при обработке надлежащий класс шероховатости поверхности.  [c.62]

Припуск должен иметь размеры, обеспечивающие выполнение необходимой для данной детали механической обработки при удовлетворении установленных требований к шероховатости и качеству поверхности металла и точности размеров деталей при наименьшем расходе материала и наименьшей себестоимости детали. Такой припуск является оптимальным. Установление оптимальных припусков на обработку является весьма важным технико-экономическим вопросом.  [c.94]

Припуск должен иметь размеры, обеспечивающие выполнение необходимой для данной детали механической обработки при удовлетворении установленных требований в отношении чистоты и качества поверхности, точности размеров деталей при наименьшем расходе материала и наименьшей себестоимости детали.  [c.47]

Если технологом выбран наиболее рациональный вид заготовки, то можно перейти к следующей задаче оптимизации при принятом методе получения заготовки выбрать оптимальные схемы и компоновки оборудования с учетом вариантности технологического маршрута обработки детали. В связи с тем, что на стадии выбора и обоснования технологического маршрута формируются условия, обеспечивающие заданную точность обработки детали и качество поверхностей, необходимо рассмотреть вопросы оценки и выбора методов обработки по показателям производительности и точности, вопросы прогнозирования точности обработки деталей на автоматизированном оборудовании.  [c.181]

В качестве примеров случайных процессов укажем следующие. При токарной обработке или при шлифовании шпинделей, валов и других деталей точность обработки исследуется по всей длине детали или по окружности. Погрешности изготовления можно рассматривать как функции длины или угла поворота или обоих этих параметров. Аналогично качество поверхности детали характеризует высота микронеровностей, зависящих от тех же параметров. Погрешности изготовления и высота микронеровностей для каждого фиксированного значения длины или угла поворота являются случайной величиной. При исследовании точности обработки на металлорежущих станках погрешности изготовления деталей можно рассматривать как функции числа изготовленных деталей, уровня настройки, времени работы режущего инструмента и т. д. Погрешность изготовления для каждой данной детали, заданного уровня настройки, фиксированного времени работы режущего инструмента также представляет собой случайную величину.  [c.193]

Классификация деталей машин должна разрабатываться до стадии создания алгоритмов по отраслям машиностроения соответственно применяемым в них деталям и особенностям их производства. В качестве исходной информации о детали используют чертежи детали с техническими требованиями метод получения детали, точность и качество поверхности заготовки базы и тип приспособления технологические маршруты обработки элементарных поверхностей вид и место термической обработки в структуре технологического процесса обработки элементарной поверхности. Построение алгоритма сводится к следующим основным этапам.  [c.179]

Проектирование токарной операции является частью более общей задачи разработки технологического процесса изготовления детали (см. гл. 5). Необходимо знать не только, в каком виде заготовка поступает на токарную операцию, но и какова должна быть ее точность после обработки. Технологическую разработку токарной операции на станках с ЧПУ начинают с составления эскиза заготовки в том виде, который она принимает после предшествующей обработки с указанием всех размеров и технических требований. Рекомендуется на эскизе тонкими линиями показать контур детали, получаемый после обработки, с указанием допустимых отклонений и качества поверхности.  [c.236]

Обычно под холодной штамповкой понимают штамповку без предварительного нагрева заготовки. Для металлов и сплавов, применяемых при штамповке, такой процесс деформирования соответствует условиям холодной деформации. Отсутствие окисленного слоя на заготовках (окалины) при холодной штамповке обеспечивает хорошее качество поверхности детали и достаточно высокую точность размеров. Это уменьшает объем обработки резанием или даже исключает ее.  [c.103]

Надежность машины зависит от точности обработки заготовок, качества поверхностных слоев и точности сборки. Под точностью обработки понимают степень совпадения размеров, формы и взаиморасположения поверхностей с указанными на рабочем чертеже детали. Точность выполнения размеров определяет отклонение фактических размеров обработанной поверхности детали от ее конструктивных размеров, указываемых в рабочем чертеже в соответствии с допустимыми отклонениями на размеры обрабатываемых поверхностей, регламентируемыми ГОСТом.  [c.316]


Среди физико-химических процессов, определяющих процесс резания, основное значение имеет процесс пластической деформации при образовании стружки. От характера пластической деформации, деформационного упрочнения и разрушения металла при стружкообразовании зависят точность обработки деталей и качество поверхностного слоя. Параллельно со стружкообразованием при резании протекают процессы контактного взаимодействия инструмента со стружкой и обработанной поверхностью, сопровождаемые интенсивным тепловыделением, трением, адгезионным взаимодействием обрабатываемого материала и инструмента. Явления, сопровождающие контактное взаимодействие, существенно влияют на свойства обработанной поверхности, определяют стойкость инструмента и устойчивость процесса резания. Современная теория резания рассматривает процессы стружкообразования, контактных взаимодействий и формирования поверхности детали как единый процесс разрушения и деформирования металла.  [c.565]

Выбор режимов резания. Для каждого случая обработки существуют свои оптимальные режимы резания, которые зависят прежде всего от материала обрабатываемой детали, а также материала инструмента, его геометрии, особенностей станка, от требований к точности и качеству поверхности обрабатываемой детали. В зависимости от материала детали выбирается и инструментальный материал. Существуют эмпирические формулы для расчета режимов резания.Но практически режимы резания определяются по таблицам, приведенным в соответствующих справочниках.  [c.359]

Главной целью механической обработки является получение деталей с заданной точностью и качеством поверхности и достижение определенных экономических результатов. Смазочно-охлаждающие жидкости способствуют достижению этой цели вследствие 1) увеличения стойкости инструмента 2) улучшения качества поверхности 3) снижения сил резания и потребляемой мощности 4) снижения деформации детали в результате выравнивания ее температуры 5) облегчения удаления стружки.  [c.78]

На станках с ЧПУ обработка деталей выполняется автоматически по управляющей программе. Программа содержит указания последовательности обработки элементарных поверхностей (конструктивных элементов детали) и циклограммы перемещений рабочих органов станка для каждого перехода обработки. Общий цикл обработки детали состоит из совокупности единичных циклов обработки отдельных элементов (поверхностей) детали. Индивидуальные параметры детали (геометрической формы, требований точности и качества поверхностного слоя) учитываются при технологическом проектировании маршрута (последовательности) и выборе методов обработки.  [c.782]

Правильный выбор характеристик абразивного инструмента в значительной степени определяет производительность шлифования, износ инструмента, экономичность процесса и качество поверхностного слоя. Характеристики абразивного инструмента выбирают в зависимости от вида операции абразивной обработки, физико-механических свойств материала детали, требуемой точности и качества поверхности, мощности и состояния станка, величины припуска, состава СОЖ и метода ее подвода.  [c.198]

Инструмент как фактор кинематики процесса резания. Обработка деталей резанием заключается в удалении с заготовки определенного количества материала с целью получения требуемой формы детали с предписанными по техническим условиям точностью размеров и качеством обработанных поверхностей. Два последних условия зависят от многих технологических факторов точности станка и инструмента, правильности и надежности крепления заготовки и инструмента, остроты его режущих кромок, вибраций станка и др., а также от квалификации рабочего и т. п. Получение же геометрической формы детали, т. е. образование ее поверхностей, является геометрически-кинематическим фактором процесса обработки резанием. По аналогии с теоретической механикой этот фактор необходимо рассматривать вне связи с физическими и механическими явлениями, имеющими место в процессе обработки резанием. В частности, в процессе обработки геометрические элементы инструмента не остаются постоянными, а непрерывно меняются вследствие трения и износа режущих кромок. Однако при рассмотрении геометрических и кинематических элементов инструмент принимается как острозаточенный и не теряющий своей формы во время определенного периода времени.  [c.12]

Шлифовальные станки предназначены для отделочных операций, обеспечивающих высокую точность размеров и качество обрабатываемых поверхностей. Шлифование и особенно хонингование — наиболее точные способы обработки деталей на металлорежущих станках. Современное производство машин, основанное на взаимозаменяемости деталей, возможно только при применении шлифования и доводочных операций. Количество шлифовальных станков в современном машиностроительном производстве составляет 10%, а иногда 20% и более от всего парка станков. В связи с улучшением технологии заготовительных цехов и уменьшением припусков на обработку в ряде случаев появилась возможность обрабатывать детали непосредственно на шлифовальных станках, без предварительной обработки на других станках.  [c.386]

С помощью чистовой обработки резанием получают (и затем эти качества поверхностей длительно сохраняются в процессе эксплуатации) детали либо с требуемой точностью размеров и формы поверхностей (отклонение формы составляет 0,05 — 0,5 мкм для прецизионных деталей и 1 — 2 мкм для деталей точного машиностроения и приборостроения), либо с высоким качеством поверхностного слоя и шероховатостью поверхностей от Ка = 0,32 0,16 мкм до Ке = 0,05 ч- 0,025 мкм, либо одновременно с высокой точностью размеров и формы поверхностей, требуемыми шероховатостью поверхности и качеством поверхностного слоя.  [c.785]

Точность обработки. Изменение размера поверхности при обкатывании и раскатывании связано со смятием микронеровностей и пластической объемной деформацией детали. Таким образом, величина изменения размера, результаты по точности обработки зависят от конструкции. детали, инструмента, режимов обработки, точности размеров и формы и качества поверхности, полученных на предшествующем переходе обработки.  [c.550]

Указанные выше поверхности могут быть получены на станках разных групп разными методами формообразования. Оптимальность выбранного типа станка должна быть подтверждена соответствием его эксплоатацион-ным требованиям, экономичности обработки и качеству поверхности детали (точности, микроструктуре, направлению следов инструмента и гладкости).  [c.8]

Высушенные склеенные детали могут в случае необходимости подвергаться механической обработке, но без сильного нагревания и ударов. Механическая прочность карбиноль-ной склейки зависит в основном от следующих факторов а) качества исходных материалов б) точности обработки и качества склеиваемых поверхностей наибольшая механическая прочность получается при склеивании поверхностей с равномерной шероховатостью после обработки сверлом, резцом, напильником, шлифовальным кругом, на пескоструйном аппарате полированные поверхности дают меньшую прочность склеивания в) степени обезжиривания склеиваемых поверхностей поверхности, загрязнённые или покрытые маслом и эмульсией, не склеиваются чем чище и суше склеиваемые поверхности, тем выше механическая прочность карбиноль-ной склейки г) температурного режима сушки склеенных изделий при температуре 15—20° С требуется длительный срок сушки при температуре сушки выше 40° С процесс полимеризации ускоряется с некоторым снижением механической прочности склеивания, поэтому наилучшей температурой для сушки считается 25—35 С.  [c.252]


Эксплуетадионные качества корпусных деталей в значигельной степени определяются точностью форм плоских поверхностей и их взаимным расположением. Точность обработки плоскостей оказывает также доминирующее влияние на точность обработки всех остальных поверхностей детали, в связи с использованием их в качестве технологических баз. При контактировании базовой плоскости с установочными элементами приспособления, заготовка под действием зажимных сил деформируется, а обработанные в этом состоянии поверхности, после снятия зажимных сил, изменяют свое положение и форму. При сборке сопрягаемые поверхности двух деталей в свободном состоянии, из-за отклонений от плоскостности, соприкасаются друг с другом в отдельных точках, и их прилегание будет обеспечиваться затяжкой за счет контактных и упругих деформаций деталей. Это приводит к нарушению достигнутой при обработке точности расположения осей ответственных отверстий, погрешностям взаимного расположения деталей при сборке и, в конечном счете, вызывает функциональные нарушения в работе собранных механизмов.  [c.712]

К режущим сверхтвердым материалам относятся природные (алмаз) и синтетические материалы. Самым твердым из известных инструментальных материалов является алмаз. Он обладает высокой износостойкостью, хорошей теплопроводностью, малыми коэффициентами линейного и объемного расширения, небольшим коэффициентом трения и малой адгезионной способностью к металлам, за исключением железа и его сплавов с углеродом. Наряду с высокой твердостью алмаз обладает и большой хрупкостью (малой прочностью). Предел прочности алмаза при изгибе = = 3000 МПа, а при сжатии = 2000 МПа. Твердость и прочность его в различных направлениях могут изменяться в 100—500 раз. Это следует учитывать при изготовлении лезвийного инструмента. Необходимо, чтобы алмаз обрабатывался в мягком направлении, а направление износа соответствовало бы его твердому направлению. Алмаз обладает высокой теплопроводностью, что благоприятствует отводу теплоты из зоны резания и обусловливает его малые тепловые деформации. Низкий коэффициент линейного расширения и размерная стойкость (малый размерный износ) алмаза обеспечивают высокую точность размеров и формы обрабатываемых деталей. Большая острота режущей кромки и малые сечения среза не вызывают появления заметных сил резания, способных создавать деформацию обрабатываемой детали и отжатия в системе СПИД. К недостаткам алмаза относится и его способность интенсивно растворяться в железе и его сплавах с углеродом при температуре резания, достигающей 750° С (800° С), что в наибольшей мере проявляется в алмазном лезвийном инструменте при непре-швном контакте стружки с поверхностью его режущей части, 1ри температуре свыше 800° С алмаз на воздухе горит, превращаясь в аморфный углерод. К недостаткам алмазных инструментов также относится их высокая стоимость (в 50 и более раз сравнительно с другими инструментами) и дефицитность. В то же время алмазный инструмент отличается высокой производительностью и длительным сроком службы (до 200 ч и более) при обработке цветных металлов и их сплавов, титана и его сплавов, а также пластмасс на высоких скоростях резания. При этом обеспечиваются высокая точность размеров и качество поверхности, что, как правило, исключает необходимость операции шлифования обрабатываемых деталей,  [c.92]

Выбор заготовки во многих случаях предопределяет процесс механи11еской обработки, трудоемкость и себестоимость детали. При выборе заготовки должно быть учтено конфигурация, размеры и масса детали материал масштаб производства точность и качество поверхностей детали.  [c.150]

Калиброванием последующая обработка давлением спеченных изделий. Доведение деталей до точных размеров производится калиброванием в специальных прессформах на механических или гидравлических прессах. Точность размеров детали после калибрования и качество поверхностей определяются точностью и чистотой изготовления калибровочного инструмента. Силы, требующиеся для калибрования, зависят от  [c.263]

Различают обработку лезвийным инструментом и абразивную обработку, в каждой из которых имеется значительное количество разновидностей. Различают также черновую и чистовую обработку. Назначение черновой обработ-"ки — снятие наибольшей части припуска с поверхности заготовки. Так как при этом работают со значительной глубиной резания и подачей, то точность и качество поверхности обработанной детали получаются низкими. Для получения высо1кой точно1Сти(2 и 3 класса) и чистоты паверхности (6—9 класса) применяется чистовая о б р а ботк а.  [c.10]

Калибрование и последующая обработка давлением спечённых изделий. Доведение деталей до точных размеров производится калиброванием в специальных прессформах на механических или гидравлических прессах. Точность размеров детали после калибрования и качество поверхностей определяются точностью и чистотой изготовления калибровочного инструмента. Усилия, требующиеся для калибрования, зависят от размеров детали и величины деформации и обычно не превышают давления прессования данной детали. Обжатие при калибровании обычно незначительно.  [c.601]

Всякий режущий инструмент должен обеспечивать получение необходимых размеров, формы детали, требуемое качество обработанной поверхности, а также стойкость, прочность, жесткость и т. д. Какой бы мы ни взяли режущий инструмент, будь то развертка, фреза, протяжка, резец или сверло, каждый из них должен срезать с заготовки слой материала определенной толпщны. Величина срезаемого слоя может быть различной. Обдирочный резец на крупном токарном станке срезает слой более 25 мм, алмазный резец 0,05 — 0,2 мм, развертка при развертывании небольшого отвфстия 0,1—0,15 мм. Точность размера и шероховатость поверхности обрабатываемых детале также очень различны сверлом просверливают отверстие диаметром 50 мм с допуском около 1,5 мм протяжкой обрабатывают отверстие с допуском до 0,01 мм после обработки обдирочным резцом тюверхность очень грубая после обточки, например, алмазным резцом получается высококачественная поверхность с шероховатостью, не превышающей Ка = 0,32- -0,16 мкм.  [c.6]


Смотреть страницы где упоминается термин Точность обработки и качество поверхности детали : [c.129]    [c.387]    [c.243]    [c.551]    [c.692]    [c.263]    [c.6]   
Смотреть главы в:

Технический контроль в механических цехах  -> Точность обработки и качество поверхности детали



ПОИСК



Детали Обработка — Точность

Детали Поверхности — Качество

Детали Точность

Детали — Качество

Качество обработки деталей

Качество поверхности и точность

Обработка Качество поверхности

Обработка Точность обработки

Обработка поверхности

Обработка поверхности детали

Поверхности Точность обработки

Поверхности детали

Поверхности — Качество

Точность и качество

Точность обработки и качество поверхности



© 2025 Mash-xxl.info Реклама на сайте