Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конструкции зубчатых планетарных передач

КОНСТРУКЦИИ ЗУБЧАТЫХ ПЛАНЕТАРНЫХ ПЕРЕДАЧ  [c.165]

Классификация. По назначению различают редукторы главные и вспомогательные по конструкции — переборные, планетарные и комбинированные по направлению вращений — нереверсивные и реверсивные по виду зубчатых колес — цилиндрические и конические по числу зубчатых пар — одно- и многоступенчатые по расположению осей валов — горизонтальные и вертикальные по типу передач — цепные, гнездовые и с раздвоением мощности (рис. 2.15).  [c.45]


На листе 123 показана конструкция редуктора с двумя потоками мощности. Привод осуществляется от двух электродвигателей, которые передают движение и момент на. центральные шестерни планетарных передач, выполненных по с еме 2К- г. Водила неподвижно насажены на концы валов шевронных шестерен. Две шевронные шестерни передают момент с двух сторон на цилиндрическое колесо, которое неподвижно насажено на тихоходный вал. Валы шевронных шестерен и колес установлены на двухрядных роликовых 1 он ческих подшипниках. Валы сателлитов опираются на двухрядные сферические роликоподшипники, размещенные в щеках водила. Смазывание зубчатых зацеплений и подшипников - циркуляционное От смазочной станции, с фильтрацией и охлаждением масла. Зубья центральных шестерен и сателлитов цементованные каленые и шлифованные. Литой корпус стальной, обеспечивающий жесткость и устойчивость на фундаменте.  [c.300]

Зубчатое колесо, которое в обычной планетарной передаче должно быть неподвижным, в рассматриваемой конструкции не связано с корпусом, а вращается в направлении, противоположном направлению вращения корпуса сателлитов. Для этого использована простая передача, зубчатое колесо внутреннего зацепления которой установлено на шлицах на заднем конце вала винта и затянуто гайкой (IV). Промежуточные шестерни перебора смонтированы на осях корпуса перебора. Узел подшипников промежуточных шестерен конструктивно подобен рассмотренному узлу установки сателлитов в их крр-пусе.  [c.318]

Планетарный механизм поворота П-3 (рис. 55, а—в) имеет вертикально расположенный редуктор 5. В нем размещены три одинаковые по конструкции передачи (три ступени). В планетарном редукторе вращение передается от центральной верхней солнечной шестерни 4 к нескольким (обычно трем) шестерням-сателлитам 9 одинакового диаметра, располагаемым под углом 120 в плане. С наружной стороны сателлиты находятся в зацеплении с неподвижным зубчатым венцом 3. Сателлиты сидят на осях, закрепленных в общей крестовине-водиле < . При вращении сателлиты катятся по зубчатому венцу 3. При этом их оси вместе с водилом совершают вращательное (планетарное) движение относительно оси солнечной шестерни. На нижнем конце первого водила сидит солнечная шестерня второй планетарной передачи (ступени) и т. д. Планетарная передача позволяет обеспечить высокое передаточное число и сравнительно высокий коэффициент полезного действия передачи при малых габаритах и небольшой массе редуктора.  [c.85]


Зубчатые колеса с шевронными зубьями используются и в некоторых типах планетарных передач большой мощности с высокой частотой вращения. Но наибольшее распространение получили планетарные передачи в прямозубом исполнении, поскольку с переходом oT = 0 к 0 существенно усложняется конструкция этого вида передач.  [c.47]

Для создания эффекта плавания основных звеньев обычно используют зубчатые муфты (см. рис. 6.7), что во многих случаях связано с усложнением конструкции планетарной передачи и увеличением ее осевого габаритного размера.  [c.251]

Эскизный проект выполняется в соответствии с рекомендациями гл. 14. При этом целесообразно ориентироваться на элементы существующих конструкций, примеры которых представлены в гл. 20, а также в справочниках [29, 37, 38] и атласах [18 и др.]. Вопросы конструирования валов, осей и соединений вал — ступица рассматриваются в гл. 9, зубчатых колес и элементов планетарных передач — в гл. 16, подщипниковых узлов — в гл. 10, 18, резьбовых соединений — в гл. 11, муфт— в гл. 13, корпусных деталей — в гл. 17.  [c.381]

Крупногабаритные зубчатые колеса й > 600 мм) выполняют составными (бандажированными), т. е. зубчатый венец (обод) — из высококачественной стали, а ступицу и диск — из стали обыкновенного качества. Такую же конструкцию имеют вагонные и локомотивные колеса подвижного состава. Червячные колеса также изготовляют из двух материалов, отличающихся и свойствами и стоимостью зубчатый венец — из бронзы, а остальную часть — из чугуна или стали. Составными из разных материалов делают шкивы ременных передач, звездочки цепных передач, водила планетарных передач, гибкие колеса волновых передач, вкладыши и корпусные детали подшипников скольжения и т. д.  [c.38]

В рассматриваемой конструкции волнового зубчатого редуктора ведущим звеном является генератор h, а ведомым — гибкое колесо g при неподвижном жестком Ь, т. е. передача типа h—Ь—g. Вообще говоря, в структурном и кинематическом отношениях волновая передача очень близка к планетарной передаче, которая имеет один сателлит g, соединенный с ведомым валом с помощью механизма параллельных кривошипов (см. рис. 5.1, а). Сопоставляя планетарную и волновую (рис. 5.6) передачи, отметим следующие общие свойства обе передачи — четырехзвенные механизмы, в которых колеса g обкатываются по колесам Ь звеньям buh планетарной передачи соответствуют звенья Ь н к волновой передачи, что позволяет говорить о том, что гибкое колесо волновой передачи является гибким сателлитом, а сама волновая передача — разновидностью планетарной. Однако такое определение можно принять условно, так как, несмотря на отмеченное сходство, волновая передача существенно отличается от планетарной прежде всего тем, что в волновой передаче нет звеньев с планетарным движением, которые являются основным признаком планетарных передач. В конструкции на рис. 5.6 планетарное движение совершает ролик генератора, но он не кинематическое звено, а только деталь генератора. Генераторы могут быть кулачковыми, электромагнитными и другими, в которых нет деталей с планетарным движением.  [c.168]

НИЙ, начиная от горизонтального зубчатого венца (ось которого совпадает с осью шарнира), обегаемого шестерней вертикального электро- или гидродвигателя, установленного в другой части машины, реечного механизма (с двумя или с одним гидроцилиндром), червячной и планетарной передач и кончая применением двух горизонтальных гидроцилиндров, установленных параллельно или под углом. Эта конструкция имеет почти исключительное применение, остальные конструкции используются в единичных случаях.  [c.343]

Конструкция зубчатых дифференциальных и планетарных передач определяется их назначением, кинематической схемой и величиной передаваемого момента. Для получения меньших габаритов силовые передачи по рис. 4.1 и 4.3 надо делать с возможно большим числом сателлитов.  [c.94]


Ранее были рассмотрены редукторы с простыми зубчатыми передачами, у которых оси зубчатых колес неподвижны. Передачи, включающие зубчатые колеса с перемещающимися осями, называют планетарными. Планетарные зубчатые редукторы по сравнению с простыми зубчатыми отличаются большей компактностью при одинаковых передаточных отношениях и вращающихся моментах на выходных валах. Это стало возможным благодаря особой конструкции планетарных передач.  [c.28]

Рассматриваемый тип редукторов позволяет осуществлять вращение выходного вала в широком диапазоне частот вращения и = 35,5...1,4 об/мин, что особенно важно для малых значений частот вращения выходного вала, так как редукторы простых зубчатых передач для этого случая имеют большие габаритные размеры и сложную конструкцию. В отличие от простых многоступенчатых зубчатых и планетарных, редуктор на рис. 1.16. имеет простую конструкцию, малое число деталей. Компоновка сателлита планетарной передачи на ведомом колесе 3 быстроходной ступени позволяет уменьшить осевые габариты редуктора. Подвижная  [c.42]

Конструкция и принцип работы. Волновая зубчатая передача является разновидностью планетарной передачи. В отличие от обычной планетарной передачи в волновой передаче одно из зубчатых колес выполняется гибким, обычно в виде цилиндрической тонкостенной шестерни с наружными зубьями. Другое жесткое колесо с внутренними зубьями неподвижно закреплено в корпусе.  [c.62]

Следует отметить, что корригирование зубчатых колес является одним из способов увеличения несущей способности, увеличения значений передаточных чисел и уменьшения габаритов различных схем планетарных передач, а иногда и упрощения конструкции передачи, ее расчета и сборки.  [c.84]

Во всех случаях способ смазки выбирается в зависимости от конструкции планетарной передачи и условий работы зубчатых зацеплений и подшипников.  [c.122]

Повышение несущей способности планетарных передач достигается конструктивными и технологическими мероприятиями как общими для всех зубчатых передач, так и специальными. К общим мероприятиям относятся применение легированных сталей с более высокими механическими показателями фланкирование зубьев и бочкообразная форма их угловая и высотная коррекция поверхностное упрочнение, обеспечивающее высокую твердость рабочих поверхностей, сохранение вязкой сердцевины и снижение концентрации напряжений на переходных участках применение зубьев с большей высотой, что увеличивает деформацию, равномерность распределения нагрузки и коэффициент перекрытия применение лучших материалов для наиболее нагруженных колес. К специальным мероприятиям относятся высокая жесткость водила и его балансировка в сборе с сателлитами конструкция сдвоенных сателлитов, допускающая шлифование зубьев центрирование центральных колес с высокой степенью точности применение надежно работающих подшипников.  [c.122]

В планетарных зубчатых передачах геометрическая ось какого-либо из колес подвижна. Такие передачи по сравнению с другими имеют меньшие размеры, массу, а часто и лучшие компоновочные характеристики, что позволяет создавать удобные, с хорошим пространственным расположением конструкции. Это объясняется тем, что мощность здесь передается через несколько сателлитов, часто используется внутреннее, более прочное зацепление, нагрузки на  [c.157]

Достоинства. 1. Малые габариты и масса (передача вписывается в размеры корончатого колеса). Это объясняется тем, что мощность передается по нескольким потокам, численно равным числу сателлитов, поэтому нагрузка на зубья в каждом зацеплении уменьшается в несколько раз. 2. Удобны при компоновке машин благодаря соосности ведущих и ведомых валов. 3. Работают с меньшим шумом, чем в обычных зубчатых передачах, что связано с меньшими размерами колес и замыканием сил в механизме. При симметричном расположении сателлитов силы в передаче взаимно уравновешиваются. 4. Малые нагрузки на опоры, что упрощает конструкцию опор и снижает потери в них. 5. Планетарный принцип передачи движения позволяет получить большие передаточные числа при небольшом числе зубчатых колес и малых габаритах.  [c.181]

Рис. 5.66. Вариатор скорости с зубчатым зацеплением. Зубчатый венец 1, который посредством винта н штурвала может перемещаться вдоль оси передачи, набран из тонких пластинок Т-образной формы в специальном ободе. В местах, где нет сцепления с планетарным зубчатым колесом 2, венец представляет собой гладкий обод, а в местах сцепления зубья планетарного зубчатого колеса 2 выжимают соответствующие им впадины. После прохождения планетарного колеса пластинки устанавливаются в первоначальное положение специальными пружинами. Колесо 3 с внутренним зацеплением и шестерня 4 обычной конструкции. Передаточное отношение Рис. 5.66. <a href="/info/159490">Вариатор скорости</a> с <a href="/info/2297">зубчатым зацеплением</a>. <a href="/info/106055">Зубчатый венец</a> 1, который посредством винта н штурвала может перемещаться вдоль оси передачи, набран из <a href="/info/177325">тонких пластинок</a> Т-образной формы в специальном ободе. В местах, где нет сцепления с <a href="/info/39">планетарным зубчатым колесом</a> 2, венец представляет собой гладкий обод, а в местах сцепления зубья <a href="/info/39">планетарного зубчатого колеса</a> 2 выжимают соответствующие им впадины. После прохождения <a href="/info/31806">планетарного колеса</a> пластинки устанавливаются в первоначальное положение специальными пружинами. Колесо 3 с <a href="/info/7865">внутренним зацеплением</a> и шестерня 4 обычной конструкции. Передаточное отношение
Во время вращения ведущего диска 15 шестерни 13, установленные на шпинделях, обкатываются по центральному зубчатому колесу 14 что обеспечивает шпинделям планетарное движение. Диск и колесо приводятся во вращение от электродвигателя через клиноременную передачу 7. Этот же двигатель приводит в движение механизм перемещения форсунок, при этом одна из форсунок 6 совершает при помощи эксцентриково-рычажного механизма 8 колебательное движение в горизонтальной плоскости, а другая 9 — вертикальное перемещение с помощью винтового механизма 10. Крошка к форсункам подается по гибким рукавам. В конструкции предусмотрено устройство 5 для автоматического отключения привода по окончании цикла.  [c.45]


Валы редукторов можно подразделить на входные (быстроходные), выходные (тихоходные) и промежуточные. Большинство входных валов рядных, планетарных и червячных редукторов выполняют за одно целое с зубчатыми венцами (вал-шестерни на рис. 9.1, а —в) или червяками. Выходные валы передач изготавливают с посадочными шейками диаметром (1 для насадных зубчатых или червячных колес (рис. 9.1, г, д). Входные и выходные валы обычно имеют выступающий из корпуса редуктора консольный участок с диаметром 4, предназначенный для сопряжения с полумуфтой, шкивом или звездочкой цепной передачи. В конструкциях навесных редукторов выходной вал выполняют Полым (рис. 9.1, д) и насаживают на вал приводного агрегата. Промежуточный вал-шестерня многоступенчатого редуктора показан на рис. 9.1, е.  [c.165]

Преимуп1,ество планетарных механизмов перед обычными в первую очередь обусловлено распределением передаваемой нагрузки на ряд зацеплений параллельно работающих сателлитов. Несмотря иа некоторое усложнение конструкции, установка возможно большего числа сателлитных колес приводит к существенному уменьшению габаритов механизма. В практике авиастроения известны конструкции планетарных передач, у которых = 20 -т- 24. Однако полная реализация преимуществ планетарных механизмов лимитируется сложностью обеспечения равномерного распределения нагрузки между сателлитами. Несоосность опор центральных звеньев, эксцентриситеты зубчатых колес, ошибки в геометрии их зубьев, неточности радиального и углового размещения сателлитов, а также различные деформации звеньев под нагрузкой вызывают неравномерное нагружение зацеплений сателлитов с цен 1ральными колесами.  [c.335]

Достоинством планетарных передач являются широкие кинематические возможности, позволяющие использовать передачу как понижающую с большими передаточными отношениями и как повышающую. Кроме того, планетарные передачи имеют малые габариты и массу по сравнению со ступенчатой зубчатой передачей с тем же передаточным отношением. Это объясняется тем, что а) мощность передается по нескольким потокам и нагрузка на зубья в каждом зацеплении уменьшается б) при симметричном расположении сателлитов силы в передаче взаимно уравновешиваются и нагрузки на опоры входных и выходных валов невелики, что упрощает конструкцию опор и снижает потери в) внутреннее зацепление, имею1цееся в передаче, обладает повышенной нагрузочной способностью по сравнению с внешним зацеплением. Недостатком планетарных передач являются повышенные требования к точности изготовления и большой мертвый ход.  [c.230]

Конструкция. Редуктор состоит из корпуса, крышки, шестерен (ведущих органов), зубчатых колес (ведомых органов), подшипников, устройства для смазки. В современных судовых турбозубча-тых агрегатах наиболее часто применяют двухступенчатые передачи. При мощности ГТЗА свыше 22—33 тыс. кВт для уменьшения напряжений в зубчатых зацеплениях используют раздвоение мощности [15], которое заключается в передаче крутян1,его момента от шестерни первой ступени сразу на два зубчатых колеса и далее двумя шестернями второй ступени — большему колесу (рис. 2.15, б). Все большее применение в качестве одной из ступеней находят планетарные передачи.  [c.45]

Сервотормоз с планетарной передачей. На Ковровском экскаваторном заводе была разработана конструкция сервотормоза с планетарной передачей. Главный тормоз 1 (фиг. 122) механизма лебедки размещен внутри барабана 12 он выполнен в виде нормально замкнутого ленточного тормоза со шкивом диаметром углом обхвата а . Барабан вращается в обе стороны от силового двигателя. Сбегающий конец ленты главного тормоза (с натяжением 1) прикреплен к малому плечу зубчатого сектора 5, выполненного в виде коленчатого рычага с осью вращения в точке Е. На этот же сектор воздействуют усилия сжатых пружин 7, замыкающих тормоз 1- Присоединение набегающего конца ленты главного тормоза (с натяжением Т ) к неподвижной опоре осуществлено через пружины 6, смягчающие толчки при замыкании тормоза. Зубчатый сектор 5 сцепляется с шестерней 4. Эта 13 195  [c.195]

На рис. 24 показана универсальная делительная головка с планетарной передачей и делительным лимбом фирмы П. Хюре . Применение в конструкции головки планетарной зубчатой передачи дает возможность при малом количестве сменных зубчатых колес осуществить изменение передаточных отношений  [c.55]

Конструкция планетарной муфты показана на рис. 120, б. Водило 12 укреплено на валу ротора основного двигателя. На двух осях Ц водила закреплены сателлиты 16, находящиеся в зацеплении с центральным колесом 17 и зубчатым венцом 15, неподвижно закрепленным на корпусе 13. Корпус соединен винтами с тормозным шкивом 18. Вал центрального колеса 17 соединен с выходным валом цилиндрического редуктора 8 (см. рис. 120, а), быстроходный вал которого соединен с валом вспомогательного двигателя. При включении вспомогательного двигателя вращение передается через центральное колесо и сателлиты на водило, которое через вал основного двигателя и редуктор приводит барабан во вращение. При этом тормоз 7 замкнут и зубчатый венец 15 планетарной муфты неподвижен. При работе только основного двигателя 5 вращение передается водилу 12, а от него сателлитам. Центральное колесо 17остается неподвижным, так как тормоз Р вспомогательного двигателя замкнут. Сателлиты, катясь по центральному колесу, приводят во вращение зубчатый венец 15. Тормоз 7 планетарной муфты разомкнут и обод ее вращается свободно. Описанная система обеспечивает получение посадочных скоростей в 10... 12 раз меньше основной скорости. Использование планетарных передач позволяет создать механизмы, отличающиеся особой компактностью.  [c.314]

В сопряжении барабана и редуктора наиболее часто используют шарнирное со Динение (рис. VI.2.1, а, д), в котором поперечная сила передается чере ( сферический подшипник, а вращающий момент — через зубчатое зацепление (бп (сание данной конструкции см. в табл. V.2.14, других конструщрй этого шарнира — в работе 1421) выходной вал редуктора и ось барабана образуют трехопорную балку с шарниром. Соединение двухопорного барабана и редуктора двухвенцовой зубчатой муфтой (рис. VI.2.1, б) может быть целесообразно например, при малом диаметре барабана валы редуктора и барабана образуют четырехопорную балку с двумя шарнирами. Тихоходные лебедки выпол 1яют с трехступенчатым редуктором или с открытой зубчатой передачей (рис. VI.2.1, б, г) в последнем случае размещение шестерни на консоли выходного вала редуктора увеличивает нагрузку на подшипник редуктора и ухудшает условия работы зубьев предпочтительнее схема на рис, VI.2.1, г с выносным подшипником 8 редуктора [0.9] или схема на рис. VI.2.1, в с валом-вставкой 7. Малые габаритные размеры имеет лебедка с планетарной передачей, встроенной в барабан (см. рис, VI.2.7, а [32]).  [c.375]

Волновая зубчатая передача является конструктивной разновидностью планетарной передачи с одним центральным колесом и внутренним зацеплением, у которой сателлит выполнен тонкостенным с гибким зубчатым ободом, деформируемым во аремя работы передачи. Особенность конструкции водила такой передачи заключается в том, что шип, на котором врашается сателлит, преобразован в центральный. кулачок или в какое-либо устройство (в дальнейшем называемое генератором й), деформирующее гибкий сателлит таким образом, что он входит в зацепление с жестким центральным колесом С в нескольких зонах зацепления. При вращении генератора к зоны деформации и зацепления перемещаются по окружности, вызывая вращение гибкого сателлита (называемого гибким колесом Р) относительно жесткого колеСа С. Так как вращение генератора сопровождается гармоническим Деформированием гибкого колеса, передача получила название волновой. При двух зонах зацепления колес С и F ( = 2) передача называется двухволновой, а при трех зонах (п = 3) — трехволновой. Наибольшее применение имеют двухволновые передачи. Для снятия вращения с гибкого колеса его выполняют в виде тонкостенного стакана, переходящего в вал, или в виде трубы, связанной с валом зубчатой муфтой (рис. 7.1).  [c.139]


Редукторы условно делят по различным признакам. По типу передачи редукторы могут быть зубчатые с простыми передачами (цилиндрическими, коническими, червячными). В свою очередь, каждая из передач может отличаться расположением зубьев и их профилем. Так, цилиндрические передачи могут быть выполнены с прямыми, косыми и шевронными зубьями конические — с прямыми, косыми и круговыми зубьями, те и другие — с эвольвентным профилем и зацеплением Новикова. Червячные редукторы изготовляют с цилиндрическим и глобоидным червяком. Зубчатые планетарные и волновые редукторы относятся к числу многопоточных и многопарных передач. Их основное преимущество по сравнению с простыми — большие передаточные отношения на одну ступень, а также вращающий момент на единицу массы и компактность конструкции. Комбинированные редукторы — редукторы, сочетающие различные передачи коническо-цилиндрические, зубчато-червячные, планетарно-волновые и т. п.  [c.257]

Обш,ую теорию дифференциальных и планетарных механизмов предложил Р. М- Брумберг (1956), который привел методы кинематического и силового исследования и расчета этих передач. Т. С. Жегалова (1957) уточнила определение коэффициентов полезного действия дифференциальных и планетарных зубчатых механизмов. М. В. Семенов (1956) исследовал геометрию кривых, описываемых различными точками сателлитов планетарных механизмов. Вопросы расчета планетарных механизмов были исследованы Л. Н. Решетовым (1952—1953, 1957). Им изучен также вопрос о рациональных конструкциях планетарных механизмов, о конструкциях планетарных направляюш,их механизмов, некоторые вопросы теории дифференциальных механизмов (1958—1963). Цикл работ В. Н. Кудрявцева по теории планетарных механизмов (с 1940), охватывающий многие вопросы их исследования и проектирования, был завершен монографией Планетарные передачи (1960). Вопросами расчета и синтеза эпициклических механизмов занимались также В. М. Шанников, В. А. Юдин, Я. Ю. Шац и другие.  [c.375]

Планетарные передачи усложняют и удорожают конструкцию. Их применение оправдано при необходимости разветвления потока мощности и уменьшения, вследствие этого, размера зубчатых колес. Коробки передач с неподвижными осями валов бывают трех- или многовальными. Трехвальные коробки передач более простые, поэтому их чаще применяют на автомобилях большой грузоподъемности. Трехвальные коробки передач обеспечивают возможность получения разгруженной прямой передачи, а также достаточно большое передаточное число на низшей передаче (ы1 = 7-=-8), поскольку оно получается с помощью двух пар зубчатых колес.  [c.166]

Если коробка скоростей заключает планетарные передачи, то, затормаживая различные зубчатые колеса их, можно получать различные передаточные отношения между ведущим и ведомым валами. На этом принципе оснавана конструкция коробок скоростей, которые нашли применение в токарно-винторезных, фрезерных и карусельных станках некоторых заводов. Одна из таких коробок изображена полусхематически на фиг. 282.  [c.293]

В планетарных передачах часто используются зубчатые ко-цеса внутреннего зацепления с плавающими венцами, т. е. вен-лами, не имеющими жесткой связи с полотном колеса. Передача крутящего момента и осевая фиксация между зубчатым венцом и остальными элементами составного колеса осуществляется шлицами и разрезными упругими кольцами (см. рис. 11.16, е). Такое соединение благодаря наличию зазоров в шлицах позволяет зубчатому венцу самоустанавливаться и центрироваться по сателлитам, что приводит к более равномерному распределению нагрузки по зубьям сателлитов. Сателлиты планетарных ступеней редуктора могут иметь форму обычного зубчатого колеса с ободом, полотном и валом. При малых размерах сателлитов их конструкция может быть упрощена они состоят из зубчатого венца и цилиндрического тела колеса с центральной расточкой, служащей беговой дорожкой для роликов подшипника качения. В этом случае удается в ограниченном объеме разместить подшипники большей грузоподъемности. Сателлиты такой конструкции цементируются кругом. зубья и беговые дорожки подшипников шлифуются (см. рис. 11.16, е).  [c.512]

В сравнительно тихоходных приводах возможно упрощение конструкции планетарной передачи за счет применения плавающего водила. Например, на рис. 9.4 представлен вариант, где в качестве соединительпой муфты испрльзуется зубчатая. В передаче, показанной на рис. 9.4, использован конструктивный прием, позволяющий увеличить длину соединительной муфты плавающего водила.  [c.208]

Основной особенностью конструкции планетарных передач являются симметрично расположенные одинарные или сложные сателлиты, работающие параллельно и вращающиеся как относительно своих осей, так и вместе с ними относительно центральной оси. Отсюда вытекает ряд частных особенностей, учитываемых при расчете степень равномерности распределения нагрузки по сателлитам определение относительных чисел оборотов колес при расчете зубчатых зацеплений и подшипников обеспечение, кроме условий соосности, условия сборки и соседства при определении числа зубьев колес многосателлитных передач возможность циркуляции мощности в замкнутых контурах действие центробежных сил на узлы опор сателлитов у быстроходных передач односторонняя или двухсторонняя работа зубьев сателлитов в зацеплении с солнечным колесом и эпициклом даже при неизменном направлении вращения валов число полюсов зацепления при определении нагрузки в них и определении числа циклов нагружения разгрузка опор центральных колес благодаря уравновешиванию радиальных усилий при выборе коэффициента концентрации напряжений лучшее распределение нагрузки по длине зуба из-за меньшего изгиба валов, меньшей деформации картера и меньшего консольного действия сил при внутреннем зацеплении.  [c.123]

В учебном пособии изложены основы теории, расчета и конструирования точных механизмов. При этом рассмотрены структура, кинематика и динамика механизмов основы взаимозаменяемости, допуски и посадки, ошибки механизмов конструкция и расчет зубчатых, червячных, винтовых и фрикционных передач, планетарных, дифференциальных, волновых, кулачковых, рычажных, мальтийских, храповых, счетно-решающих и др. механизмов конструкция и расчет узлов и деталей механизмов и приборов — соединений, валов, осей, подшипников, нуфт, направляющих, корпусов, упругих и чувствительных элементов, отчетных устройств, успокоителей и регуляторов скорости.  [c.2]

Волновые редукторы являются разновидностью планетарных. В редукторостроении наиболее распространены двухволновые передачи с неподвижным жестким корпусом. Они широко применяются в робототехнике. На рис. 13.1 и 13.4. показаны схема и конструкция волнового зубчатого редуктора типа В.  [c.237]

В. с одним или несколькими бегунками наз. планетарным вибровозбудителем <сх. б, е, г, д). Если в последнем обкатка бегунка по беговой дорожке поддерживается силой сухого трения, то такой В. наз. фрикционнопланетарным вибровозбудителем. Поддержание обкатки бегунка зубчатой передачей осуществляется в зубчатопланетарном вйбровозбудителе, а поводком — в поводково-планетарном вибровозбудителе. В. используют в вибрационных машинах для уплотнения бетонной смеси и грунта в строительстве для выбивки литья из опок, при испытании конструкций приборов и аппаратов на виброустойчивость (см. также Вибростенд) и т. п.  [c.36]


Смотреть страницы где упоминается термин Конструкции зубчатых планетарных передач : [c.333]    [c.343]    [c.16]    [c.275]    [c.91]    [c.214]    [c.492]   
Смотреть главы в:

Проектирование механических передач Издание 5  -> Конструкции зубчатых планетарных передач



ПОИСК



К п планетарных

Конструкции зубчатых передач

Конструкции планетарных передач

Передача Конструкции

Передача зубчатая планетарная

Передача планетарная

Планетарные Конструкции



© 2025 Mash-xxl.info Реклама на сайте