Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химическая коррозия и пассивные пленки

ХИМИЧЕСКАЯ КОРРОЗИЯ и ПАССИВНЫЕ ПЛЕНКИ  [c.75]

Согласно современной пленочной теории пассивности, скорость коррозии металла в пассивном состоянии не зависит от потенциала полной пассивности 1/,,. п и от потенциала, который положи-тельнее его (см. рис. 210), так как определяется скоростью растворения пассивной пленки, т. е. химическим процессом, а анодный ток расходуется только на образование новых порций окисла, поддерживая толщину его постоянной.  [c.307]


Созданию высокой химической активности в вершине трещины содействует и механический фактор. Как известно, механические напряжения в вершине трещины очень высоки. Даже при низких значениях интенсивности напряжений материал в вершине трещины находится под действием напряжений, близких к пределу текучести. Это создает благоприятные условия для прохождения в вершине трещины локальных деформаций, в результате чего на кромках ступеней сдвига (в местах выхода дислокаций на поверхность) плотность анодного тока может резко увеличиваться. Оба фактора не только способствуют повышению плотности анодного тока, но и содействуют в этом друг другу. Например, если структура и состав сплава таковы, что в нем имеются выделения по границам зерен, отличающиеся по электрохимическим характеристикам от матрицы, то потенциальная чувствительность к межкристаллитной коррозии может быть реализована путем прохождения в вершине трещины пластических деформаций, разрушения пассивной пленки и активации анодных процессов по границам зерен. Это же положение относится в полной мере и к сегрегациям внутри твердого раствора, когда суще-  [c.57]

Коррозией называют разрушение поверхности металла в результате химического или электрохимического воздействия среды. Чистая металлическая поверхность легко подвергается химическому воздействию среды. Однако, если в процессе начавшейся коррозии продукты ее образуют прочно связанную с металлом пленку, изолирующую поверхность от коррозионной среды, то металл приобретает пассивность по отношению к ней. Процесс искусственного образования тонких окисных пленок на поверхности металла для заш,иты его от коррозии и придания изделию лучшего вида называют пассивированием. Способностью к пассивированию обладают железо, никель, хром, алюминий и другие металлы.  [c.184]

Алюминий и особенно его сплавы широко используются в промышленности. В химической промышленности алюминиевые сплавы применяют для изготовления деталей теплообменной аппаратуры, в том числе эксплуатирующейся в контакте с морской водой. Особенностью электрохимического поведения алюминия является его коррозионная стойкость лишь в относительно узком интервале pH. На рис. 1.7 в координатах потенциал — pH представлена диаграмма, показывающая условия протекания коррозии и границы коррозионной стойкости алюминия в морской воде. Отсутствие коррозионного процесса характеризуется на диаграмме областью коррозионной стойкости (область инертности) и областью пассивности. В области пассивности на поверхности алюминия имеется барьерная пленка состава АЬОз-НгО.  [c.28]


Ингибитор атмосферной коррозии черных металлов [1024]. Приведенный состав применяется для пассивации поверхностей черных металлов. На поверхности металла образуется пассивная пленка, обладающая высокой стойкостью к механическим повреждениям, электролитическому восстановлению и химическим воздействиям.  [c.157]

Очевидно, что, как и в случае основных типов коррозии, которые были здесь рассмотрены, это объяснение не удовлетворит тех, кто не принимает теории, объясняющей стойкость к коррозии наличием защитной пленки. Мы сами, правда, много лет назад 41], предложили объяснить пассивность в отношении коррозии физико-химическими процессами адсорбции, а не существованием химически вполне определенных окислов, образующих пленку, которая в некотором роде существует независимо от самого металла. Однако приходится опасаться, что разница между всеми этими теориями носит скорее словесный характер и можно считать весьма вероятным, что между чисто физической адсорбцией и образованием определенных химических соединений существует множество переходных форм в зависимости от характера металла и коррозионной среды.  [c.179]

На скорость коррозии сплавов титана в пассивном состоянии легирующие компоненты могут влиять путем изменения скоростей следующих процессов 1) непосредственного электрохимического перехода ионов металла, мигрирующих через оксидную пленку, в раствор [реакция (с)] 2) химического растворения пассивной пленки [реакция (Ь)]. Легирующие элементы могут влиять на эти процессы, изменяя структуру и толщину образующейся пленки, а также изменяя ее дефектность и ионную проводимость.  [c.44]

Химические среды. Многочисленные данные позволяют предположить, что в водных средах, содержащих окислительные агенты, действие которых объединяется, возможно, с действием ионов гидроксила, на поверхности титана возникают пассивные пленки. Титан, например, очень стоек к коррозии в азотной кислоте как при комнатной темпе-)атуре, так и при температуре кипения. 3 кислотах, обычно выделяющих водород при реакции с металлами (таких как серная и соляная), скорость коррозии титана значительна, но добавка небольших количеств окислительных реагентов и здесь приводит к образованию пассивных пленок. Этим объясняется стойкость титаиа к коррозии в смесях сильных серной и азотной или соляной и азотной кислот, а также в сильной соляной кислоте, содержащей свободный хлор, и даже в серной и соляной кислотах, содержащих небольшие количества катионов, способных, подобно катионам трехвалентного железа и двухвалентной меди, вызывать окислительную реакцию [9, 10].  [c.188]

Палладий в сравнении с платиной, родием и иридием обладает значительно меньшей стойкостью к химическому воздействию. Теоретическая коррозионная диаграмма палладия (рис. 4,5) показывает, что в-отсутствие сильных окислителей и комплексообразующих веществ металл должен быть устойчив в водных растворах с любыми pH. И действительно, на практике палладий не корродирует в хлорной воде (если ее температура невысока) и не тускнеет во влажном воздухе. При обычных температурах на палладий не действуют такие кислоты, как уксусная, щавелевая,, плавиковая и серная, однако сильные окислительные кислоты, например смесь соляной кислоты с азотной, быстро разрушают палладий. Разбавленная азотная кислота вызывает медленную коррозию, но в концентрированной кислоте металл корродирует быстро. Сплавы палладия с платиной в значительной степени сохраняют коррозионную стойкость платины, В обычных атмосферах палладий не тускнеет, но в промышленных атмосферах, содержащих двуокись серы, может наблюдаться некоторое потускнение, связанное с образованием сульфидной пленки. Щелочные растворы, даже при наличии в них окислителей, никакого влияния иа палладий не оказывают Это может быть связано с образованием тонкой пассивной пленки окиси палладия Р(50 [более устойчивой, чем Р(5(0Н)г], препятствующей дальнейшей коррозии.  [c.220]

Существенное влияние на скорость газовой коррозии оказывают образующиеся продукты коррозии, их физико-химические и механические свойства. В большинстве случаев коррозия протекает в окислительной среде при этом на поверхности металла в качестве продукта коррозии образуется окисная пленка. Впрочем, тонкая окисная пленка на металле обы чно появляется уже при комнатной температуре. Свойства образующейся окисной пленки решающим образом влияют на дальнейший ход коррозионного процесса. В случае резкого торможения процесса вплоть до полного прекращения коррозии говорят о наступившей пассивности поверхности металла.  [c.46]


На участках с более утолщенной пленкой, где прекращается протекание анодного процесса, пленка перестает расти и за счет чисто химического процесса растворения пленки происходит ее утоньшение, протекающее до тех пор, пока не станет возможным прохождение на этом участке анодного процесса. Таким образом, участки преимущественно катодного или преимущественно анодного процессов будут меняться местами и, в конечном итоге, в протекании катодного и анодного процессов будет участвовать вся пассивная поверхность металла. Наблюдающийся равномерный характер растворения поверхности при весьма медленной коррозии из пассивного состояния хорошо согласуется с таким представлением.  [c.311]

Сплав железа с 18—20% Сг или 18% Сг и 8% N1, а также сплав железа с хромом, никелем и титаном или хромом, никелем и молибденом и другими легирующими компонентами обеспечивает высокую коррозионную стойкость во многих агрессивных средах — некоторых кислотах, щелочах, газах и т. д. Коррозионная стойкость таких сплавов основана на их свойстве переходить в пассивное состояние, т. е. приобретать химическую стойкость против коррозии. Главным пассивирующим компонентом во многих сплавах является хром, окисная пленка которого на поверхности металла образует однородный непрерывный тонкий слой.  [c.235]

В приборостроении часто применяют различные виды химической и электрохимической обработки изделий из меди и ее сплавов, в результате чего на их поверхности создаются пассивные защитные пленки. Характер защитной пленки определяется способом ее получения. Оксидирование изделий из меди и ее сплавов производится с целью повышения их коррозионной стойкости в эксплуатационных условиях, для окрашивания в некоторые цвета, главным образом черный, и для защиты от коррозии в процессе хранения и транспортировки.  [c.151]

В ПИНС-РК широко используют дисульфид молибдена и графит, обладаюш,ие слоистой структурой и высокими смазывающими свойствами. Однако сами по себе в виде порошков или водных и водно-спиртовых дисперсий эти наполнители могут даже увеличить коррозионно-механический износ и фрет-тинг-коррозию из-за резкого усиления электрохимической коррозии [104]. Исследования стальных пластин-электродов, чистых и покрытых слоем дисульфида молибдена или графита, в камере постоянного и пульсирующего токов (метод ОПС — ООС ) показывает, что графит и особенно M0S2 значительно снижают общее и поляризационное сопротивление чистых металлических пластинок, усиливают коррозионный ток, качественно меняют структуру пленки на поверхности металла, не давая образовываться оксидным пассивным слоям, усиливают процесс анодного растворения металла и (в меньшей степени) процесс катодной деполяризации. Эти наполнители усиливают также процессы химической коррозии и прежде всего цветных металлов.  [c.165]

Важные для практики работы в России (до первой мировой войны) выполнили С. П. Власов (1820 г.) по разработке стойких красок, Б. С. Якоби (1856 г.) по электрохимической защите стали цинковым протектором, А. И. Онуфрович (1910 г.) по разработке наиболее устойчивого кровельного железа, Е. Куклин (1910 г.) но травлению металлов. Исследования акад. В. А. Кистя-ковского, начатые в 1890 г. и продолженные им после Великой Октябрьской социалистической революции, послужили основанием для созданной им фильмовой теории коррозии металлов. В процессах электрохимической коррозии и пассивности решающее значение приобретают свойства образующихся на поверхности металла окисных пленок (фильмов). В. А. Кистяковский открыл мото-химические и мото-электрические явления, в основе которых лежит изменение электрохимических потенциалов металлов при их движении в растворах электролитов.  [c.10]

С точки зрения термодинамики титан является очень неустойчивым металлом (его нормальный потенциал равен —1,63 в), а высокая коррозионная устойчивость титана в большинстве химических сред объясняется образованием на его поверхности заш,итных окисных пленок, исключаюш их непосредственный контакт металла с электролитом. Вследствие этого было интересно исследовать электрохимическое и коррозионное поведение титана в условиях поляризации его переменным током различной частоты, когда в катодный полупериод тока может происходить частичное или полное разрушение пассивного состояния, а в анодный полупериод — его возникновение. Подобные исследования кроме чисто научного интереса представляют, несомненно, и определенную практическую ценность, поскольку титан и его сплавы начинают все шире внедряться в технику как новый конструкционный материал с особыми свойствами и разносторонняя характеристика его коррозионных свойств в различных условиях становится необходимой. Помимо этого, можно полагать, что изучение электрохимических и коррозионных процессов путем наложения на исследуемый электрод переменного тока различной частоты и амплитуды при дальнейшем совершенствовании может явиться наиболее подходяш,им методом для исследования скоростей электродных процессов, а следовательно, и методом изучения механизма электрохимической коррозии и пассивности металлов. Цель настояш,ей работы — выяснение основных факторов, определяющих скорость коррозии титана под действием переменного тока, а также установление механизма образования и разрушения пассивирующих слоев, возникающих на поверхности титана  [c.83]

С ростом потенциала увеличивается химическая стойкость оксидной пассивной пленки сплавов ВТ 14 и ВТ 15 со всеми исследованными фазовыми составами, тогда как скорости коррозии не меняются монотонно. Так, например, в 40%-ной H2SO4 при 80 °С для закаленного и отпущенного в течение 30 ч сплава ВТ14 при потенциалах 0,34 0,54 и 2,34 В стационарные токи растворения равны 190, 290 и 52 мкА/см , а соответствующие периоды активации пленок, сформировавшихся при этих же потенциалах, равны 0,45 1,6 и 15 мин [526].  [c.209]


Отсутствие значительной равномерной коррозии и уменьшения потенциала в период зарождения и распространения коррозионной трещины указывает на то, что коррозионное растрескивание возможно лишь при наличии на поверхности металла активных и пассивных участков. При этом переход металла из пассивного состояния в активное может произойти вследствие воздействия на металл как механических или тепло механпческих (об-разованпе менее благородных структурных составляющих 1И разрушение пленок при деформации), так и химических факторов (воздействие ионов хлора, концентрированных щелочей и т. п.).  [c.178]

Электрохимические методы защиты металлов легче всего понять путем рассмотрения соответствующей диаграммы Пурбэ (для железа она представлена в полном и в упрощенном вариантах соответственно на фиг. 33 и 34). Железо не будет корродировать, когда его потенциал и величина pH окружающей среды попадают в область иммунитета, в которой металл термодинамически устойчив. Для достижения этих условий металл должен быть поляризован таким образом, чтобы его потенциал снизился от величины, соответствующей условиям беспрепятственной коррозии, до величины, несколько меньшей нормального электродного потенциала. На этом принципе основана катодная защита, рассматриваемая в разд. 3.2. Другим методом электрохимической защиты является обеспечение пр ыва-ния Железного электрода в области пассивного состояния, что требует поляризации для облагораживания потенциала (если pH среды составляет 2—9). В интервале значений pH = 9-4-12 железо либо находится в состоянии иммунитета, либо в пассивном состоянии, а при pH < 2 пассивность не достигается. Этот тип защиты, часто называемый анодной защитой, описан в разд. 3.3. В отличие от катодной защиты он неприменим во всем диапазоне значений pH, и действие защиты может прекратиться, если повреждена пассивная пленка, например, в присутствии хлоридных ионов. Катодная защита может осуществляться в любой среде, если только нет посторонних эффектов, например непосредственного химического разъедания металла. Здесь следует напомрить о различии между иммунитетом, т. е. областью, в которой коррозия (электрохимическое разъедание) не может происходить, и пассивностью, т. е. областью, в которой коррозия не происходит.  [c.128]

Такой эффект катодного выделения более положительных металлов и, вследствие этого, ускорение коррозии наблюдается также, если в растворе находятся соли тяжелых металлов с достаточно положительным электрохимическим потенциалом (Pt, Au, Ag, Си, Ni и, в меньшей степени, Fe). Поэтому в замкнутых полиметаллических системах, по которым циркулируют водные растворы, например, морская вода, наблюдается усиление коррозии алюминия и его сплавов, если в этой системе находятся медь или медные сплавы, даже при отсутствии электрического контакта с алюминием. Таким образом, сравнительно высокую коррозио1ь ную стойкость чистого алюминия и некоторых его сплавов, кроме основного влияния защитных кроющих пассивных пленок (анодный контроль), в значительной мере объясняют высоким перенапряжением выделения водорода на поверхности алюмнння, особенно в пассивном состоянии (катодный контроль). Примеси тяжелых металлов (в первую очередь в практических условиях железа или меди) сильно понижают химическую устойчивость алюминия не только вследствие нарушения сплошности защитных пленок, но и благодаря облегчению катодного процесса. Присадки более электроотрицательных металлов с высоким перенапряжением водорода (Mg, Zn) в меньшей степени понижают коррозионную стойкость алюминия.  [c.261]

В процессе химического разрушения на поверхности металла образуется пленка из продуктов коррозии, обычно окислов. В некоторых случаях эта пленка предохраняет лежащий под ней металл от дальнейшей коррозии, т. е. делает его более пассивным по отношению к окружающей среде. Необходимым условием защиты металла от последующей химической коррозии является образование на поверхности металла сплошной и плотной пленки, которая защищает (пассивирует) металл от дальнейшего разрушения. Это возможно, если объем получающегося в ходе коррозии (на поверхности металла) окисла Уок больше оСъэма окислившегося металла  [c.173]

В зависимости от характера агрессивной среды, природы металла и условий их взаимодействия на поверхности металла образуются химические соединения в виде пленок, наростов и т. д. Эти образованные в процессе коррозии химические соединения называются продуктами коррозии. Они могут быть плотными и рыхлыми, плотно приставшими к поверхности металла или, наоборот, легко удаляемыми с него. Образующиеся на поверхности металлических изделий пленки, особенно если они беспори-сты, могут тормозить процесс коррозии металла, а в некоторых случаях надежно защищать его от разрушения. Например, пленка, образовавшаяся на алюминии при действии кислорода воздуха, защищает его от дальнейшей коррозии. При образовании защитной пленки на металле он переходит в пассивное состояние, т. е. теряет способность к химическим взаимодействиям с окружающей средой. Но достаточно удалить защитную пленку и коррозия металла начинается снова. В зависимости от характера изменения поверхности металлов в результате коррозии различают следующие основные виды коррозийных разрушений (рис. 35) равномерную (общую) коррозию, распространяющуюся по всей поверхности металла местную коррозию, сосредоточенную на отдельных участках поверхности в виде пятен, язв и  [c.46]

НИЮ и потому стоек в воде, нейтральных и многих слабокислых средах, в атмосфере. Широко применяется в технике, особенно в самолетомоторостроении, в химической и пищевой промышленности, транспорте. Сплавы алюминия обладают меньшей коррозионной стойкостью, но имеют более высокую прочность по сравнению с алюминием. Коррозионное поведение алюминия обусловливается химическими свойствами пассивной пленки АЬОз, которой защищена поверхность алюминия. Пленка Л Оз растворяется в сильных неокисляющих кислотах и щелочах (см. рис. 17) с выделением водорода. Алюминий стоек в сильных окислителях и в окисляющих кислотах, например в азотной кислоте, в растворах бихроматов и т. п. Он — один из лучших материалов, применяемых для изготовления цистерн и хранилищ концентрированной азотной кислоты. Хлориды разрушают пленку АЬОз. В контакте с электроположительными металлами (медью, железом, кремнием и др.), а также при наличии в алюминии примесей этих металлов скорость коррозии возрастает. Сравнительно высокая стойкость против коррозии чистого алюминия обусловливается высоким пepeнaпpяжeниeJй водорода на нем. Вероятно поэтому в нейтральных растворах коррозия алюминия протекает с кислородной деполяризацией, а лри содержании в металле названных примесей с низким перенапряжением водорода доля водородной деполяризации возрастает. Следовательно, коррозионная стойкость алюминия сильно зависит от чистоты металла. Контакт с цинком, кадмием безвреден для алюминия, контакт с магнием и магниевыми плaвa ми опасен. Алюминий стоек против газовой коррозии, однако выше 300° С приобретает свойство ползучести.  [c.56]


Увеличение коррозионной стойкости хроматных покрытий, полученных при пассивировании в поле ультразвука двух частот (22 кГц и 1 мГц), объясняется тем, что при совмещении ультразвуковых колебаний указанных частот резко возрастает скорость акустических потоков, создающих интенсивное перемешивание раствора, усиливается массо- и теплообмен, значительно облегчаются ди( узионные процессы, ультразвук оказывает более интенсивное влияние на окислительно-восстановительный потенциал среды и другие физико-химические свойства системы металл — раствор. В результате значительного увеличения массо- и теплообмена, локального повышения температуры и давления процесс пассивирования протекает ускоренно. Все это приводит к получению пассивных пленок, обладающих повышенной стойкостью против коррозии.  [c.451]

Для решения практических задач борьбы с коррозией большую роль сыграли исследования Г. В. Акимова, Н. Д. То-машова и их сотрудников, лозволившие теоретически обосновать явления структурной коррозии и механизм коррозионных процессов. Ими разработана теория многоэлектродных элементов и дан метод расчета как простых, так и сложных гальванических систем при любом числе электродов. Советские ученые значительно расширили и дополнили учение о пассивности метал нов, основанное на пленочной теории В. А. Кистяковского. Большой интерес представляют исследования П. Д Данкова, который установил основные принципы химического превращения твердого тела, имеющие большое практическое и теоретическое значение при защите металла от коррозии различными пленками.  [c.11]

I По достижении хорошо известной границы содержания хрома в 12% на стали образуется защитная пассивная пленка. Характерным для этой пленки является то, что она разрушается в отдельных местах поверхности стали главным образом ионами хлора. Это ведет к точечной коррозии (например, в морской воде). И хотя приток кислорода как деполяризатора еще оказывает решающее влияние на скорость точечной коррозии, локализация этого вида разрушения i зависит и от химической и структурной неоднородности, т. е. от гетерогенности стали. Соответственно нержавеющие стали, не являющиеся гомогенными (например, в результате медленной кристаллизации в слитке или термообработки в области температур от 400 до 900° С), проявляют гораздо большую склонность к точечной коррозии, чем гомогенные стали. Если же скорость коррозии упра-вляется реакциями, протекающими непосредственно на поверхности металла, то и состав и структура оказывают значительное влияние, проявляющееся и при небольшом различии в составе или металлургической истории стали. Классическая нержавеющая сталь 1Х18Н9, если ее быстро охладить от температуры растворяющего отжига (от 1050 до 1150° С), представляет собой однофазный гомогенный сплав с гранецентрированной кубической решеткой аустенита. Если такую сталь с низким содержанием углерода подвергнуть нагреву в течение нескольких часов при 600° С, аустенит частично превратится в феррит с объемноцентрированной кубической решеткой. Феррит, образующийся в результате такого диффузионного превращения, богаче хромом и беднее никелем по сравнению с аустенитом. Это способствует развитию большей склонности стали к структур-  [c.24]

Механизм фреттинг-корроаии, так же как любого коррозионно-механического износа, объясняется протеканием химической и (или) электрохимической коррозии с последующим илн одновременным наложением механического фактора отличается он тем, что продукты износа не выводятся из зоны контакта. Таким образом, механический износ разрушает защитные окисные пленки на пов )хности металла, а продукты разрушения, более твердые, чем ювенильный металл, оставаясь в зоне контакта, вызывают абразивный его износ (каверны, вмятины и пр.), что, в свою очередь, интенсифицирует электрохимический процесс в результате разрушения пассивных пленок и поляризации поверхности металла. Способы борьбы с фреттинг-коррозией принципиально не отличаются от способов борьбы с коррозионно-механичеоким износом используют металлические постоянные покрытия (свинцевание, меднение, серебрение, золочение, цинкование и т. д.) неметаллические постоянные покрытия (фосфатирование, анодирование, сульфидиза-ция и т. д.), а также различные масла, пластичные смазки, удаляемые и неудаляемые пленочные покрытия. Так как одним из основных факторов коррозионно-механического износа, в частности фреттинг-коррозии, является электрохимическая коррозия, предпочтение отдается рабоче-консервационным и другим ингибированным защитным смазочным материалам.  [c.117]

Электрохимические исследования стальных пластин — электродов, покрытых слоем дисульфида молибдена или графита, в сравнении с чистыми пластинами в камере постоянного тока (метод ОПИ) и камере пульсирующего тока (метод ОПС—ООС) показали, что графит и особенно дисульфид молибдена МоЗг значительно снижают общее и поляризационное сопротивление чистых металлических пластинок, усиливают коррозионный ток, качественно меняют структуру пленки на поверхности металла, не давая образовываться окионым пассивным слоям, усиливают процесс анодного растворения металла и, в меньшей степени, — процесс катодной деполяризации. Эти наполнители усиливают также процессы химической коррозии, прежде всего цветных металлов. Поэтому при диспергировании дисульфида молибдена и графита, чтобы придать им коллоидную (агрегативную) устойчивость, целесообразно использовать ПАВ, которые одновременно с диспергированием и стабилизацией твердых частиц этих веществ в объеме ликвидируют их коррозионную агрессивность. Результаты этих исследований приведены ниже  [c.119]

Поляризацией называется уменьшение начальной разности потенциалов коррозионного микроэлемента при прохождении через его электрического тока, причем потенциал анода смещается в положительную сторону (анодная поляризация), потенциал катода — в отрицательную. Электродные процессы, уменьшающие поляризацию, называются процессами деполяризации (анодная и катодная деполяризация). Явления поляризации тормозят работу микроэлемента и уменьшают скорость электрохимической коррозии в их отсутствии электрохимическая коррозия протекала бы во много раз быстрее. Анодный процесс в коррозионном микроэлементе распадается на стадии растворение металла с образованием ионов, повышение концентрации ионов непосредственно у поверхности, возникновение на поверхности пассивных пленок ш их разрушение. Слабая коррозия нержавеющих сталей в растворах солей при доступе воздуха и в азотной кислоте определяется торможением анодного процесса вследств1И1а пассивирования анодных участков. Повышение концентрации ионов у поверхности вызывает концентрационную поляризацию в соответствии с формулой (1), пассивность — химическую поляризацию  [c.891]

Золото — электроположительный металл, его равновесный потенциал для процесса Ag -> Ag + -j- ЗЭ равен +1,5 в. Высокая коррозионная стойкость золота зависит не от образования пассивной пленки, а от малой химической активности его. Золото разрушается в сильных окислителях, содержащих свободные галогены, например в азотной и соляной кислотах, в серной кислоте и гипохлорате, в соляной кислоте н марганцевокислом калии и др. Однако в смеси азотной и плавиковой кислот золото устойчиво. Чистая соляная кислота не воздействует на золото, но в присутствии кислорода и при нагреве наблюдается сильная коррозия. Золото устойчиво в муравьиной и плавиковой кислотах. Оно растворяется в царской водке и растворе цианистого калия или натрия, быстро разрушается в горячих смесях серной и азотной кислот и серной кислоты с окислами тяжелых металлов. Золото частично растворяется при кипячении в азотной и в серной кислоте в присутствии кислорода при >250° С. Чистое золото стойко в кислороде, сере, сернистом ангидриде и селене.  [c.10]

При очень низких плотностях тока и обратимых условиях (бесконечно лМалое смещенное от состояния равновесия) можно предложить следующий ответ Рассмотрим ванну, состоящую из двух металлических электродов в очень слабокислом растворе сернокислой соли того же металла. Если металл переходит в раствор в виде растворимого сульфата на аноде и эквивалентное количество металла осаждается на катоде, тогда никакой химической работы нет, а имеется просто перенос металла из одного места в другое. При обратимых условиях поэтому весьма малая э. д. с. была бы достаточной, чтобы ток пошел через ванну. Но, если ток высаживает твердую гидроокись металла на аноде, оставляя раствор вокруг анода освобожденным от ОН -ионов и имеющим поэтому повышенную кислотность, то получается система с более высокой свободной, энергией, так как кислый раствор мог бы растворять гидроокись произвольно , с дальнейшим уменьшением свободной энергии. Таким образом для получения твердой гидроокиси на аноде потребовалась бы для подвода дополнительной энергии некоторая определенная э. д. с. Отсюда следует, что при очень низких значениях э. д. с. образование растворимого сульфата является единственно возможной реакцией при условии достаточной кислотности жидкости, обеспечивающей нестабильность твердой фазы — гидроокиси. Если же жидкость имеет среднещелочную реакцию, так что гидроокись могла бы остаться нерастворенной в виде стабильной фазы, тогдй то же рассуждение ведет к заключению, что гидроксильные ионы будут играть большую роль в анодном процессе, особенно если они, как, например, в данном случае, в большой концентрации. В этом случае при более низкой э. д. с. образование твердой пленки гидроокиси будет более возможно, чем образование растворимой соли, электрод станет пассивным, и растворение в значительной степени затормозится. Таким образом мы можем ожидать непре.рывную коррозию, имея растворимый сульфат в кислых растворах, но мы може.м надеяться на появление пассивности в щелочных растворах, если только гидроокись данного металла не растворяется в щелочном растворе данной концентрации. Критерием активности и пассивности является способность или неспособность растзора растворить гидроокись металла-.  [c.26]


Катодное включение ускоряет процесс коррозии в большей степени, чем возникающий в паре металл — катодное включе ние коррозионный ток. Подобные случаи действия катодного включения, или катодного конгакта, мы наблюдаем для тех металлов и таких условий коррозии, когда имеет место явление отрицательного разностного эффекта (см. главу X) Это явление, экспериментально установленное и воспроизведенное только применительно к случаю анодной поляризации металла при его внешнем сопряжении с катодным контактом или наложением тока (см., например, рис. 208 [16]), с полным основанием должно относиться также и к действию микрокатодных включений в сплаве, которые будут увеличивать скорость коррозии в большей степени, чем это соответствует возникающему коррозионному току между данным включением и остальной поверхностью сплава. До-бавочнсе увеличение скорости коррозионного процесса здесь происходит вследствие снятия пассивности и протекания процесса электрохимической или химической коррозии на новых участках металлической поверхности, освобожденной от защитной пленки [17], или изменения валентности ионов растворяющегося металла при его анодной поляризации.  [c.434]

Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции + + 2ё Ti составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует TiOj. Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Ti , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией.  [c.372]

Защита окисными пленками. Сплавы на основе меди (латуни, бронзы и др.), широко используемые в РЭА, в защите металлическими пленками обычно не нуждаются, так как пассивная медь обеспечивает достаточную химическую стойкость изделиям из этих сплавов. Не защищают металлическими пленками и изделия из сплавов алюминия, так как, во-первых, по отношению к алюминию п.очти все металлы более пассивны и поэтому могут создавать лишь катодную защиту, во-вторых, на алюминии и его сплавах возникает плотная окисная пленка AlaOj, которая сама может служить хорошей защитой от коррозии. Такая пленка изолирует поверхность металла от воздействия атмосферы и делает ее пассивной (не способной к своим обычным химическим реакциям).  [c.90]

Вместе с тем, необходимо выделить группу легко пассивирующихся металлов и сплавов, коррозионная устойчивость которых в атмосферных условиях не уступает благородным металлам. К ним следует отнести титан, тантал, цирконий, ниобий, хром, алюминий. Пассивное состояние этих металлов обусловлено образованием на их поверхности химически инертных оксидных пленок. Пассивирующие пленки могут разрушаться под действием ионов галогенов (С1 , Вг , 1 , F ), поэтому в морской атмосфере на алюминиевых сплавах, нержавеющих сталях и других пассивирующихся системах могут появляться локальные очаги коррозии.  [c.90]

Потенциалы активного растворения сплавов на оснрве железа, кобальта и никеля, в частности в сильных окислительных средах, повышаются при добавлении перечисленных выше металлов, обладающих большей активностью, чем металлы основы. При этом сплав обычно переходит в пассивное состояние. Если происходит активное растворение сплава, то активные легирующие элементы в больших количествах накапливаются в химических продуктах коррозии, которые образуют довольно толстую пленку (порядка нескольких нанометров). Эта пленка выполняет роль барьера йля диффузии ионов металла, участвующих в растворении сплава, т. е.  [c.271]


Смотреть страницы где упоминается термин Химическая коррозия и пассивные пленки : [c.14]    [c.154]    [c.20]    [c.218]    [c.18]    [c.41]    [c.802]    [c.114]    [c.71]   
Смотреть главы в:

Коррозия химической аппаратуры и коррозионностойкие материалы  -> Химическая коррозия и пассивные пленки



ПОИСК



433 (фиг. 9.2). 464 (фиг химической коррозии (см. Коррозия)

Коррозия химическая

Коррозия химическая — См. Химическая

Пассивная пленка

Пассивность



© 2025 Mash-xxl.info Реклама на сайте