Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Титан пассивное состояние

В растворах соляной кислоты титан корродирует с выделением водорода. При определенных концентрациях кислоты и температурах, в зависимости от доступа кислорода в коррозионную среду, титан может переходить из пассивного состояния в активное (рис. 188). В растворах соляной кислоты очень низких концентраций титан способен пассивироваться за счет образования защитных гидридных пленок. Так, при С он устойчив в  [c.282]


Известно, что титан в морской воде более стоек, чем алюминий, железо, цинк, кадмий и многие другие металлы. У титана склонность к пассивации сильнее, чем у хрома, и он способен сохранять стойкое пассивное состояние  [c.53]

Закономерности поведения металла в пассивном состоянии во многом определяются свойствами пассивирующих пленок. Так, если пленка медленно взаимодействует с электролитом, имеет полупроводниковую проводимость, то практически вся приложенная разность потенциалов падает внутри пленки, и тогда область пассивации может наблюдаться до очень высоких значений потенциала. Нри этом практически весь протекающий через систему ток будет расходоваться на прирост толщины оксидной пленки. Подобный вид зависимости наблюдается на титане, тантале, ниобии.  [c.115]

В водных растворах большинства минеральных солей и кислот, содержащих окислительные агенты, титан находится в пассивном состоянии. Титан обладает высокой коррозионной стойкостью в азотной кислоте (рис. 4.4).  [c.188]

В практике анодной защиты титан обладает двумя преимуществами по сравнению с пассивируемой нержавеющей сталью. Во-первых, пассивное состояние титана легче достигается и поддерживается, что обусловлено характерными для него высоким сопротивлением поверхностной пассивной пленки и отсутствием перепассивации. Поэтому использование потенцио-стата не является обязательным при анодной защите титана эффективность защиты достигается при помощи какого-либо низковольтного источника тока, например аккумуляторной батареи. Во-вторых, титан по сравнению с нержавеющими сталями более стоек в восстановительных средах. В частности, установлено, что в 67%-ной серной кислоте, содержащей 35% соляной кислоты, титан ведет себя так же, как и в чистой серной кислоте (даже при выделении хлора на пассивированной поверхности). Предел использования анодно защищенного титана в серной кислоте — концентрация последней 60%), а при 90°С — только 40% (рис. 3.20) [82]. Анодная защита титана в сернокислотных средах широко используется в полупромышленных масштабах, особенно для теплообменной аппаратуры [83, 84].  [c.63]

Известно, что титан при низких концентрациях соляной кислоты (до 6%) и комнатной температуре находится в устойчивом пассивном состоянии. При анодной защите титана можно использовать более концентрированную кислоту и высокую температуру. Так, в 10—15%-ной соляной кислоте анодная защита эффективна при 100°С, в 20—30%-ной соляной кислоте — при 50—60°С, а в концентрированной соляной кислоте (37 %-ной) — при 60°С. В этих условиях скорость коррозии титана колеблется в интервале 0,02—0,5 г/(м2-сут), что соответствует максимальной потере толщины слоя титана приблизительно 0,06 мм/год. Анодная защита сосудов из титана желательна тогда, когда они полностью заполнены соляной кислотой, в противном случае выще ватерлинии идет коррозия. Правда, для защиты титана в газовой фазе предложено использовать  [c.64]


Титан и его сплавы в смесях азотной кислоты и сильвинита пассивны. Токи растворения из пассивного состояния у сплавов  [c.18]

Коррозионностойкие стали, с давних пор называемые нержавеющими или кислотостойкими, — это высоколегированные стали, главным легирующим компонентом которых является хром (>12%). Другими легирующими добавками служат никель, марганец, молибден, титан. Коррозионная стойкость этих сталей определяется образованием тонкого защитного окисного слоя на их поверхности (пассивное состояние).  [c.98]

Особо следует остановиться на поведении пассивных металлов и соотношении поверхностей контактирующих металлов. Сплавы, подобно нержавеющим сталям, которые в морской воде могут находиться как в активном, так и в пассивном состоянии, оказывают различное влияние. Будучи в пассивном состоянии, они усиливают коррозию менее благородных металлов, таких как алюминий, сталь и медные сплавы. Если же они находятся в активном состоянии, то претерпевают сами сильную коррозию при контакте с материалами, обладающими более положительным, чем они сами в активном состоянии, потенциалом (медные сплавы, титан, хастеллой и т. д.). В связи с этим наблюдается часто при развитии питтинговой коррозии сильная коррозия нержавеющих сталей при контакте их с более благородными металлами. При контакте нержавеющих сталей с такими неблагородными металлами, как малоуглеродистая сталь, цинк, алюминий, потенциал которых отрицательнее потенциала нержавеющих сталей в активном состоянии, последние электрохимически защищаются. Аналогичным образом можно добиться защиты от общей и точечной коррозии и менее легированных сталей. В частности, сообщается, что крыльчатки из хромистой стали Х13 обнаруживают высокую стойкость в насосах с чугунными корпусами при перекачке морской воды.  [c.171]

Титан в морской воде находится в устойчивом пассивном состоянии, он является катодом по отношению к различным металлам (нержавеющим сталям, медноникелевым сплавам, алюминию и его сплавам) и может усиливать их коррозию. Однако если поверхность титана относительно невелика, то ускорение может быть и не очень значительным, так как титан является малоэффективным катодом.  [c.82]

Молибден, как видно из диаграммы, действует благоприятно на смещение точек бив, характеризующих легкость перехода в пассивное состояние и его устойчивость. Однако на точку г, характеризующую возможность перехода сплава в состояние перепассивации, молибден действует весьма неблагоприятно, сообщая титану (при достаточно высоком содержании молибдена) ускорение коррозии при положительных потенциалах, например, при наличии в коррозионной среде окислителей или при наложении на сплав анодных потенциалов.  [c.128]

Коррозионная стойкость титана и его сплавов в большей степени, чем каких-либо других определяется легкостью установления и поддержания пассивного состояния. Поэтому новый метод повышения пассивности и коррозионной стойкости катодным легированием (модифицированием), впервые открытый в СССР на коррозионностойких сталях [20, 208], получил практическое использование в первую очередь применительно к титану [2].  [c.247]

Возникновение пассивного состояния зависит от природы металла, его свойств, характера агрессивной среды, концентрации раствора электролита, температуры, движения раствора и целого ряда других факторов. Легко пассивирующимися металлами являются алюминий, хром, никель, титан, вольфрам, молибден и др.  [c.60]

Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции + + 2ё Ti составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует TiOj. Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Ti , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией.  [c.372]


В некоторых случаях металлы, которые в обычных условиях находятся в пассивном состоянии, например нержавеющая сталь или титан, при их контакте с более электроотрицательным металлом, например алюминием, могут подвергаться сильной коррозии вследствие катодной поляризавдш. Так, в разбавленной азотной кислоте нержавеющая сталь марки XI8Н9Т корродирует со скоростью 0,01 мм/ч, а при контакте с алюминием ее скорость возрастает до 0,64 мм/ч. В концентрированных растворах азотной кислоты контакт нержавеющей стали е алюминием приводит к электрохимической защите стали.  [c.202]

При питтинговой коррозии основное коррозионное разрушение локализуется на отдельных небольших участках металла (магний, алюминий, железо, никель, титан и др.) и протекает с большой скоростью, что может приводить к сквозной точечной коррозии металла. Питтинговая коррозия наблюдается, обычно, когда основной металл находится в пассивном состоянии. Ионы-активаторы (СГ, Вг , I") адсорбируются в основном на участках поверхности, где плеяка оксида несовершенна (металлические или неметаллические включения, искажающие или нарушающие кристаллическую структуру оксида) [22]. Анионы частично замещают кислород в оксиде и образуют хорошо растворимые поверхностные комплексные ионы. Пассивная пленка нарушается, и металл начинает непосредственно контактировать с раствором. Потенциал металла на этих участках имеет более отрицательное значение, чем потенциал основного металла, покрытого оксидной пленкой, что приводит к возникновению локальных токов. Если пассивная пленка не обладает большим омическим сопротивлением, то система заполяризовывается и на участках питтингооб-разования в основном протекает интенсивно анодный процесс, а катодный процесс восстановления окислителя идет на пассивной поверхности металла. При этом миграция анионов-активаторов идет в основном к участкам питтингообразования.  [c.38]

Вместе с тем, необходимо выделить группу легко пассивирующихся металлов и сплавов, коррозионная устойчивость которых в атмосферных условиях не уступает благородным металлам. К ним следует отнести титан, тантал, цирконий, ниобий, хром, алюминий. Пассивное состояние этих металлов обусловлено образованием на их поверхности химически инертных оксидных пленок. Пассивирующие пленки могут разрушаться под действием ионов галогенов (С1 , Вг , 1 , F ), поэтому в морской атмосфере на алюминиевых сплавах, нержавеющих сталях и других пассивирующихся системах могут появляться локальные очаги коррозии.  [c.90]

Возникновение пассивного состояния определяется природой металла и составом агрессивной среды. К легко пассивирующимся металлам следует отнести, в первую очередь, хром, никель, алюминий, титан, вольфрам и др. Коррозионная стойкость нержавеющей стали обусловлена формированием на ее поверхности пассивных пленок при наличии в стали хрома.  [c.20]

К числу металлов с низкой электронной проводимостью окис лов принадлежат алюминий, титан, цирконий, тантал, известные своей способностью подвергаться оксидированию при высоких анодных потенциалах (см. 34). Что касается растворения металла в пассивном состоянии, то оно существенно отличается от перехода в раствор ионов металла на активном участке поляризационной кривой. Это отличие прежде всего количественное. При сохранении постоя,иного потенциала анодный ток в пассивной области обнаруживает тенденцию к постепенному и очень медленно идущему уменьшению, снижаясь до крайне низких значений порядка 10- °а/сл<2. Такой спад тока растягивается на длительные промежутки времени. Поэтому приводимые значения плотности тока в пассивном состоянии - следует рассматривать как довольно условные величины, относящиеся в какой-либо принятой продолжительности выдержки металла при заданном по енциале. Отличие процесса перехода в раствор ионов металла в пассивной области от активного растворения заключается в том, что та-118  [c.118]

Во многих органических средах скорость коррозии зависит от степени аэрации растворов, концентрации и температуры. Например, в ш,авелевой кислоте титан находится в пассивном состоянии только при интенсивной аэрации и температуре не более 20 °С.  [c.191]

При этом скорость коррозии титана зависит от соотношения площадей контакти-руемых металлов, а также величины перенапряжения выделения водорода на сопряженном металле. Такие металлы, как А1, d, Zr, Sn, Bi, Hg, увеличивающие скорость коррозии титана, имеют высокое перенапряжение выделения водорода. Элементы с низким перенапряжением выделения водорода Pt, Au, Ni, Pd переводят титан в пассивное состояние и резко снижают скорость его коррозии (рис. 4.11).  [c.193]

Наибольшей склонностью к самопассивированию на воздухе обладают титан, алюминий и хром. Пассивное состояние в них сохраняются во многих средах, однако оно исчезает в средах, содержащих мало кислорода и много ионов хлора (влажная, плохо аэрируемая почва, морская вода, неокисляющие кислоты).  [c.475]

Интересная работа выполнена коллективом авторов [87], изучавщих возможность анодной защиты титана при получении хлората хрома, основанном на растворении его гидроксида соляной кислотой. В отсутствие хлорида хрома титан находится в пассивном состоянии [скорость растворения 5 X X 10 г/(м -ч)]. При введении в раствор совместно с хлоратом хлорида хрома (сильного восстановителя) стационарный потенциал титана сдвигается в сторону отрицательных значений от 0,6 до —0,12 В. В этих условиях титан растворяется со скоростью 0,7 г/(м2-ч).  [c.65]


Сигнализатор коррозии широко применяют в промышленности. Например, сигнализатор коррозии СК1-12 вместе с датчиком (хлорсеребряным электродом сравнения) подключен к колонне разложения паральдегида, выполненной из титана. При правильном соблюдении технологического режима разложения паральдегида в ацетальдегид при 45—65°С концентрация катализатора (соляной кислоты) должна быть 1—2% при этом титан находится в устойчивом пассивном состоянии. При увеличении концентрации НС1 (прекращение подачи воды) титан переходит в активное состояние, и колонна подвергается корро-  [c.118]

Титан ВТ1-0 находится в средах одностадийного синтеза изопрена в активном или неустойчиво-пассивном состоянии, которое зависит от наличия защитной окисной пленки на металле. Титан, покрытый окисной пленкой, стоек в средах ОСИ до концентрации серной кислоты 0,6 мае., а активированный титан корродирует уже в присутетши 0,2 мае. серной кислоты со скоростью 0,25 г/м час при 80°С.  [c.52]

В предлагаемой работе показано, что титан BTI-0 сохраняет устойчивое пассивное состояние в 20-70 ной хлорной кислоте, растворяясь при этом с очень малой скоростью ( 0,002 миь год при 50°С). Скорость коррозии определяли по количеству титана в растворе фотоколориметрически.  [c.53]

Для изучения влияния состояния поверхности сплава на его электрохимическое поведение проводили различную подготовку механическую зачистку, обезжиривание, электрохимическую полировку, ультразвуковую очистку. Стабилизацию поверхности и восстановление воздушнообразованной пленки осуществляли потенциостатической или циклической обработкой в области небольших катодных потенциалов во избежание образования гидридов. На анодной кривой сплава в растворе Н2504 сила тока монотонно возрастает о поляризацией от О до 4 В. Парциальше кривые титана, циркония и кремния выявили максимум тока в области ол-1,6 Б (н.в.э.), который связывается с анодным выделением кислорода и последующими изменениями в пассивирующей пленке. Такое различие обусловлено, очеввдно, однородностью поверхности сплава и отсутствием в пленке на сплаве достаточно проводящих участков дай реализации термодинамически возможного выделения кислорода, что подтверждено исследованием распределения электрического потенциала на поверхности сплава и кристаллических компонентов в растровом электронном микроскопе. При достаточной анодной поляризации начинается электрохимическое образование беспористой анодной пленки на сплаве и его компонентах. По сравнению с цирконием и титаном сплав, имеет наиболее ПОЛО.ЖИтельный стационарный потенциал и устойчивое пассивное состояние.  [c.98]

При наличии в электролите активирующих агентов, например хлорид-ионов, при определенном значении потенциала фпит пассивное состояние нарушается, процесс анодного растворения ускоряется. Объясняется это тем, что по мере смещения потенциала в положительную сторону усиливается адсорбция хлорид-ионов. Поскольку степень покрытия поверхности кислородом неодинакова, в местах, где имеются дефекты в структуре окисной пленки, начинают преимущественно адсорбироваться хлорид-ионы, и вместо пассивирующего окисла образуется галогенид, обладающий хорошей растворимостью. Начинается питтинговая коррозия. Этому виду коррозии особенно подвержены нержавеющие стали и другие пассивирующиеся сплавы алюминий, титан, цирконий.  [c.14]

Изготовление ФПАКМов из стали 10Х17Н13М2Т в условиях отмывки осадка белой сажи 0,5—1% H2SO4 позволит увеличить срок службы фильтр — прессов до 10—15 лет. Вместо разбавленной серной кислоты для промывки щелочной суспензии белой сажи от соды может быть использована разбавленная 0,25% соляная кислота при температуре 60°С. В этом случае в качестве конструкционного материала ФПАКМов может быть рекомендован титан ВТ1-0, скорость которого в этих условиях не превышает 0,05 мм/год. Анодные поляризационные кривые титана ВТ1-0 в 0,25% соляной кислоте характеризуются значительной областью пассивного состояния и говорят о высокой коррозионной стойкости титана.  [c.24]

Таким образом, для перевода системы в пассивное состояние и, следовательно, для понижения скорости коррозии необходимо стремиться к возможному увеличению катодной эффективности, если, конечно, исключить условия возникновения питтинга или транспассивности. Эта мысль впервые была высказана нами в 1948 г. [128] при объяснении повышения коррозионной устойчивости медистых сталей и получила затем дальнейшее подтверждение и развитие в наших работах [129—133] но нержавеющим сталям и в работах, выполненных совместно с Р. М. Альтовским, по титану и его сплавам [126, 134], а также позднее — в зарубежных исследованиях [135—146].  [c.85]

Как видно, все сплавы титана, содержащие платину от 0,29 до 0,54%, пассивируются с самого начала испытаний. Сплавы с меньшей концентрацией платины (от 0,03 до 0,064%) пассивируются также достаточно быстро. При еще меньшей концентрации платины (0,01—0,019 %) сплавы остаются активными в течение некоторого периода времени (4—12час.). Во время активного растворения поверхностная концентрация платины увеличивается вследствие коррозии основного металла до тех пор, пока соотношение анодных и катодных участков не станет благоприятным для пассивации титана. После этого даже такое минимальное содержание платины в титане вызывает переход в пассивное состояние. О повышении поверхностной концентрации катодной добавки в процессе коррозии свидетельствуют поляризационные кривые титана [135] и хрома [144], легированных платиной, снятые в разных условиях. Анодная кривая  [c.88]

Особо необходимо остансзвиться на поведении титана. Обладая положительным электрохимическим потенциалом и относительно небольшой катодной поляризуемостью, он сам остается в пассивном состоянии, вызывая, однако, коррозию большинства металлов, находящихся с ним в контакте. В этом отношении его можно поставить в один ряд с нержавеющими сталями и монель-металлом [64]. На рис. 55 изображено поведение в морской воде (полное погружение) различных металлов при контакте их с титаном. Из рисунка видно, что титан является катодом по отношению ко всем испытанным материалам. Сильнее всех страдают малоуглеродистые стали, бронзы и алюминиевые сплавы, а меньше всех— нержавеющие стали. Результаты, полученные с латунью 60-40, сомнительны. Этот сплав обычно очень чувствителен к контактной коррозии. Когда соотношение поверхностей меняется в пользу анода, скорость коррозии последнего, как и следовало ожидать, падает. В нейтральных электролитах обратная картина маловероятна даже в такой паре, как нержавеющая сталь — титан.  [c.173]

В качестве материалов для инертных анодов употребляется платина и нержавеющая сталь, на которых происходит анодное выделение кислорода. Используются также угольные аноды, в том числе графит и агломераты из углеродистых материалов, однако они имеют тенденцию расходоваться в процессе химического образования СОг- Платина употребляетсй в морской воде в виде весьма тонкого электроосажденного слоя на титане. При приложении анодного Тока извне титан разрушался бы коррозией, однако наличие платины смещает его потенциал в область пассивного состояния (см. разд. 2.8). В результате полуиается достаточно стойкий анод с большой платиновой поверхностью..  [c.131]

АЕк4 и AiiA4 соизмеримы или даже А к4/Д а4 < 1. Обычно это характеризует заметную анодную пассивность. Характерный пример коррозии металлов из пассивного состояния железо и сталь в азотной кислоте, нержавеющие стали в аэрированных нейтральных или слабокислых растворах в отсутствии хлор-ионов, титан в слабокислых растворах, алюминий в нейтральных растворах. Скорость коррозии зависит от плотности тока анодного растворения из пассивного состояния и может сильно повышаться при наличии активных ионов, например, при увеличении концентрации хлор-ионов в азотной кислоте для железа и стали или фтор-ионов для титана.  [c.44]


По точкам пересечения t l, t2, is анодной кривой титана с катодными кривыми можно видеть, что во времени скорость коррозии будет сначала возрастать (переход от тока коррозии ii к г г), однако при дальнейшем увеличении накопления палладия и возрастании катодной эффективности, катодная кривая ЕнКз будет пересекать анодную кривую Л в пассивной области (ток Q. Это будет соответствовать резкому облагораживанию потенциала и переходу сплава в устойчивое пассивное состояние, причем титан может переходить в раствор из пассивного состояния лишь с очень незначительной скоростью (г з).  [c.75]

Приходится считаться и с контактной коррозией в кислых средах, например, в ряде производств химической, нефтехимической и атомной промышленности. В. Баком и X. Лейдхайзером было показано, что скорость коррозии титана в контакте с различными металлами, равными ему по площади, в кислых средах (кипящей 2МНС1) соответствует анодному току его поляризационной кривой при тех значениях электродного потенциала, которые устанавливаются на нем в данных условиях [20, с. 157]. В контакте с такими металлами как Ag, Си, Sb титан, являясь катодом, может давать более высокую скорость коррозии. В контакте с металлами, имеющими низкое перенапряжение водорода (Pt, Ir, Au, Pd, Ni) потенциал Ti-анода смещается в положительную сторону, в область пассивно-активного и пассивного состояния, что вызывает значительное снижение скорости коррозии. В этом случае, чем ниже перенапряжение водорода у металла, тем меньше скорость коррозии титана в паре с этим металлом,  [c.82]

Если металл в щели находится в активном состоянии и коррозия протекает в области кислородной деполяризации, то уменьшение концентрации окислителя приведет к понижению скорости коррозии. При определении кислорода в щели было установлено, что падение его концентрации зависит от конфигурации, времени и природы соприкасающихся металлов [54]. Средняя концентрация кислорода снилсается в начале опыта быстро, а затем медленнее и тем сильнее, чем уже щель (рис. 22). Сдвиг потенциала сплава при понижении концентрации кислорода в щели в отрицательную сторону приводит к увеличению скорости растворения только в случае активации пассивного состояния. Например, как показало снятие кривых для титана (рис. 23), в растворах Na l при pH=0,95, даже при отрицательных потенциалах, титан находится в пассивном состоянии. Петля активного растворения, свидетельствующая о возможности активации металла, обнаруживается только при значении pH=0,5 и ниже [56]. Аналогичные данные были получены для нержавеющих сталей в морской воде [54]. Было показано, что при уменьшении концентрации кислорода в зазоре (до 0,07 мг/л) происходит сильное смещение потенциала стали 12X13 в отрицательную сторону (до —0,45 В), а скорость коррозии стали изменяется мало 0,044 и 0,088 мг/(см2-сут) соответственно. При уменьшении pH раствора до 2,3 и ниже (подкисление добавкой H I) наблюдается сильное увеличение скорости коррозии— до 35 мг/(см2-сут) при pH =1,6.  [c.84]

Питтинговая коррозия титана происходит также в неводных растворах, например, в растворе брома в метаноле, этанольно-водном растворе НС1 [2], в растворе брома в дибромпропане [81] с небольшими добавками воды. При увеличении концентрации воды в хлорно-спиртовых растворах титан переходит в устойчивое пассивное состояние.  [c.94]


Смотреть страницы где упоминается термин Титан пассивное состояние : [c.285]    [c.376]    [c.16]    [c.77]    [c.119]    [c.30]    [c.86]    [c.144]    [c.146]    [c.88]    [c.135]    [c.175]    [c.255]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.31 , c.34 ]



ПОИСК



Пассивное состояние алюминия титана

Пассивность

Поведение титана в пассивном состоянии. Влияние легирующих элементов

Состояние пассивное

Титан

Титанит

Титания



© 2025 Mash-xxl.info Реклама на сайте