Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пассивность теория

ТЕОРИЯ ПАССИВНОСТИ МЕТАЛЛОВ  [c.306]

Предложено много теорий пассивности металлов. Это связано с трудностью объяснения всей сложной совокупности явлений, происходящих при переходе металлов из активного состояния в пассивное и обратно.  [c.306]

Пленочная теория пассивности металлов основана на высказанном в 1876 г. Фарадеем предположении, согласно которому пассивное состояние обусловливается присутствием на поверхности металлов химически связанного кислорода.  [c.306]


Согласно современной пленочной теории пассивности, скорость коррозии металла в пассивном состоянии не зависит от потенциала полной пассивности 1/,,. п и от потенциала, который положи-тельнее его (см. рис. 210), так как определяется скоростью растворения пассивной пленки, т. е. химическим процессом, а анодный ток расходуется только на образование новых порций окисла, поддерживая толщину его постоянной.  [c.307]

Таким образом, эта теория рассматривает железо как сплав активного (Fe " ) и пассивного (Fe ) железа. Растворение железа в пассивном состоянии в виде ионов Fe рассматривается как подтверждение правильности этой теории.  [c.309]

Следует отметить, что данная сравнительно новая теория не объяснила пока каких-либо явлений пассивности, которые не были бы уже объяснены, и не предсказала новых эффектов.  [c.311]

Пленочная и адсорбционная теории не противоречат друг другу, но дополняют одна другую, и в ряде случаев только сочетанием обеих теорий можно объяснить различные случаи пассивного состояния металлов.  [c.62]

Теории пассивности металлов  [c.63]

Адсорбционная теория пассивности. Основной механизм защиты металлов, согласно адсорбционной теории пассивности, заключается в насыщении валентностей поверхностных атомов металла путем образования химических связей с адсорбирую-  [c.63]

Существуют две общепризнанных точки зрения на природу пассивной пленки. Согласно первой, пассивная пленка (определение 1 или 2 в гл. 5) — это всегда затрудняющий диффузию барьерный слой продуктов реакции, например оксида металла или других соединений, который изолирует металл от окружающей среды и замедляет скорость реакции. Эту точку зрения иногда называют оксидно-пленочной теорией.  [c.80]

С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в d-оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с Оа, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкоэнергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида.  [c.81]


Согласно адсорбционной теории, пассивность хрома и нержавеющих сталей, благодаря их повышенному сродству к кислороду, может достигаться путем непосредственной хемосорбции кислорода из воздуха или водных растворов. Количество кислорода, адсорбированного таким образом, имеет тот же порядок величины, что и пассивная пленка на железе, образованная путем анодной пассивации или пассивации в концентрированной азотной кислоте или хроматах [27]. Сходным образом атмосферный кислород может адсорбироваться непосредственно на железе и запассивировать его в аэрируемых щелочных растворах, а также в растворах близких к нейтральным с повышенным парциальным давлением кислорода .  [c.82]

Ионы хлора и, в меньшей степени, других галогенов нарушают пассивность или препятствуют ее возникновению на железе, хроме, никеле, кобальте и нержавеюш,их сталях. С точки зрения теории оксидной пленки, ионы С1 проникают в оксидную пленку через поры или дефекты легче, чем другие ионы (например SO ). Возможно также, что они могут коллоидально диспергировать оксидную пленку и увеличить ее проницаемость.  [c.84]

С другой стороны, согласно адсорбционной теории [16], ионы С1 адсорбируются на поверхности металла, конкурируя с растворенным О2 или 0Н . Достигнув поверхности металла, С1 способствует гидратации ионов металла и облегчает переход их в раствор, в противоположность влиянию адсорбированного кислорода, который снижает скорость растворения металла. Иначе говоря, адсорбированные ионы С1 повышают ток обмена (снижают перенапряжение) для анодного растворения перечисленных металлов по сравнению с наблюдаемым для поверхности, покрытой кислородом. В результате железо и нержавеющие стали часто невозможно анодно запассивировать в растворах, содержащих значительные концентрации С . Напротив, металл продолжает растворяться с высокой скоростью как при активных, так и при пассивных значениях потенциала.  [c.84]

Снижение скорости коррозии обусловлено пассивацией железа кислородом, о чем свидетельствуют значения потенциалов в насыщенной воздухом воде от —0,4 до —0,5 В, и в насыщенной кислородом воде (28 мл Оа/л) от 0,1 до 0,4 В. Вероятно, при повышенном парциальном давлении Оа поверхности металла достигает больше кислорода, чем может быть восстановлено в результате коррозионной реакции, излишек способен образовать пассивную пленку . Согласно оксидно-пленочной теории, избыток кислорода, предположительно, окисляет пленку FeO, при этом образуется другая пленка, имеющая лучшие защитные свой-  [c.101]

Как это уже было показано, значения деформаций при на-грузке и разгрузке образца за пределом упругости для одного и того же напряжения неоднозначны. Двузначность сохраняется и при сложном напряженном состоянии в случае нагрузки и разгрузки образца, поэтому в теории пластичности вводят понятие об активной и пассивной деформациях, простом и сложном нагружениях.  [c.97]

Нейтральное нагружение не сопровождается пластической деформацией. Это условие выражает требование непрерывности при переходе от пассивного нагружения к активному. Заметим, что в теории идеальной пластичности дело обстоит совершенно иначе, там величина пластической деформации или скорости деформации неопределенна и становится отличной от нуля при достижении вектором о поверхности текучести. В деформационной теории, как она была сформулирована выше, непрерывности при переходе от пассивного нагружения к активному нет при активном нагружении, бесконечно мало отличающемся от нейтрального, происходит пластическая деформация, при бесконечно близком пассивном пути нагружения деформация упруга. Это обстоятельство служит серьезным доводом, препятствующим расширенному использованию деформационной теории.  [c.539]

При простом разгружении, т. е. когда все внешние силы начинают одновременно убывать также пропорционально их общему параметру ( пассивная деформация), упруго-пластическое тело подчиняется обобщенному закону Герстнера для описания в этом случае закона спада деформации и напряжений применимы законы линейной теории упругости.  [c.193]


Развивая свою теорию монад, Лейбниц делит силы на активные и пассивные. Активная сила — душа материи, присущая ей склонность к движению, пассивная сила—это сила сопротивления, или инерция. От природы все монады наделены обеими силами, но активная сила начинает действовать после того, как удаляется препятствие, ее сдерживающее. Так, например, тетива лука, отпущенная рукой, толкает стрелу. Природа сил является для Лейбница нематериальной и непознаваемой.  [c.82]

Структура пассивной пленки на сплавах, как и пассивной пленки вообще, была описана и теорией оксидной пленки и адсорбционной теорией. В соответствии с оксидно-пленочной теорией, защитные оксидные пленки формируются на сплавах с содержанием легирующего компонента выше критического, а незащитные — на сплавах ниже критического состава. В случае преимущественного окисления пассивной составляющей сплава, например хрома, защитные оксиды (такие как СГ2О3) формируются, только если содержание хрома в сплаве превышает определенный уровень. Эта точка зрения не позволяет делать никаких количественных прогнозов, а тот факт, что пассивная пленка на нержавеющих сталях может быть катодно восстановлена и не соответствовать стехиометрическому составу, остается необъясненным. Согласно адсорбционной теории, в водной среде кислород хемо-сорбируется на Сг—Fe-сплавах выше критического состава, обеспечивая пассивность, но на сплавах ниже критического состава он реагирует с образованием непассивирующей оксидной пленки. Насколько данный сплав благоприятствует образованию хемо-сорбционной пленки или пленки продуктов реакции, зависит от электронной конфигурации поверхности сплава, особенно от взаимодействия d-электронов. Так называемая теория электронной конфигурации ставит в связь критические составы с благоприятной конфигурацией d-электронов, обеспечивающей хемосорбцию и пассивность. Теория объясняет природу взаимодействия электронов, определяющую, какой из компонентов придает сплаву данные химические свойства, например, почему свойства никеля преобладают над свойствами меди в медно-никелевых сплавах, содержащих более 30—40 % Ni.  [c.91]

Указанная теория объясняет пассивное состояние металлов возникновением тончайшей (порядка нескольких десятков или сотен ангстрем), часто невидимой защитной пленки продуктов взаимодействия металлов и окислителями. Чаще всего эта пленка представляет собой окислы (например, FegO или FegOji на же-  [c.306]

Поры закрываются вследствие образования пленки окислов и снова возникают в других местах, где происходит растворение пленкн или ее катодное восстановление. Явление пассивности, по теории Г. В. Акимова, представляет собой динамическое равновесие между силами, создающими защитную пленку (окислителями, анодной поляризацией), и силами, нарушающими ее сплошность (водородными и галоидными ионами, катодной поляризацией и др.).  [c.307]

Адсорбционная теория пассивности металлов предполагает возникновение на металлической поверхности моиомолекулярных адсорбционных слоев кислорода,  [c.308]

Кинетическая теория пассивности металлов (Ле-Блан, Фёр-стер, Закур) связывает это явление с затруднением в протекании непосредственно самого анодного процесса ионизации металла  [c.309]

Теория электронных конфигураций (Рассел, Улиг) связывает большую легкость возникновения пассивного состояния с неукомплектованностью электронами внутренних оболочек переходных металлов, занимаюш,их средние участки больших периодов периодической системы элементов — Сг, Ni, Со, Fe, Мо, W, имею-ш,их незаполненные d-уровни в металлическом состоянии.  [c.309]

Для объяснения всех явлений, наблюдаемых при пассивности металлов, необходимо сочетание двух основных теорий пассивности — пленочной и адсорбционной, которые не исключают, а дополняют друг друга, описывая пленочную или адсорбцион-  [c.311]

Существует две основные теории пассивности металлов. Согласно первой — пленочной теории па(. сивного состояния, торможение процесса растворения металлов наступает в результате образования на их поверхности фазовой пленки согласно второй—адсорбционной теории, для пассивирования металла достаточно образование мономолекулярного слоя или заполнения только части поверхности металла атомами кислорода или кис-,лородосодержащих соединений.  [c.62]

Механизм пассивности объясняется в настоящее время при помощи двух теорий - пленочной и адсорбционной, в соответствии с пленочной теорией пассивности на поверхности металлов предполагается оОразование слоев продуктов реакции, окислов металлов или других соединений, которые отделяет металл от коррозионной среды, препятствуя диффузии реагентов и тем самым С1шхая скорость растворения металлов.  [c.38]

Вагнер [4] предложил уточнение первого определения металл является пассивным, если при возрастании потенциала электрода скорость анодного растворения в данной среде резко падает. Вариант металл является пассивным, если при возрастании концентрации окислителя в растворе или газовой фазе скорость окисления в отсутствие вг.ешнего тока становится меньше, чем при более низких концентрациях окислителя. Эти альтернативные определения равнозначны в тех условиях, где применима электрохимическая теория коррозии.  [c.71]

Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы HjO и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М -f гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в H2SO4, или пленка фторида железа на стали в растворе HF являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе KI + I2 или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле-  [c.80]


Согласно адсорбционной теории, критический потенциал объясняют с точки зрения конкуренции адсорбции С1" и кислорода на пассивной пленке [32, 37]. Металл имеет большее сродство к кислороду, чем к ионам С1 , но если значение потенциала повышается, концентрация С1 возрастает, так что в конце концов ионы С1 могут заместить адсорбированный кислород. Наблюдаемый индукционный период — это время, которое требуется для успешной конкурирующей адсорбции на благоприятных участках поверхности металла, а также время проникновения С1" в пассивную пленку. Как было показано выше, в отличие от кислорода, адсорбция ионов С1" снижает анодное перенапряжение для растворения металла, чем объясняется более высокая скорость коррозии на участках, где произошло замещение. Другие анионы (например, NO3 или SO ), не разрушающие пассивную пленку и не вызывающие питттинг, конкурируют с С1" за места на пассивной поверхности. В связи с этим необходимо сдвигать потенциал до еще более высоких значений, чтобы увеличить концен-  [c.87]

При катодной поляризации хрома, нержавеющих сталей и пассивного железа пассивность нарушается вследствие восстановления пленки пассивирующего оксида или пленки адсорбционного кислорода (в зависимости от принятой точки зрения на природу пассивности). К тому же, согласно адсорбционной теории, атомы водорода, образующиеся при разряде ионов Н+ на переходных металлах, стремятся раствориться в металле. Растворившийся в металле водород частично диссоциирован на протоны и электроны, а электроны способны заполнять вакансии d-уровня атомов металла. Следовательно, переходный металл, содержащий достаточное количество водорода, более не в состоянии хемосорбиро-вать кислород или пассивироваться, так как у него заполнены d-уровни.  [c.98]

Теория пассивности уже частично рассматривалась выше, и следует вновь обратиться к этому материалу (см. разд. 5.2). Контактирующий с металлической поверхностью пассиватор действует как деполяризатор, вызывая возникновение на имеющихся анодных участках поверхности высоких плотностей тока, превышающих значение критической плотности тока пассивации /крит-Пассиваторами могут служить только такие ионы, которые являются окислителями с термодинамической точки зрения (положительный окислительно-восстановительный потенциал) и одновременно легко восстанавливаются (катодный ток быстро возрастает с уменьшением потенциала — см. рис. 16.1). Поэтому трудновос-станавливаемые ионы SO или СЮ не являются пассиваторами для железа. Ионы NOj также не являются пассиваторами (в отличие от ионов NO2), потому что нитраты восстанавливаются с большим трудом, чем нитриты, и их восстановление идет столь медленно, что значения плотности тока не успевают превысить /крит-С этой точки зрения количество пассиватора, химически восстановленного при первоначальном контакте с металлом, должно быть по крайней мере эквивалентно количеству вещества в пассивирующей пленке, возникшей в результате такого восстановления. Как отмечалось выше, для формирования пассивирующей пленки на железе требуется количество электричества порядка 0,01 Кл/см (в расчете на видимую поверхность). Показано, что общее количество химически восстановленного хромата примерно эквивалентно этой величине, и, вероятно, это же справедливо и для других пассиваторов железа. Количество хромата, восстановленного в процессе пассивации, определялось по измерениям [4—6] остаточной радиоактивности на промытой поверхности железа после контакта с хроматным раствором, содержащим Сг. Принимая, в соответствии с результатами измерений [7], что весь восстановленный хромат (или бихромат) остается на поверхности металла в виде адсорбированного Сг + или гидратированного  [c.261]

А. М. Ампер, выполнив множество экспериментов по изученлю взаимодействия между электрическим током и магнитом, устанавливает основные законы взаимодействия токов и предлагает первую теорию магнетизма. Громадным вкладом в развитие теории и практики электромагнетизма явились исследования выдающегося английского физика-экспериментатора М. Фарадея. В 1821 г. он впервые создал лабораторную модель электродвигателя, осуществив вращение магнита вокруг проводника с током. В 1831 г. он открыл явление электромагнитной индукции и установил его законы. М. Фарадей впервые ввел понятие электромагнитного поля как передатчика взаимодействия между заряженными телами. Пространство, которое у Ньютона выступало как пассивный свидетель физических явлений, оживает и становится их участником. 96  [c.96]

Неииерциальные системы и свойства пространства. Одним из самых важных следствий специальной теории относительности явилась замена ньютоновских представлений об абсолютных пространстве и времени на новую физическую сущность — единое четырехмерное пространа во-время (пространство Минковс-кого). Нет пространства отдельно от времени и нет времени отдельно от пространства — формулы (83) связали эти два прежде независимых понятия в единое целое. Но пространство Мин-ковского является экстраполяцией классического трехмерного пространства на еще одно намерение и поэтому также имеет абсолютный характер. В специальной теории относительности пространство-время пассивно — оно является все той же ареной , на которой разыгрываются физические процессы, не оказывая обратного воздействия на нее.  [c.140]

Замечания о применении общих теорем динамики системы материальных точек. В теоремах 1 и 2 и в теореме этого параграфа, примененной для неизменяемой системы точек, речь шла о заданных внешних активных силах. Этим подчеркивалось, что в формулы не входпли ни внутрепние силы, ни реакции связей (внешние пассивные силы, не являющиеся заданными). При этом всюду в механике системы мы рассматривал п идеальные с в я з и, т. е. связи без трения.  [c.354]

В теории пластичности очень важно различать процессы активной и пассивной деформаций. Активной деформацией называется такая, при которой каждое очередное значение интенсивности напрягкений О больше всех предшествующих. Если i меньше хотя бы одного из предшествующих значений, то деформацию следует называть пассивной. Разгрузка является пассивной деформацией, а простое нагружение — активной деформацией.  [c.283]

В ранний период развития теории механизмов и машин — в XIX и начале XX столетий — определение подвижности кинематических цепей и механизмов основывалось лишь на учете геометрокинематических связей между звеньями. На этом основании были получены формулы акад. П. Л. Чебышева, проф. А. П. Малышева и другие для определения подвижности кинематических цепей механизмов и машин. Однако эти формулы в значительном количестве случаев не обесг[ечивали верных результатов, так как в них не были учтены действуюш,ие на звенья силы, пассивные звенья, находящиеся в составе механизмов, но не влияюш,ие на движение других звеньев, общие ограничения, накладываемые на движение всех звеньев, наличие изменяемых по длине звеньев и т. п.  [c.26]


Смотреть страницы где упоминается термин Пассивность теория : [c.310]    [c.62]    [c.64]    [c.64]    [c.80]    [c.102]    [c.28]    [c.141]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.50 ]



ПОИСК



Две задачи теории пластичности. Активная, пассивная и нейтральная деформация. Простое ч сложное нагружения

Механизм и теория пассивного состояния металлов

Нержавеющие Пассивность — Природа и теори

Основы теории защиты металлов от коррозии ингибиторами Механизм возникновения пассивного состояния

Основы теории пластичности Основные уравнения теории пластичности Две задачи теории пластичности. Активная и пассивная деформации. Простое нагружение

Пассивность

Теория пассивности адсорбционная

Теория пассивности адсорбционная пленочная

Теория пассивности адсорбционная растворов газовая

Теория пассивности адсорбционная химическая

Теория пассивности металлов

Теория пассивности металлов В. А. Кистяковского



© 2025 Mash-xxl.info Реклама на сайте