Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пленки на металле

КЛАССИФИКАЦИЯ ПЛЕНОК НА МЕТАЛЛАХ ПО ТОЛЩИНЕ  [c.31]

Жаростойкость металлов, а также законы роста толщины пленок на металлах h во времени т, т. е. /г = / (т), в значительной степени зависят от защитных свойств образующихся пленок.  [c.32]

УСЛОВИЕ СПЛОШНОСТИ ПЛЕНОК НА МЕТАЛЛАХ  [c.32]

Таким образом, ориентировочно можно считать, что достаточно хорошими защитными свойствами могут обладать лишь пленки на металлах, удовлетворяющие условию  [c.33]


Рис. 22. Схема процесса образования пористой окисной пленки на металле Рис. 22. Схема процесса образования пористой <a href="/info/50888">окисной пленки</a> на металле
Рост тонких окисных пленок на металлах при низких температурах (на меди в кислороде при температуре до 100° С, на тантале при температуре до 150° С, на алюминии, железе, никеле и  [c.47]

Все эти напряжения могут вызывать механическое разрушение защитных пленок на металлах с соответствующим ухудшением или полной потерей их защитных свойств. Это вносит значительные осложнения в простейшие законы окисления металлов (рис. 47) и часто приводит к замене диффузионного контроля процесса окисления металла диффузионно-кинетическим или кинетическим контролем, т. е. к переходу от окисления металла по  [c.76]

На сохранность защитных пленок на металлах влияет целый ряд факторов 1) величина и характер внутренних напряжений и внешних механических нагрузок 2) механические свойства защитной пленки, в первую очередь ее прочность и пластичность 3) сцепление защитной пленки с металлом 4) разность линейных и объемных коэффициентов теплового расширения металла и защитной пленки.  [c.77]

Законы роста окисных пленок на металлах (по Кубашевскому и Гопкинсу)  [c.80]

Рис. 50. Типичные кривые законов роста пленок на металлах Рис. 50. Типичные кривые законов роста пленок на металлах
На рис. 50 приведены для сопоставления типичные кривые роста пленок на металлах.  [c.80]

Явление отрицательного разностного эффекта имеет несколько объяснений 1) разрушение защитной пленки на металле при его  [c.296]

Коррозия вблизи ватерлинии, т. е. в зоне периодического смачивания (от 0,4 до 1 м и более над уровнем морской воды), часто бывает усиленной (рис. 284), что обусловлено облегченным доступом кислорода к поверхности металла, ухудшением условий для возникновения и сохранения защитных пленок на металле при периодическом смачивании и энергичным коррозионным воздействием брызг морской воды (при быстром испарении брызг образуются кристаллики морской соли, смоченные насыщенным раствором, которые затрудняют появление и сохранение защитных пленок лучи солнца нагревают металлы и ускоряют коррозионный процесс в условиях усиленной аэрации).  [c.399]


Рентгенографический метод, в частности, микроанализ с помощью электронного зонда пригоден для исследования продуктов, образующих пленку на металлах определения размеров и ориентации кристаллов, а также измерения параметров кристаллической решетки.  [c.436]

Законы роста пленок на металлах  [c.137]

На сохранность пленок на металлах влияет целый рдц факторов  [c.11]

HF, H l). Рекомендуется также проводить тщательную подготовку кромок под сварку, удаляя частично гидратированные оксидные пленки на металле, уменьшать содержание водяных паров в атмосфере дуги путем высушивания защитных газов (СО2, Аг), прокаливать электродные покрытия и сварочные флюсы перед сваркой.  [c.405]

Безокислительные условия горячей и теплой деформации ниобия, тантала, титана, циркония, ванадия, хрома (вторая группа) не обеспечиваются при технически допустимом вакууме, так как они обладают низкой упругостью диссоциации окислов. Однако анализ кинетики окисления показывает, что при переходе к низкому вакууму скорость протекания реакций окисления резко уменьшается. Поэтому изменение глубины вакуума должно вызвать изменение толщины и свойств окисной пленки на металле (см. рис. 278).  [c.527]

В работе [31] была предложена физико-математическая модель процесса атмосферной коррозии и оценены скорости коррозионного разрушения металлов и покрытий на их основе с учетом факторов, оказывающих наибольшее влияние на процесс коррозии температуры, продолжительности существования фазовой пленки на металлах, поверхностной концентрации хлоридов и концентрации сернистого газа, а также были получены значения коэффициентов коррозии различных металлов в атмосферных условиях.  [c.51]

Рис. 3-26. Зависимость р, tg 6 и р кремнийорганической пленки на металле от температуры. Рис. 3-26. Зависимость р, tg 6 и р кремнийорганической пленки на металле от температуры.
Поверхности нагрева парового котла в ходе эксплуатации покрываются нарастающими со временем эоловыми отложениями. Для снижения влияния эоловых отложений на теплообмен на котле устанавливаются очистные устройства различного принципа действия. В циклах очистки часто имеет место не только отделение отложений золы от поверхности труб, но и повреждение защитной оксидной пленки на металле, что снижает ее диффузионное сопротивление и тем самым неизбежно приводит к интенсификации коррозии.  [c.7]

СВОЙСТВА ОКСИДНОЙ ПЛЕНКИ НА МЕТАЛЛЕ Начальная стадия образования оксида  [c.46]

Наряду с образованием зародышей оксида и кристаллов в форме бугорков и многогранников, в многочисленных случаях в реакциях между металлом и кислородом наблюдается также рост оксида в форме острых игл, листообразных и пластинчатых кристаллов и столбиков. Рост таких образований не всегда происходит из чистого металла, а связан с существованием первоначальной оксидной пленки на металле. Места расположения таких кристаллов определены структурой металла либо существующих на ее оксидных слоях зародышей.  [c.47]

Во-вторых, движение в оксидной пленке анионов внутрь с использованием вакантных мест анионов. При таком характере движения анионов их концентрация около поверхности раздела металл — оксид мала в сравнении с их концентрацией на внешней поверхности оксида. Определяющим при таком механизме окисления является непрерывное снижение концентрации анионов кислорода в сторону металла. Этим обусловлено и то обстоятельство, что в отличие от других рассмотренных вариантов здесь нарастание оксидной пленки на металле протекает с наружной стороны во внутрь.  [c.53]

Равномерная коррозия металлов наблюдается в тех случаях, когда агрсссншнче среды не образуют защитных пленок на металле или когда сплав состоит из равномерно распределенных мелкозернистых анодных и катодных участков. Р1нтенсивиая равномерная коррозия наблюдается при коррозии меди в азотной кислоте, железа в соляной кислоте, алюминия в едких щелочах, цинка в серной кислоте. В некоторых случаях равномерная коррозия не вызывает значительного разрушения металла, тем не менее она может быть нежелательной из-за других причин (потускнение поверхности металла, загрязнение раствора продуктами коррозии и др.). При равномерной коррозии продукты коррозии обычно не отлагаются па поверхиости металла.  [c.160]


Кроме расс.мотренных методов испытаний, применяемых при лабораторных исследованиях, в последние годы разработан ряд новых физико-химических методов, к числу которы.х относится применение меченых атомов, оптические методы измерения толщины тонких пленок на металлах, определение структуры окис-ных тенок на металлах и др. Эти методы отличаются большой чувствительностью и пригодны для решения ряда важных теоретических вопросов.  [c.351]

Опасными для коррозии арматуры представляются также ионы хлора, разрушающие пассивные пленки на металле и приводящие часто к пит-тинговой коррозии арматуры.  [c.53]

Это уравнение называют логарифмическим. Соответственно, график, построенный в координатах у — g t + onst) или у — — Ig t (при t > onst) имеет вид прямой линии. Логарифмическое уравнение, впервые полученное Тамманном и Кестером [11], отражает поведение многих металлов (Си, Fe, Zn, Ni, Pb, d, Sn, Mn, Al, Ti, Та) на начальных стадиях окисления. Вначале справедливость этого уравнения ставилась под сомнение. Были сделаны попытки вывести уравнения на основе предположений о существовании специфических свойств оксидов, таких как наличие диффузионных барьеров и градиентов ионной концентрации и других. Эти предположения не получили экспериментального подтверждения. С другой стороны, было показано, что логарифмическое уравнение можно вывести из условия, 4TQ скорость окисления контролируется переходом электронов из металла в пленку продуктов реакции, причем эта пленка имеет пространственный электрический заряд во всем своем объеме (7, 12]. Преобладание заряда, обычно отрицательного, в оксидах вблизи поверхности металла, подобно электрическому двойному слою в электролитах, было установлено экспериментально. Таким образом, любой фактор, изменяющий работу выхода электрона (энергию, необходимую для удаления электрона из металла), например ориентация зерен, изменения кристаллической решетки или магнитные превращения (точка Кюри), изменяет скорость окисления, что и наблюдалось в действительности [13—15. Когда толщина пленки превышает толщину пространственно-заряженного слоя, определяющим фактором обычно становится скорость диффузии или миграции сквозь пленку. При этом начинает выполняться параболический закон, и ориентация зерен или точка Кюри перестают оказывать влияние на скорость окисления. Исходя из этого, можно сказать, что в начальной стадии оксидная пленка на металлах  [c.193]

Для чистых металлов излучательная способность зависит главным образом от состояния поверхности. Если металлы имеют чистую поверхность, они имеют малую излучательную способность и значительную селективность излучен1я. Селективность излучения их уменьшается с увеличением шероховатости и степени окислеиия поверхности. Если поверхность тела покрывается слоем вещества, сильио поглощающего лучистую энергию, то излучательная способность такого тела увеличивает я. Можно, наоборот, уменьшить излучательную способность тела, если еп) поверхность покрыть пленкой вещества, обладающего большой отражательной способностью. При этом необходимо иметь в виду, что при малой толщине пленки излучающие свойства тела зависят не только от свойств пленки, но также II от свойств вещества, на которое эта пленка наносится. Толщина оксидных пленок на металлах зависит от температуры и увеличивается со временем. Следовательно, в зависимости от. этих факторов изменяется и излучательная способность металлов. Излучение всех тел зависит от температуры. С увеличением температуры излучение увеличивается, так как увеличивается внутренняя энергия тела.  [c.348]

ТакнГм образом, рост пленок на металлах идет обычно по линейному, параболическому или логарифмическому закону (рис. 26, б), что соответствует типовым кривым для стационарных и монотонных процессов (см. табл. 9).  [c.104]


Смотреть страницы где упоминается термин Пленки на металле : [c.29]    [c.45]    [c.46]    [c.58]    [c.76]    [c.333]    [c.435]    [c.107]    [c.10]    [c.10]    [c.11]    [c.11]    [c.177]    [c.228]   
Коррозия и защита от коррозии (2002) -- [ c.8 , c.42 , c.46 , c.54 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте