Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сернистый ангидрид

При сгорании серы образуется токсичный сернистый ангидрид SO2 и (в небольших количествах) еще более токсичный серный ангидрид SO3. Выброс их с продуктами сгорания вызывает загрязнение воздушного бассейна. Количество серы, входящей в состав органической массы топлива (так называемой органической серы S J ), не зависит от возраста угля и различно в углях разных месторождений.  [c.119]

Большие надежды в настоящее время возлагаются на внедрение котельных топок, сжигающих топливо в режиме кипящего слоя. Как указывалось в гл. 17, в кипящем слое возможно ведение процесса горения при температуре, не превышающей 950 °С. В этом случае азот воздуха не окисляется, а сернистый ангидрид реагирует с добавляемыми в слой или содержащимися в минеральной части самого топлива соединениями кальция и магния, поглощаясь, таким образом, самим слоем и не уходя за пределы топки.  [c.164]


Сернистый ангидрид 50.2 — бесцветный, с острым запахом газ. Раздражающее действие на верхние дыхательные пути объясняется поглощением 50.2 влажной поверхностью слизистых оболочек и образованием в них кислот. Он нарушает белковый обмени ферментативные процессы, вызывает раздражение глаз, кашель.  [c.9]

Сернистый ангидрид дает с медью смешанные окисные и су л ь ф и д н ы е п л е н к и  [c.154]

Три разобщенных между собой сосуда А, В, С заполнены различными газами. В сосуде А, имеющем объем 10 л, находится сернистый ангидрид SO2 при давлении 6 МПа и температуре 100° С, в сосуде В с объемом 5 л — азот при давлении 0,4 МПа и температуре 200° С и в сосуде С с объемом 5 л — азот при давлении 2 МПа и температуре ЗСЮ° С.  [c.64]

Сернистый ангидрид 23, 27, 31, 33, 38—40 Сечение рассеяния электронов на примесях 168  [c.931]

Одноатомные и двухатомные газы, состоящие из однородных атомов (водород, кислород, азот), обладают небольшой поглощательной способностью и в большинстве случаев могут быть отнесены к диатермическим телам. Другие газы способны излучать и поглощать заметные количества энергии. К ним относятся углекислый газ, водяной пар, сернистый ангидрид, аммиак, окись углерода и др.  [c.434]

Давление насыщенных паров хладоагента, соответствующее требуемым температурам, должно быть близким. к атмосферному, чтобы противостоять присосам воздуха или утечкам хладоагента. Например, температура кипения аммиака при атмосферном давлении равна минус 33,5 °С, сернистого ангидрида — минус 10 °С, хладона-12 — минус 30 °С, хладона-22 — минус 42 °С. Абсолютные давления насыщенных паров холодильных агентов при различных температурах даны в табл. 9.1.  [c.231]

Воздушные холодильные установки обладают рядом неудобств и в последнее время вышли из употребления. Вместо них широкое распространение получают холодильные установки, в которых в качестве рабочих тел применяют легкокипящие жидкости аммиак, углекислоту, сернистый ангидрид, фреоны.  [c.203]

Горение серы с образованием сернистого ангидрида  [c.147]

Следовательно, на 1 кг серы приходится 1 кг или 0,698 м кислорода и 2 кг или 0,699 м сернистого ангидрида.  [c.147]

В технике широко применяют пары различных веществ воды, аммиака, хлористого метила, сернистого ангидрида и др. Наибольшее при-  [c.98]

Особо важное значение в практике теплотехнических установок придают излучению трехатомных компонентов продуктов сгорания топлива—углекислоты СО2, сернистого ангидрида SO2 и водяного пара Н2О. Излучение этих газов сильно отличается от излучения твердых тел.  [c.191]

При горении 1 кг серы расходуется 1 кг кислорода, а в результате реакции образуется 2 кг сернистого ангидрида SO2 и выделяется 9,04 МДж тепла.  [c.106]


Таким образом, при полном сгорании горючих элементов топлива образуются углекислый газ СО2, водяные пары HjO и сернистый ангидрид SO2.  [c.106]

Исследования [142] показали, что для котла блока 800 МВт сжигание угля в кипящем слое по сравнению с камерным сжиганием может обеспечить экономию металла, работающего под давлением, на 30—35 %, а по габаритам котел имеет выигрыш даже по сравнению с вихревой топкой. Экспериментально установлено, что для угольных электростанций с котлами, оборудованными топками с кипящим слоем, где одновременно с процессом горения топлива происходит процесс полной десульфурации дымовых газов за счет реакции сернистого ангидрида с известняком (доломитом), при избыточном давлении общий КПД ТЭС составляет 38—42 %, а при атмосферном —  [c.269]

Ежегодно в мире в результате сжигания органических топлив в атмосферу выбрасывается до 100 млн. т золы и около 150 млн. т сернистого ангидрида. Из топки одного только парового котла производительностью 950т/ч при сжигании антрацитового штыба в атмосферу поступает до 60 т оксидов азота в сутки. При взаимодействии с атмосферной влагой эти оксиды образуют кислоты, выпадающие в районе высокой концентрации промышленных предприятий даже в виде кислотных дождей .  [c.164]

Элементарный состав автомобильных нефтяных топлив — это углерод, водород, в незначительных количествах кислород, азот и сера. Атмосферный воздух, явл яющийся окислителем топлив, состоит, как известно, в основном из азота (79%) и кислорода (около 21%). При идеальном сгорании стехиометрической смеси углеводородного топлива с воздухом в продуктах сгорания должны присутствовать лишь N-2, СО2, Н.2О. В реальных условиях ОГ содержат также продукты неполного сгорания (окись углерода, углеводороды, альдегиды, твердые частицы углерода, перекисные соединения, водород и избыточный кислород), продукты термических реакций взаимодействия азота с кислородом (окислы азота), а также неорганические соединения тех или иных веществ, присутствующих в топливе (сернистый ангидрид, соединения свинца и т. д.).  [c.5]

Всего в ОГ обнаружено около 280 компонентов. По своим химическим свойствам, характеру воздействия на организм человека вещества, содержащиеся в отработавших и картерных газах, подразделяются на несколько групп. В группу нетоксичных веществ входят азот, кислород, водород, водяной пар, а также углекислый газ. Группу токсичных веществ составляют окись углерода СО, окислы азота N0 , многочисленная группа углеводородов С Н 1, включающая парафины, олефины, ароматики и др. Далее следуют альдегиды Я СНО, сажа. При сгорании сернистых топлив образуются неорганические газы - сернистый ангидрид ЗОз и сероводород НзЗ.  [c.5]

Для анализа СО в ОГ применяются в основном методы инфракрасной спектроскопии (ИКС). ИКС базируется на селективном поглощении инфракрасного излучения в области длин волн 4,7 мкм. ИКС-анализаторы обладают высокой селективностью, стабильностью и надежностью показаний. Преимущественное распространение получили бездисперсионные анализаторы, работающие на полихроматическом излучении, в которых применяются оптико-акустические детекторы, заполненные анализируемым газом. Эти приборы отличают простота и надежность конструкции устойчивость к механическим и тепловым нагрузкам, что и определило их преимущественное распространение. При заполнении рабочих полостей другим газом (метаном, сернистым ангидридом, двуокисью углерода, окисью азота) и соответствующей корректировке оптической и измерительной систем ИКС-анализаторы могут быть использованы и для анализа других компонентов отработавщих газов.  [c.20]

При сгорании сернистных топлив в дизеле сернистый ангидрид взаимодействует с материалом носителя — А Од, образуя сульфат алюминия, способствующий снижению пористости и газопроницаемости катализатора. Сульфат алюминия легко растворяется в воде, поэтому процесс регенерации можно разделить на три стадии промывка катализатора водой с целью удаления основного количества сажи выдерживание катализатора в воде в течение суток для растворения сульфата алюминия и далее промывка катализатора водой с использованием сжатого воздуха, способствующему активному перемешиванию катализатора.  [c.76]


Наибольшее распространение для охлаждения тел до температуры —20° С иолучили холодильные установки, в которых холодильным агентом являются легкокииящие жидкости — аммиак, фреоны, сернистый ангидрид и другие ири невысоких давлениях (желательно близких к атмосферному).  [c.336]

Псркипса [26] (см. также [2]) испаряемой жидкостью являлся сорный зфир, который также служил рабочим веществом и в усовершенствованной машине Гаррисона (1857 г.) (см., например, [1]). Аммиак как рабочее вещество (широко применяемое и до настоящего времени) был виертше использован Линде в 1876 г. [27] (см. также [1]). Тогда же Пикте [28] впервые использовал сернистый ангидрид.  [c.23]

Температуры кипения различных веш,еств, пригодных для использования п паровых компрессионных машинах, приведены в табл. 3, в которой эти вещества расположены в порядке понижения температур кинения. Шесть веществ, температуры кипения которых выше, чем у сернистого ангидрида, наиболее удобны для работы при сравнительно высоких температурах охлаждения, которые требуются при кондиционировании воздуха, в транспортных холодильниках и т. п. Для остальных веществ в табл. 6 приведены величины давлений в испарителе /), и степени сжатия г для цикла сухого сжатия между температурами 30 и —50° С. Из табл. 6 видно, что вещества с низкими температурами кипения требуют таких степеней сжатия, которые могут быть получены в одноступенчатых машинах. Однако практически для работы при температуре —50° С и ниже более экономичны двухступенчатые машины.  [c.33]

Каскадные компрессионные машины и ожижение воздуха. Исторически получение возможно более низких температур с помощью паровых компрессионных машин преследовало цель достижения температуры, достаточно низкой для сжижения воздуха, азота или кислорода простым сжатием. Критические температуры этих так называемых постоянных газов (см. табл. 8) равны соответственно 132,5 126 и 154,3° К. Поэтому в испарителе необходима была температура ниже —147° С. Как указывалось выше, для достижения низких температур испарения требуются рабочие вещества с более низкими температурами кипения, чем у аммпака, сернистого ангидрида и т. п. Подходящими являются такие вещества, как, например, этилен и метан (см. табл. 3). Однако критические температуры этих веществ лежат значительно ниже температуры окружающей среды (282,8° К для этилена и 190,6° К. для метана), и поэтому для их конденсации в паровом комнресснонном цикле необходимо использовать испарители других вспомогательных компрессионных машин, работающих при более высоких температурах при этом получается так называемая каскадная система.  [c.38]

Приведенные в этой таблице основные данные о рабочих веществах, температурах и давлениях характеризуют исторические этапы в развитии каскадных методов ожижения воздуха [1]. В табл. 7 приведены также данные, относящиеся к первой попытке Пикте ожижить воздух в 1877 [64]. Последний, используя сернистый ангидрид и углекислоту в двухкаскадной системе, считал, что достиг в углекислотном испарителе температуры 133° К.  [c.39]

Главный загрязнитель промышленной и городской атмосферы -сернистый газ, который образуется при сжигании серосодержащих топлив всех видов - твердого, жидкого и газообразного. Подсчитано, что количество образующегося сернистого ангидрида составляет 2-8 % сжигаемого топлива, это приводит к появлению в мировом воздушном океане 60—90 млн. т серного ангидрида, в результате чего скорость коррозии в рромышленной атмосфере в десятки раз выше, чем в сельской. Так, по данным Института стали и железа (Великобритания), скорость коррозии стали в г. Хартум (Судан) в 100 раз меньше, чем в г.Тротингеме (Великобритания), воздух которого сильно загрязнен примесями.  [c.6]

Окись углерода Сернистый ангидрид Углекислий газ Хлор  [c.45]

Хладагентом паровой холодильной установки являются пары таких легко-кипящих веществ, как аммиак N113, углекислота СО2, сернистый ангидрид 802, хлорметан СН3С1, фреон СОгРг.  [c.74]

В паровой компрессионной холодильной машине в качестве холодильного агента используется влажный пар какой-либо низко-кипящей жидкости, у которой температура кипения при атмосферном давлении < 0° С. К этим жидкостям относятся углекислота СОз, аммиак NH3, хлорметил H3 I, сернистый ангидрид SO2, фреоны различных типов. Холодильный цикл этой машины располагается в области влажного пара низкокипящей жидкости и по своим свойствам близок к обратному циклу Карно.  [c.81]

Газы также обладают способностью испускать и поглощать лучистую энергию, но для разных газов эта способность различна. Для одно- и двухатомных газов, в частности для азота (N2), кислорода (О2) и водорода (Нг), она ничтожна практически эти,газы для тепловых лучей прозрачны — диатермичны. Значительной из-лучательной и поглощательной способностью, имеющей практическое значение, обладают лишь многоатомные газы, в частности углекислота (СО2), водяной пар (Н2О), сернистый ангидрид (SO2), аммиак (NH3) и др. Для теплотехнических расчетов наибольший интерес представляют углекислый газ и водяной пар эти газы образуются при горении топлива.  [c.169]

В пробе конденсата проверяется наличие растворенного сернистого ангидрида. Для этого используется 0,02 н. раствор иода в присутствии крахмала с последующим титрованием раствором N328203.  [c.92]

Газообразная фракция выбросов характерна для всех видов топлива и состоит при полном его сгорании из двуокиси углерода, окислов серы и азота, а нри ыенолном сгорании — еш е и окиси углерода, смолистых веществ и углеводородов. Окислы серы, преимущественно сернистый ангидрид (96—99 % горючей серы в топливе), весьма токсичны. В связи с этим ПДК для сернистого ангидрида (SOa) в СССР неоднократно снижались в 1962 г. максимальная разовая концентрация составляла 0,75 мг/м и среднесуточная — 0,25, в 1985 г. они были снижены до 0,5 н 0,05 мг/м соответственно. Хп-мическое и фотохимическое окисление SOj приводит к образованию кислотных туманов, и осадков. Концентрация SOg в 3,3—4 мг/м являлась причиной резкого повышения смертности населения в Лондоне в 1952 и 1962 гг. Наибольшее количество выделений окислов серы в атмосферу характерно для продуктов сгорания жидкого топлива.  [c.237]


Радикально снизить вредное воздействие теплоисточников на атмосферу городов позволяет изменение их топливного баланса с повышением доли высококачественных топлив, дающих наименьший выход вредных веществ при сжигании прежде всего природного газа, в продуктах сгорания которого отсутствуют сернистый ангидрид и золовые частицы. При сжигании угля, мазута и природного газа на единицу полученного тепла выбросы окислов азота находятся в соотношении 100 43 28. При сжигании природного газа весьма существенно снижается и поступление в атмосферу бенз(а)нирена. Опыт городов европейской части СССР убенодает в том, что перевод источников теплоснабжения сибирских городов на природный газ должен рассматриваться как весьма действенный способ снижения выбросов вредных веществ в атмосферу. Такой путь решения проблемы чистоты воздушного бассейна над промышленными центрами Восточной Сибири представляется весьма реальным при освоении при-ленских и южно-якутских месторождений природного газа.  [c.262]


Смотреть страницы где упоминается термин Сернистый ангидрид : [c.276]    [c.329]    [c.262]    [c.27]    [c.31]    [c.34]    [c.263]    [c.267]    [c.1193]    [c.231]    [c.233]    [c.57]    [c.333]    [c.394]    [c.165]    [c.234]   
Смотреть главы в:

Машиностроение Энциклопедический справочник Раздел 4 Том 12  -> Сернистый ангидрид

Коррозионная стойкость металлов и сплавов  -> Сернистый ангидрид

Коррозия и защита от коррозии  -> Сернистый ангидрид

Справочник по теплофизическим свойствам газов и жидкостей  -> Сернистый ангидрид


Физика низких температур (1956) -- [ c.23 , c.27 , c.31 , c.33 , c.38 , c.40 ]

Машиностроительные материалы Краткий справочник Изд.2 (1969) -- [ c.280 ]

Теплотехнический справочник (0) -- [ c.232 ]

Промышленные котельные установки Издание 2 (1985) -- [ c.16 ]

Теплотехнический справочник Том 1 (1957) -- [ c.232 ]

Промышленные парогенерирующие установки (1980) -- [ c.17 ]

Техническая энциклопедия Том20 (1933) -- [ c.0 ]

Справочник по теплофизическим свойствам газов и жидкостей (1963) -- [ c.443 ]

Техническая энциклопедия том 25 (1934) -- [ c.0 , c.387 ]



ПОИСК



Агрессивные среды неорганические сернистый ангидрид

Ангидрид

Ангидрид сернистый — Коэффициент

Ангидрид сернистый — Коэффициент теплопроводности

Ангидрид сернистый — Пары насыщенные— Свойства

Диаграмма i-lg р для сернистого ангидрида

Коррозия, вызываемая парами серы, сернистым ангидридом и сероводородом

Насыщенный пар сернистого ангидрида

Образование серного ангидрида в дымовых газах паровых котлов при сжигании сернистого мазута

Пары аммиака насыщенные сернистого ангидрида насыщенные — Свойства

Пары — Коэффициент теплопроводност сернистого ангидрида насыщенные — Свойства

Пары — Коэффициент теплопроводности сернистого ангидрида насыщенные — Свойства

Сернистый ангидрид - Вязкость динамическая

Сернистый газ

ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛ 552 ТЕРМИЧЕСКИЙ сернистого ангидрида

Теплоемкость сернистого ангидрида

Энтальпия сернистого ангидрида

Энтропия азота сернистого ангидрида

Энтропия сернистого ангидрида



© 2025 Mash-xxl.info Реклама на сайте