Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы осаждения-напыления

Методы осаждения - напыления  [c.108]

По способу изготовления КМ подразделяют на полученные жидко- и твердофазными методами, методами осаждения — напыления и комбинированными методами. К жидкофазным методам относят пропитку арматуры полимером или жидким металлом, а также направленную кристаллизацию. К твердофазным методам относятся прессование, прокатка, экструзия, ковка, сварка взрывом, волочение, диффузионная сварка, при которых компоненты формируются в КМ, где в качестве матрицы используют порошки или тонкие листы (фольги). При получении КМ осаждением — напылением матрица наносится на волокна из раствора солей, парогазовой фазы, плазмы. Комбинированные методы предусматривают совмещение нескольких методов. Например, пропитку или плазменное распыление используют в качестве предварительной операции, а прокатку, прессование или диффузионную сварку — окончательной.  [c.119]


Аморфные твердые тела с тетраэдрическими связями, такие, как кремний, германий, соединения А В . Эти полупроводники в аморфном состоянии нельзя получить путем охлаждения расплава. Их получают, обычно, в виде тонких пленок с помощью различных методов осаждения (термическое испарение в вакууме, катодное напыление и т. д.). Их свойства в значительной степени подобны свойствам кристаллических аналогов.  [c.360]

По этим причинам обычно приходится производить анализ специальных образцов, которые могут быть обработаны в ванне расплавленного металла методом металлического напыления на инертный металл, например стекло, или путем гальванического либо химического осаждения на основной металл в условиях, не препятствующих извлечению этих образцов после осаждения.  [c.135]

Исходные материалы. Матрицу в исходном состоянии чаще всего применяют в виде фольги металлов или силавов. Иногда матрица может быть применена в виде слоев, нанесенных на упрочнитель тем или иным методом. В качестве упрочнителей применяют нитевидные кристаллы, волокна и проволоки из раз-личных металлов или сплавов. Нитевидные кристаллы, волокна и проволоки могут быть применены как в виде отдельных кристаллов, моноволокон и проволок, так и в виде различного вида полуфабрикатов матов, жгутов, тканей, сеток и др. Кроме того, упрочнители часто применяют в виде своеобразного предварительного композиционного материала, представляющего собой отдельные кристаллы, волокна или проволоки, заключенные в матрицу. При этом материал матрицы может наноситься на упрочнитель методами плазменного напыления, химического и электрохимического осаждения, осаждения из газовой фазы, протяжки волокна через расплав матрицы и др. Более подробно технология изготовления таких предварительных композиционных материалов описана в соответствующих разделах по технологии изготовления композиционных материалов.  [c.120]

Метод вакуумного напыления. Сущность метода физического осаждения в вакууме состоит в том, что при высокой температуре в динамическом высоком вакууме происходит интенсивное испарение жидкого (или твердого) металла, пары которого конденсируются на покрываемом изделии и холодных частях установки. При этом давление пара напыляемого металла должно быть таким, чтобы длина свободного пробега атомов его была больше расстояния между зоной испарения и зоной конденсации на подложке. В работе [95] приводится эмпирическая зависимость длины свободного пробега атомов от условий проведения процесса осаждения  [c.105]


Молибден и другие тугоплавкие металлы (в частности, вольфрам) обычно испаряют электронно-лучевым нагревом в условиях глубокого вакуума (10 —10- мм рт. ст.). Метод вакуумного напыления имеет следующие недостатки 1) большие потери, напыляемого металла 2) загрязнение покрытия остаточными газами в камере и в исходном металле 3) трудность нанесения толстых покрытий тугоплавких металлов из-за низкой летучести и малой скорости испарения осаждаемого металла 4) сложность нанесения равномерных по толщине покрытий на подложки с рельефной поверхностью 5) недостаточная термическая стабильность покрытия из-за большого различия в температурах зон конденсации и испарения 6) невозможность получения текстурированных покрытий из-за сложности регулирования режима осаждения 7) недостаточная адгезия покрытия 8) пористость покрытия. Вследствие этих недостатков данный метод нанесения молибденовых и вольфрамовых покрытий широко не применяется.  [c.106]

Метод плазменного напыления при пониженном давлении в инертной атмосфере. Этот метод в последние годы довольно широко применяется для получения пленок с полупроводниковыми свойствами [157]. В этом методе с помощью различных видов самостоятельного (или несамостоятельного) тлеющего разряда удается наносить равномерные по толщине молибденовые (и вольфрамовые) покрытия с высокой адгезией и малым содержанием примесей. В таких установках вводимый инертный газ переходит в состояние плазмы под воздействием высокочастотного пли высоковольтного разряда. Ионная бомбардировка мишени (анода) приводит к ее распылению и осаждению распыленного материала на подложке. Так как вырванные атомы имеют энергию порядка сотни электронвольт, они способны проникать в поверхностный слой подложки и микротрещины, обеспечивая тем самым хорошую адгезию. Несмотря на положительные качества, получать толстые термостабильные покрытия этим методом трудно и дорого.  [c.106]

Экспериментально толщину слоя можно определить различными методами. Например, напылением в вакууме или электролитическим осаждением никеля на железный образец и последовательной съемкой рентгенограмм находят толщину слоя, при которой на рентгенограмме исчезают линии объемно-центрированной решетки.  [c.38]

Все, показанные на рис. 1.33 виды полуфабрикатов можно изготавливать методом непрерывного литья. В ряде случаев требуется предварительное нанесение технологических покрытий на волокна с помощью химического осаждения из растворов или парогазовых смесей. Простейшие ленточные полуфабрикаты удобно получать методом плазменного напыления матричных сплавов на ряды моноволокон или волокнистые препреги. Для их изготовления используют термокомпрессионное горячее прессование — способ, позволяющий получать ленточный фольговый полуфабрикат, армированный одним или несколькими рядами волокон ограниченной длины. Прутки  [c.54]

Условия эксперимента исследовались углеродные пленки двух типов обогащенные водородом а—С Н (тип А) и азотом ta— N (тип В). Пленки получались методом плазменного напыления на кремниевую подложку. Пленки разной толщины получались изменением времени осаждения. Для пленок типа А плазма зажигалась в атмосфере СН4 Не в отношении 30 75 при давлении 0,2 мм рт. ст. и комнатной температуре. Для пленок типа В использовалась смесь ацетилена и азота (30% азота). Для снятия эмиссионных характеристик использовалась конфигурация полусфера—плоскость . Анодом являлось полусфера из нержавею-  [c.204]

Различают два основных метода нанесения полимерных порошковых материалов в электрическом поле метод осаждения порошка в псевдоожиженном состоянии электрическим полем и напыление порошка в электрическом поле.  [c.243]

Преимущества метода ионного осаждения по сравнению с термическим напылением в вакууме заключаются в следующем имеется возможность обрабатывать ионной бомбардировкой подложку и поддерживать ее чистой до момента осаждения покрытия хорошая адгезия покрытия может быть получена и без предварительного нагрева подложки (за счет высокой энергии конденсирующихся атомов и интенсификации процесса диффузии и химических реакций) достигается высокая степень равномерности покрытия по толщине и увеличивается коэффициент использования паров металла. Недостатком метода ионного осаждения является необходимость мощной электронно-лучевой пушки, способной долгое время стабильно работать в условиях тлеющего разряда, а также более сложное оборудование вакуумной установки по сравнению с обычным методом термического напыления в вакууме (вакуумное оборудование для создания предварительного разрежения порядка 10 —Па, необходимость применения инертного газа и т. п.).  [c.14]


Методы термического напыления и ионного осаждения удовлетворяют всем основным критериям прогрессивности. Это, в особенности, относится к непрерывным процессам металлизации.  [c.16]

Попытка количественного сравнения различных методов нанесения покрытий в вакууме предпринята авторами работы [245], причем в каждом из методов учтены их разновидности. Так, метод термического напыления рассмотрен с точки зрения резистивного метода нагрева испаряемого материала, электронно-лучевого и взрывного с непрерывной догрузкой тигля порошком испаряемого материала. В методе катодного распыления рассмотрены обычное высокочастотное распыление и высокочастотное распыление при наличии отрицательного потенциала на подложке. Метод ионного осаждения представлен процессами с применением плазмы, получаемой в разряде постоянного напряжения и в высокочастотном поле, причем каждая из этих разновидностей рассмотрена с точки зрения резистивного и электронно-лучевого испарителя. Для возможности сравнения все рассматриваемые процессы нанесения покрытий были отнесены к вакуумной камере одного и того же размера — цилиндр диаметром 60 см.  [c.16]

Структура и состав цинковых покрытий зависят от метода осаждения. Цинковые покрытия, полученные горячим цинкованием и диффузионным методом, частично или полностью представляют собой сплавы системы железо — цинк. Напыленные и электролитические цинковые покрытия не образуют сплавов электролитическое покрытие состоит в основном из чистого цинка. Характерные свойства каждого покрытия обсуждаются ниже.  [c.413]

Различают два способа нанесения полимерных порошковых материалов в электрическом поле метод осаждения в электрическом поле порошка, находящегося в псевдоожиженном состоянии, и метод напыления в электрическом поле. Осаждение частиц порошка по первому способу можно проводить в ионизированном слое или в облаке заряженных частиц без погружения изделия непосредственно в кипящий слой.  [c.144]

Для твердых материалов (типа вольфрама) способы механического изготовления канавок непригодны. В этих случаях используют метод осаждения паров металлов на охлаждаемую подложку, имеющую форму капиллярной структуры [44]. Можно изготовлять капиллярные структуры посредством плазменного напыления материала на подложку, которая затем вытравливается кислотами [45].  [c.39]

Как известно из отечественной и зарубежной литературы, для защиты углеродных материалов используются самые разнообразные методы, такие кдк плазменное напыление, газофазное осаждение, электролитическое нанесение покрытий, метод диффузионного отжига, наплавка и т. д. [1, 2].  [c.114]

Рассматриваются некоторые свойства, определяющие области применения различных тугоплавких покрытий, нанесенных на углеродные материалы плазменным напылением, газофазным, химическим и электрохимическим методами. Показано, что покрытие из двуокиси циркония, получаемое путем нанесения на графит методом аргоно-дуговой наплавки циркония и окислением последнего в кислороде, отличается высокой термостойкостью, определяемой металлическими прожилками циркония в двуокиси, а также наличием пластичного металлического слоя, демпфирующего напряжения, возникающие в окисной плевке при эксплуатации. Метод газофазного осаждения может быть использован для нанесения различных тугоплавких покрытий как на графитовые изделия, так и в качестве барьерных на углеродные волокна при этом толщина покрытия определяется его назначением. Путем химического и последующего электрохимического наращивания, например меди на углеродные волокна, возможно получение композиции медь—углеродное волокно с содержанием волоков 20—50 об.%.  [c.264]

Современная металлургия обладает целым арсеналом различных технологических методов получения сплавов, полуфабрикатов и изделий из них. Эти методы включают различные виды литья, процессы порошковой металлургии, обработки давлением, напыления и осаждения и многие другие. Основные принципы всех этих технологических способов либо уже применяются, либо могут найти применение при получении металлических композиционных материалов. Выбор технологического метода получения того или иного металлического композиционного материала определяется в основном следующими факторами видом исходных материалов матрицы и упрочнителя возможностью введения упроч-нителя в матрицу без повреждения его, создания прочной связи на границе раздела упрочнитель — матрица и максимальной реализации в материале свойств матрицы и упрочнителя, получения необходимого распределения упрочнителя в матрице, совмещения процессов получения материала и изготовления из него детали экономичностью процесса.  [c.90]

В последнее время для получения композиционных материалов в виде покрытий стали использовать плазменное напыление [5, 6], детонацию [5] и механический способ [7]. Прогрессивным способом получения таких материалов является выделение их из водных сред, при котором предусматривается осаждение композиционных электрохимических покрытий (КЭП) из электролитов с наложением электрического тока или без него. Преимущества этого спосо ба по сравнению с методами порошковой металлургии или высокотемпературного и плазменного напыления заключаются в следующем  [c.7]

После определения конструкции композита - выбора компонентов и распределения их функций, приступают к решению наиболее сложной задачи изготовлению композиционного материала, вк.тючающему выбор геометрии армирования (например, различного рода плетения) и наиболее эффективного технологического метода соединения компонентов композита друг с другом (например, золь-гель методы, методы порошковой металлургии, методы осаждения-напыления и другие). Однако основная сложность заключается не в сборке отдельных компонентов композита, а в образовании между ними прочного и специфического соединения. При этом большую роль играет предварительный анализ фаничных процессов, происходящих в системе. Межфазное взаимодействие оказывает влияние на прочность связи компонентов, возможность химических реакций на границе и образование новых фаз, формируя такие характеристики композита, как термостойкость, устойчивость к действию агрессивных сред, гфочность и дру гие важные экс-штуатационные характеристики нового материала. Осуществление кон-тpOJ я не только за составом, но и за структурой требует развития теории, которая позволила бы предсказать, как будет влиять то или иное изменение на свойства композита. Когда стало расти число возможных комбинаций матрицы и армирующих волокон, а простое слоистое армирование начало уст пать место армированию сложными переплетениями, исследователи стали искать пути, позволяющие избежать чисто эмпирического подхода. Задача состоит в том, чтобы по характеристикам волокна (частиц и др.), матрицы и по их компоновке заранее предсказать поведение композита.  [c.12]


Металлические композиционные материалы изготавливают твер-дофазньг ш и жидкофазными методами, методами осаждения - напыления, возможны также комбинированные методы.  [c.106]

Химико-термические методы упрочнения поверхности для повышения износостойкости за счет увеличения поверхностной твердости (цементация, азотирование, цианирование, борирование и др. процессы) весьма эффективны для повышения сопротивления абразивному изнашиванию. Для улучшения противозадирных свойств создаются (посредством сульфиди-рования, сульфо-цианирования, селенирования, азотирования) тонкие поверхностные слои, обогащенные химическими соединениями, предотвращающими схватывание и задир при трении.. Большой эффект получается при использовании метода карбонитрации. Широко применяются электрохимические методы нанесения покрытий А1, РЬ, Sn, Ag, Au и др. При восстановлении деталей (в ремонте) используется электролитическое хромирование, никелирование, железнение и др. Значительная часть технологических задач, связанных с необходимостью повышения износостойкости, коррозионной стойкости, жаропрочности, восстановительного ремонта и др. решается при использовании методов металлизации напылением, включающих газоплазменную металлизацию, электродуговую, плазменную, высокочастотную индукционную металлизацию и детонационное напыление покрытий - наносятся металлы и сплавы, оксиды, карбиды, бориды, стекло, фосфор, органические материалы. Плазменное напыление используют для нанесения тугоплавких покрытий окиси алюминия, вольфрама, молибдена, ниобия, интерметаллидов, силицидов, карбидов, боридов и др. Детонационное напыление имеет преимущество в связи с незначительным нагревом покрываемой детали и распыляемых частиц. В последнее время активно развиваются методы нанесения износостойких покрытий в вакууме катодное распыление, термическое напыление, ионное осаждение. В зависимости от реакционной способности газовой среды методы напыления  [c.199]

Что касается процесса физического осаждения покрытий из паровой фазы с испарением электронным пучком, то метод плазменного напыления гораздо более гибок в смысле управления композиционным составом покрытия, так как позволяет не беспокоиться о давлении паров эленентов, входящих в состав покрытия. Для распыления плазменной пушкой подхо-  [c.97]

Для получения плотных алюминиевых покрытий на углеродных волокнах был с успехом опробован метод вакуумного напыления, однако при этом способе металлизации существует значительный экранный эффект, и для получения равномерных покрытий по всему сечению жгута необходимо перед напылением укладывать жгут в тонкую ленту. Из покрытых алюминием углеродных волокон методом горячего прессования получили компактные образцы композиционного материала. Распределение волокон в материале в целом оказалось достаточно равномерным, однако механические характеристики материала были невысокими, очевидно из-за недостаточной прочности связи матрицы и волокна (наблюдалось отслаивание алюминия от волокон). Более успешные эксперименты проведены по алюминированию волокон методом химического осаждения при термическом разложении триизобутила алюминия экранный эффект в этом случае не проявляется и покрытия получаются однородными по всему сечению углеродного жгута. Были сделаны также попытки изготовления углеалюминиевого материала из покрытых таким образом волокон методами горячего и холодного прессования, но из-за малого количества полученного материала его свойства не определялись.  [c.369]

На поверхности пьезопластины 1 методом осаждения или напыления наносят серебряные или медные электропроводные покрытия, одно из которых с помощью проводника 7 подключается к электрическому разъему ПЭП, а другие — к металлическому корпусу 5. Толщина пьезопластины принимается равной половине длины волны в пьезоматериале на рабочей частоте ПЭП. В прямых ПЭП (рис. 9.5, а) пьезопластина одной стороной приклеена к демпферу 6, а другой стороной - к протектору 2. Протектор служит для защиты пьезопластины от механических повреждений и должен обладать высокой износостойкостью. Демпфер в свою очередь служит для гашения свободных колебаний пьезопластины и получения коротких импульсов.  [c.148]

По принципу осаждения на поБерхность можно выделить три основных способа а) осаждение порошкового полимера на горячие изделия б) осаждение расплавленного полимера на холодные изделия в) осаждение порошкового полимера под действием электростатических сил. Осаждение порошковых полимеров осуществляется следующими основными методами выхревым напылением (в кипящем слое), газопламенным напылением, электростатическим нанесением, одним из разновидностей которого является нанесение в ионизированном кипящем слое.  [c.102]

Метод плазменного напыления используют для создания высокотемпературной защиты меди. Для напыления применяют порошки меди ( =100—160 мкм) и а-АЬОз ( = 50 мкм). Процесс ведут на установке УПУ-3 с плазмообразующими и транспортирующими газами (азотом и аргоном). Прочность сцепления покрытия составляет 1,8—2,5 МПа, что недостаточно для эксплуатации изделий, поэтому последние подвергаются дополнительному отжигу при 900 °С в течение 4 ч. Удовлетворительная прочность сцепления покрытия наблюдается при содержании в нем до 5—6% АЬОз. В работе [2] подробно описано плазменное покрытие из сплава Си—(10%)—МоЗг. Для предупреждения выгорания и сдувания частиц твердой смазки МоЗг при образовании покрытия они предварительно капсули-ровались осажденной пленкой медь — олово толщиной 5— 10 мкм. Покрытия при толщине 200 мкм имели низкую пористость (5%) и высокую прочность сцепления (12,5 МПа). В сравнении с классическими антифрикционными материалами (без МоЗг) указанные покрытия характеризовались низким коэффициентом трения и более низкой температурой смазочного масла.  [c.281]

В ЦНР1ИТМАШ были испытаны вкладыши (диаметр, 68/81, ширина 40 мм), изготовленные целиком из полиамидных смол 68 и 54 и капрона, и металлические вкладыши, покрытые тонким слоем полиамида Тонкое покрытие наносилось методом вихревого напыления, т. е. осаждением взвихренного порошка (в данном случае АК-7) на нагретую деталь, а также приклейкой тонкой поликапролактамовой пленки (ПК-4) 6 = 0,09 мм к рабочей поверхности вкладыша.  [c.244]

Процесс высокотемпературного напылен и я. В настоящее время разработаны и широко используются в практике три метода получения покрытий путем высокотемпературного напыления тугоплавких соединений 1) метод газопламенного напыления 2) метод плазменного напыления 3) метод детонационного напыления. Все три метода напыления обладают тем преимуществом по сравнению с другими методами получения покрытий, например диффузионным или осаждения из газовой фазы, что они исключают необходимость нагрева покрываемых деталей, позволяют наносить покрытия выборочно только на те участки, которые необходимо защитить, и имеют более высокую производительность. К недостаткам этих методов следует отнести сложность и относительно высокую стоимость соответствующих  [c.39]

Керамические изделия, покрытые металлом с помощью методов вакуумного осаждения, напыления и суспензирования, становятся устойчивыми против воздействия высокой температуры. Это свойство проявляется в определенных химических средах, что особенно важно. Обычно керамические изделия устойчивы при высоких температурах, однако в случае работы в химически активной или эрозионной среде приходится использовать защитные покрытия. Кроме того, покрытия могут помочь в том случае, когда необходимо, чтобы керамическое изделие обладало требующимися тепловыми или электрическими свойствами.  [c.13]


К настоя1щему времени существуют три основные группы методов получения аморфных материалов а) нанесение на подложку путем распыления (испарение в вакууме, напыление, электролитическое осаждение, осаждение в разряде и т. д.) 6) быстрое охлаждение расплава (превращение капли или тонкой струи расплава в пленку или ленту и охлаждение за счет теплообмена с металлической подложкой, раздробление жидкого металла газовой струей и охлаждение образовавшейся массы в газовом потоке, жидкой среде или на твердой поверхности, вытягивание микропровода в стеклянной оболочке, расплавление поверхности лазерным или электронным пучком и охлаждение за счет теплообмена с нерасплавленной частью материала и т. д.) в) ионная имплантация.  [c.274]

Главной особенностью вакуумного напыления методом конденсации ионной бомбардировкой (КИБ) является возможность подготовки поверхности образца путем ее очистки в тлеющем разряде, а также бомбардировкой ускоренными ионами. Бомбардировка ускоренными ионами приводит к частичному распылению материала образца, внедрению ионов в поверхностный слой и создает благоприятные условия для повышения адгезионной прочности покрытия с основой. Состав осажденного гюкрытия и прочность его сцепления с основой определяются составом газовой среды, содержанием остаточных элементов (СО2, О2, Н2О), уровнем вакуума и качеством подготовки поверхности. Для подготовки образцов перед напылением наиболее предпочтительна виброабразивная обработка с последующей очисткой в ультразвуковой ванне. Затем образцы следует промыть в горячей ванне и высушить в струе горячего воздуха.  [c.249]

Электролюминофоры. Люминофоры, в которых люминесценция возникает под воздействием прилагаемого электрического поля, называют электролюминофорами. Электролюминофор заключен между непрозрачным и прозрачным электродами, которые наносят на пластинку из стекла, слюды и т. п. Обычно используют либо композицию — смесь поликристаллического мелкодисперсного люминофора со связывающим диэлектриком (смолой), либо поликристаллические пленки люминофоров, получаемые осаждением газотранспортным методом или вакуумным напылением. Излучение электролюминесцентных источников света имеет высокую монохроматичность, малую инерционность и большую крутизну характеристики яркости высвечивания от напряжения. Основными составами являются соединения типа А — активированные различными примесями, в основном соединения цинка и кадмия ZnS, ZnSe, (Zn d)S и др. В качестве активирующих примесей используются Мп, А1, Ag, Си и др. Высвечивание сернистого цинка с разнообразными активаторами соответствует той или иной полосе спектра.  [c.205]

Существует серия деталей, работающих при высоких температурах и требующих защитных покрытий. Ни один из применяющихся в настоящее время методов нанесения покрытий (электролитический, плазменное напыление, осаждение из паро-газовой фазы и др.) не в состоянии обеспечить достаточную плотность покрытий в сочетании с хорошей сцепляемостью с материалом подложки [1].  [c.23]

Благодаря непродолжительности нагревания основного металла во время напыления покрытия опасность механическрго повреждения снижается до минимума. Кроме того, в, связи с быстрым охлаждением распыляемых частиц в качестве покрытий можно использовать металлы с более высокой точкой плавления, чем у основного металла, на который они наносятся. Если к перечисленным выше преимуществам добавить такие достоинства, как портативность дробеструйной и напыляющей установок, высокую скорость осаждения и возможность автоматизации процесса, то станет ясно, что напыление покрытия методом металлизации приемлемо для изделий самых разнообразных форм и размеров. Покрытия можно наносить на любой удобной стадии изготовления деталей или после завершения монтажа сборной конструкции.  [c.78]

Это один из видов газотермического напыления, к которому относят высокочастотный и вакуумный методы ионного переноса, методы газоплазменной металлизации и газофазного осаждения.  [c.139]

Ионное осаждение в вакууме отличается от предыдущего метода тем, что пары осаждаемого металла или сплава ионизируются в плазме тлеющего разряда, в котором катодом слум<ит испаряемый материал, а анодом — подложка. Нагрев производят различными методами. Пары металла попадают в плазму при сравнительно высоком давлении (0,1—1,0 Па) инертного газа (Не, Аг, Кг). При этом происходит ионизация паров, ионы ускоряются электрическим полем, поток ионов осаждается на подложке. Этот метод — разновидность плазменного напыления.  [c.140]

Промышленное производство магнитов, в свою очередь, стимулировало разработку новых РЗМ. В 1978 г. получены лабораторные образцы моно-кристаллических магнитов из ЗтзСО], в форме овоидов размером 3—4 мм с удельной энергией до 159 кДж/м . В 1979 г. методом ионно-плазменного напыления аморфных пленок (с их последующей кристаллизацией в результате термообработки) получены магниты из Згпг (Со, Ре)1, в виде осажденных слоев до 1,5 мм толщиной, намагниченных по нормали к их поверхности. Удельная энергия этих магнитов составляет 60 кДж/м .  [c.82]


Смотреть страницы где упоминается термин Методы осаждения-напыления : [c.109]    [c.125]    [c.6]    [c.337]    [c.127]    [c.252]    [c.240]    [c.80]    [c.84]   
Смотреть главы в:

Основы физикохимии и технологии композитов  -> Методы осаждения-напыления



ПОИСК



Метод осаждения

Напыление

Осаждение



© 2025 Mash-xxl.info Реклама на сайте