Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Выбор системы тока

ВЫБОР СИСТЕМЫ ТОКА  [c.452]

Другая техническая проблема при электрификации силовых процессов заключалась в рациональном выборе системы токов постоянного или переменного трехфазного. Двигатели постоянного тока удерживали первенство там, где требовалось удобное и экономичное регулирование скорости вращения в широких пределах, а также при частом реверсировании.  [c.71]

Как правило, электрифицированные железнодорожные пути промышленного транспорта примыкают к электрифицированным путям сети железных дорог МПС. В этом случае целесообразно принимать общее напряжение и род тока. При выборе системы тока и напряжения предварительно составляют несколько вариантов схем питания и секционирования тяговой сети при различных напряжениях и размещении тяговых подстанций. При этом целесообразно совмещать тяговые подстанции с трансформаторными подстанциями предприятий.  [c.129]


Рассмотрим стационарную ударную волну, отказавшись при этом от подразумевавшегося везде выше выбора системы координат, в которой скорость газа направлена перпендикулярно к данному элементу поверхности волны. Линии тока могут пересекать поверхность такой ударной волны наклонно, причем пересечение сопровождается преломлением линий тока. Касательная составляющая скорости газа не меняется при прохождении через ударную волну, а нормальная составляющая согласно (87,4) падает  [c.483]

Функция (qi, <7г) называется функцией тока для данного пространственного течения. Следует обратить внимание на то, что существование этой функции определяется не только характером течения, но и выбором системы координат. Так, если бы в рассмотренном случае координатные направления были выбраны так, чтобы все три проекции скорости были отличны от нуля, то обосновать существование функции тока оказалось бы невозможно.  [c.271]

Для нахождения потенциала скорости и функции тока осесимметричных потоков большое значение меет выбор системы координат. Для большинства осесимметричных потоков написать функцию тока в удачно выбранной криволинейной системе координат не представляет больших трудностей. В прямоугольной же системе координат получить выражение функции тока чрезвычайно сложно, а иногда невозможно.  [c.174]

Следовательно, возможность отыскания функции тока зависит не только от формы движения, но и от выбора системы координат, в которой представляется движение тела. Наибольшее применение получили цилиндрическая и сферическая криволинейные системы координат.  [c.174]

Характеристики источников питания приведены в табл. 4,5. Могут быть использованы выпрямители других типов и аккумуляторные батареи. Выбор источника тока следует производить по величине суммарного защитного тока, после чего по сопротивлению системы проверить достаточность выходного напряжения.  [c.75]

Статические и динамические свойства регуляторов энергетических параметров дуги можно улучшить, применив системы с двумя регуляторами АРНД с регулированием скорости подачи и регулятором силы тока, действующим на источник питания (рис. 1.40). Регуляторы силы тока реализуются в схемах сварочных выпрямителей с тиристорным управлением, например, типа ВДУ-504. Выбор системы регулирования дуги, обеспечивающей заданное качество регламентируемого параметра сварного шва, может быть произведен по расчетным выражениям коэффициента качества регулирования, определяемого отношением отклонения параметра сварного шва к вызвавшему его возмущению, составленным в относительных единицах  [c.103]


Рис. 4. Второй вариант выбора определяющих токов для системы рис. 3 Рис. 4. Второй <a href="/info/532777">вариант выбора</a> определяющих токов для системы рис. 3
Системы электрической тяги. Выбор системы электрической тяги зависит от уровня развития науки и техники, промышленности и в первую очередь электротехнической, способной обеспечить электрификацию необходимыми материалами, оборудованием и электроподвижным составом. Наибольшее распространение при электрификации железных дорог получили три системы электрической тяги постоянного тока, однофазного переменного тока пониженной частоты 16 % и 25 Гц и однофазного тока промышленной частоты 50 и 60 Гц. На железных дорогах Советского Союза применяют две системы постоянного тока напряжением 3000 В и однофазного переменного тока промышленной частоты 50 Гц напряжением 25 000 В. На 1 января 1975 г. протяженность электрифицированных железных дорог в СССР достигла почти 38 тыс. км, что составляет около 27% всей железнодорожной сети страны. Более 14 тыс. км электрифицировано на переменном токе.  [c.8]

Контроллеры серии ТА обеспечивают такие же операции, но для электродвигателей механизмов перемещения. В отличие от других контроллеров цепи управления контроллеров серии ТСА и ТА получают питание от защитной панели. Магнитные контроллеры выбирают по роду тока, назначению (механизм подъема или передвижения), мощности электродвигателя и напряжению. Технические данные магнитных контроллеров приведены в каталогах. Выбор системы управления электродвигателями приведен в табл.13.  [c.187]

Сведения об источниках тока обычно оказывают решающее влияние на выбор системы защиты. На основе имеющихся источников тока и его типа выбирают системы питания станций катодной защиты в различных местах трассы, а это в свою очередь влияет на протяженность отдельных участков защиты. Станции катодной защиты обычно всегда стремятся установить в местах, возможно более близких к имеющимся источникам питания током питающим сетям переменного или постоянного тока, трансформаторным подстанциям, энергоустановкам и т. д. Это вызывается стремлением, насколько возможно, сократить длину соединительных линий от источника тока к трубопроводу и к анодному заземлению, которые составляют значительную часть стоимости катодной защиты. Обычно длина соединительных линий не должна быть больше 100 ж. С другой стороны удаленность линий питания током от места установки источника питания станции катодной защиты обычно не должна превышать 2 км. При более удаленных системах источника тока от места питания защиты обычно стоимость линий подводки тока делает нерациональным питание от такого источника в таких случаях более экономично применение автономных источников тока.  [c.215]

Все указанные положения должны служить основанием при выборе системы защиты отдельных участков трубопроводов, причем возможно применение комбинированных систем например, на протяженных участках — станций с наложенным током, а на коротких участках без источников электрической энергии — гальванических анодов.  [c.241]

Выбор системы сети, а также выбор конструкции отдельных частей сети представляет собой предмет расчетов при проектировании С. т. с учетом местных условий, перспектив роста города и технич. свойств каждой детали линейного оборудования. Особо важным и сложным вопросом устройства С. т. является защита подземных сооружений от действия сильных токов. Чаще всего причиной коррозии (см.) подземных кабелей является утечка тока с рельсов трамвая. Меры к уменьшению этих токов сводятся  [c.338]


Выбор системы для комбинированного отопления зависит от применяемого тока при постоянном токе напряжение 3000 В не требует преобразования, а при однофазном переменном токе напряжение 25 ООО В следует преобразовывать в напряжение 3100 В.  [c.168]

Рассмотрим стационарную ударную волну, отказавшись при этом ОТ подразумевавшегося везде выше выбора системы координат, в которой скорость газа направлена перпендикулярно к данному элементу поверхности волны. Линии тока могут пересекать поверхность такой волны под произвольным углом 2), причём пересечение сопровождается  [c.410]

На качество покрытий существенное влияние оказывают состав плазмообразующих газов, сила и напряжение тока, форма, ра 3 меры и прочность частиц напыляемого материала. Кроме того, особое значение для получения качественных покрытий имеют надежность работы одного из основных агрегатов плазменной установки — системы питания порошком и правильный выбор энергетического режима.  [c.96]

Применительно к электромеханическим преобразователям (ЭМП) этап структурно-параметрического проектирования выполняется в достаточно ограниченном объеме и не имеет самостоятельного значения. Обычно техническое задание на разработку ЭМП является составным элементом более сложной системы (электроэнергетической, системы управления и т. п.). Поэтому многие внешние параметры ЭМП, например род тока, напряжение, частота вращения и другие, однозначно определяются системой, для которой они предназначены. Выбор общей структуры (принципиальной конструктивной схемы) при ручном проектировании в значительной мере определяется опытными данными и анализом объектов прототипов. Благодаря этим обстоятельствам структурно-параметрический вариант выбирается без особых затруднений, а его данные непосредственно включаются в техническое задание на разработку ЭМП.  [c.39]

При выборе новой координатной системы следует учесть, что 1) количество переменных (координат) при линейных преобразованиях остается неизменным 2) новые переменные и коэффициенты желательно получить вещественными 3) процесс электромеханического преобразования энергии определяется взаимодействием результирующих электромагнитных полей статора и ротора, оси которых не совпадают друг с другом 4) в силу допущений о линейности идеализированных моделей существует прямая пропорциональность между значениями магнитных полей, токов и напряжений 5) результирующий баланс мощности между обмотками статора и ротора должен быть неизменным в любой системе координат [1].  [c.83]

Пренебрегая временем разряда емкости по сравнению с временем заряда, циклические режимы питания емкости можно представить последовательностью зарядных процессов, удовлетворяющих условиям реализуемости относительно токов. Динамические и энергетические показатели циклических режимов определяются в основном параметрами зарядной системы, частотой следования разрядов и законами управления зарядных процессов. С учетом использования серийных генераторов параметры зарядной системы, а также частоту следования разрядов можно считать заданными. Тогда повышение динамических и энергетических показателей достигается оптимальным выбором законов управления зарядом емкости с помощью возбуждения синхронного генератора.  [c.220]

Движение в системе с п степенями свободы описывается п независимыми координатами, выбор которых, так же как и в системе с двумя степенями свободы, произволен. Так, в электрических цепях в качестве переменных можно выбрать напряжения на элементах цепи или токи в соответствующих контурах. Число степеней свободы определяется минимальным числом переменных, необходимым для полного описания движения.  [c.281]

Для создания и поддержания П. т. в проводниках необходимо присоединять их к источникам электрич. энергии П. т. Такими источниками энергии являются первичные электрохимич. элементы (см. Гальванические элементы),вторичяые электрохимич. элементы, или аккумуляторы электрические (см.), термоэлементы (см.), фотоэлементы (см.), динамомашины (см.) и наконец преобразователи (см.) и выпрямители (см.). В то время как ряд электротехнич. процессов выполним независимо от направления тока, например нагревание, или же только при переменном шоке (см.), напр, питание асинхронного двигателя, другие процессы выполнимы только при П.Т. питание двигателей П.т., рентгеновских трубок, пылеуловителей и т. п. На данном этапе развитияэлектротехники передача энергии на большие расстояния более выгодно производится переменным током, благодаря удобству и простоте преобразования напряжения переменного тока и возможности связывать целые районы линиями высокого напряжения—до 380 кV.Коротко замкнутые асинхронные двигатели трехфазного тока(см. Индукционные машины) являются идеальными машинами по дешевизне и прочности конструкций. С другой стороны, двигатели П. т. более удобны для регулирования скорости вращения. П. т. считается весьма пригодным для электрификации ж. д., так что во многих случаях строят специальные тяговые подстанции для преобразования переменного тока в П. т. вместо того, чтобы применять на тяговых линиях однофазный или трехфазный ток. Тем не менее и сейчас существует ряд ж.-д. линий, успешно работающих на переменном или трехфазном токе, так что проблема выбора системы тока для электрификации транспорта не может считаться решенной. С другой стороны, линии передачи (см.) высокого напряжения П. т.  [c.230]


Стоимость электротягово- о оборудования меняется в. -зависимости от цен на медь, изоляционные и иные материалы. В качестве ориентировочных данных можем привести нижеследующие цифры, заимствованные из трудов комиссии по выбору системы тока. Стоимость 1 kW установленной мощности на центральной станции д,ля однофазного тока 16 /з Нг 300 руб. для трехфазного тока 50 Нг 250 руб. Линия передачи на 1 к / мощности однофазного тока 140 руб. для трехфазного тока 100 руб. Стоимость 1 к У установленной мощности на ртутной подстанции 120 руб., то же на однофазной трансформаторной подстанции 75 руб. Контактная сеть для двухколейного пути общее сечение меди на колею 100 мм 20 ООО руб. на км на колею 200 мм 24 ООО руб. на км на колею 300 28 ООО руб. на км. Монтаж контактной сети на 1 путь 2 500 руб, на км. Стоимость амер. электровозов постоянного тока на 3 ООО V с оборудованием для рекуперации энергии ок. 2 ООО руб.. аа 1 т конструктивного веса. Электрово.зы однофазного тока равной мощности примерно на 12% тяжелее и на 4% дороже, чем электрово.зы постоянного тока.  [c.341]

Применяемый способ выбора системы независимых контуров и сечений основан на построении фундаментального дерева в графе схемы. Используется полюсный граф, повторяющий структуру эквивалентной схемы. Фундаментальное дерево связного графа есть связный подграф, включающий р—1 ребро и не имеющий циклов. Ребра, вошедшие в дерево, образуют множрхтво ветвей дерева (ВД), а остальные ребра — множество ветвей, называемых хордами (ВХ). Контуром k-Pi хорды называют подмножество ребер графа (ветвей схемы), входящих в замкнутый контур, образуемый при подключении k-Pi хорды к дереву. Сечения образуются следующим образом отделим часть вершин графа от остальных с помощью замкнутой линии сечения, проведя ее так, чтобы ни одно ребро не пересекалось более одного раза и при этом пересекалась одна и только одна ветвь дерева. Следовательно, каждому сечению соответствует определенная ветвь дерева. На рис. 4.10, а для примера приведена некоторая схема, а на рис. 4.10, б —ее граф с выделенным жирными линиями фундаментальным деревом. Штрихом показаны линии сечения. Уравнения токов Кирхгофа для сечений ветвей дерева и напряжений Кирхгофа для контуров хорд образуют систему независимых топологических уравнений  [c.179]

ГИЮ. Например, такими переменными могут бьпь скорости тел (кинетическая энергия определяется скоростью, так как равна Ми /2), емкостные напряжения, индуктивные токи и т. п. Очевидно, что число уравнений не превышает у. Кроме того, итоговая форма ММС оказывается приближенной к явной форме представления системы дифференциальных уравнений, т. е. к форме, в которой вектор d Wldt явно выражен через вектор W, что упрощает дальнейшее применение явных методов численного интегрирования. Метод реализуется путем особого выбора системы хорд и ветвей дерева при формировании топологических уравнений. Поскольку явные методы численного интегрирования дифференциальных уравнений не нашли широкого применения в программах анализа, то метод переменных состояния также теряет актуальность и его применение оказывается довольно редким.  [c.97]

Составление уравнений Лагранжа для электрических цепей с сосредоточенными параметрами Уравнения движения для соответствующих электрической и механической систем аналогичны. Но уравнения механической системы можно получить, используя методику составления уравнений Лагранжа. 2-го рода если использовать ту же методику, но вместо обычных механических величин брать электрические, по приведенной таблице, то уравнения Лагранжа, например, вида (1) будут являться уравнениями многоконтурной электрической системы. Рассмотрим систему рис. 3. Нетрудно убедиться, что эта система имеет две степени свободы например, задание силы тока /1 на участке АВ и /2 на участке ВС полностью определяет силу тока на любом участке. Действительно, обозначая /3 силу тока на участке ВЕ, из условия = 4 + (так как при разветвлении в точке В потерь тока не происходит), находим = —121 при слиянии тока с участков ОЕ и ВЕ получаем для ЕР (и ЕА) силу тока /2+( 1— 2)= . Можно считать, что ток в цепи получается за счет тока 1 по контуру АВЕР и тока /2 по контуру ВСВЕ тогда на ВЕ — разность токов 1 —/2. Так же, как выбор обобщенных координат для механических систем, выбор определяющих токов неоднозначен. Можно, например, принять за основные ток на АВ и ток 2 на ВЕ остальные токи при этом выборе определяющих параметров показаны на рис. 4. Сила тока равна скорости изменения величины заряда объекта обобщенные координаты в данном случае — величины зарядов д и 2, отсчитываемые от некоторого уровня. Индексы у параметров цепи берем соответственно токам на АВ при токе (если есть еще индуктивности при токе /1, то и т. д.), Си при токе /1—/2 и т. д.  [c.118]

Число разделов проекта может измениться в зависимости от конкретных условий. Так, в случае выбора системы катодной защиты с гальваническими анодами в значительной степени изменяется весь проект. В этом случае расчет сводится к определению дальности действия 1каждого анода и необходимого количества анодов для отдельных участков. В разделе о выборе и проекте источника тока рассматривается состав материала анода и метод его установки в почву. Раздел питающих и соединительных линий отпадает, так же как и раздел анодного заземления. Если источником тока будет служить ветродвигатель, то в проект включается раздел о выборе места для его установки и данные о повторяемости и средней скорости ветра. Во всех случаях в раздел об исходных данных необходимо включать обоснование выбора минимального и максимального защитных потенциалов.  [c.239]

Когда станет ясно, на каких участках трубопровода намечается применить катодную защиту, необходимо сделать выбор между возможными системами защиты (системы с наложенным током или с гальваническими анодами). При выборе системы защиты учитывают протяженность участков, удельное сопротивление почвы, состояние изоляции на трубопроводе и близость источиков энергии, а иногда диаметр защищаемого трубопровода.  [c.240]

С.э. на другой фидер). В фабрично-заводских установках применяют больше радиальную систему, часто также с возможностью переключения для" питания от других групп, реже кольцевую при этом на крупных з-дах выгоднее две отдельные С. э. (для освещения и для двигателей), а для небольших—одна общая С. э. в обоих случаях д. б. еще особая сеть для освещения безопасности. Выбор напряжения С. э. связан с выбором системы распределения (см. Распределение электрической энергии). Наивыгоднейшее напряжение выбирают, руководствуясь нормами, путем сравнения вариантов. Для С.э. низкого напряжения при постоянном токе возможен для двухпроводных систем выбор между 110 и 220 V, а для трехпроводных—между 2x110 и 2 х220 V при трехфазном токе возможно применение 220/127 V и 38i)/220 V. К применению последнего напряжения надо относиться осторожно (более опасно). Для высоковольтных С.э. наши нормы рекомендуют 3,6 и 10 kV (между фазными проводами) для линий передач— 20, 35, 60, 100 и 200 kV. Повышение напряжения уменьшает затрату металла на провода, повышая однако стоимость изоляции и аппаратуры [в, и, 2 5].  [c.350]

Решая вопрос о выборе системы торможения для проектируемого станка, следует прежде всего учесть характер работы тормозного устройства. Если оно предназначается для кратковременного действия, т. е. должно уменьшать скорость станка до требуемой величины, чаше всего до нуля, очень бысгро, в течение немногих секунд или даже долей секунды, то речь может идти о механическом тормозе или электрическом торможении приводного двигателя. Нужно при этом учитывать те тирские возможности, которыми располагает современная электротехника в части тор.можсния электродвигателей как переменного, так и постоянного тока. Окончательный выбор 1ервой или второй системы торможения должен быть основ н на сопоставлении эксплуатационных особенностей обоих в.триангов и экономических показателей (стоимость устройства и эксплуатационные расходы, включая потери энергии при торможении). Иногда для очень быстрого останова прибегают к комбинированию обеих систем.  [c.466]


Еслн к (6.2) применить операцию rot, то правая часть обращается в нуль, так как ротор от градиента любой скалярной величины равен нулю. Соотношение d(rot v)/di=0 означает, что величина rotv остается постоянной вдоль линий тока жидкости. Так как на бесконечности скорость жидкости равна нулю (или постоянна в зависимости от выбора системы отсчета), то отсюда следует, что rotv=0. Разумеется, этот вывод несправедлив вблизи поверхности обтекаемых тел, где имеются разрывы линий тока, а также в других случаях разрывов линий тока, о которых речь будет идти позже.  [c.97]

Неудачным оказался и выбор из всех возможных мн фазных систем двухфазной системы токов. Известно, значительную долю стоимости установки для пере/1 электроэнергии составляют затраты на линейные соор У ния и, в частности, на линейные провода. В связи с э казалось очевидным, что чем меньше принятое число с тем меньшим будет число проводов и тем, следовател экономичнее устройство электропередачи. Двухфазная стема в общем случае требовала применения четырех г водов, а удвоение числа проводов в сравнении с У новками ПОСТОЯННОГО или однофазного переменного то 418  [c.418]

В случае пространственного осесимметричного течения линии тока лежат в меридиональных плоскостях, пересекающихся на оси вращения обтекаемого тела. Линии тока у поверхности тела расходятся, но в каждой меридиальной плоскости течение одинаково и при соответствующем выборе системы координат может быть описано двухмерными уравнениями.  [c.353]

Базисные функции можно выбирать, в принципе, произвольно. К ним не предъявляют иных требований, кроме того, что они должны быть линейно-неэависимьгми, а р(еш(ение с их помощью должно быть представлено достаточно точно. На трактике выбору системы базисных функций уделяют исключительно большое внимание. От этого выбора зависит то минимальное число членов ряда Ы, при котором искомое распределение тока аппроксимируется с требуемой точностью. В свою очередь, от числа членов ряда  [c.105]

Шум и другие свойства фотоумножителей, существенные для оптической термометрии, были широко исследованы в работах [18—20, 22, 23, 29]. Выбор способа работы фотоумножителей методом постоянного тока [44] или методом счета фотонов в основном зависит от вкуса потребителя. Не существует никаких заметных преимуществ одного метода перед другим. В обоих случаях необходимо, чтобы фотоумножителю не мешали избыток шума, усталость или нелинейность. Метод счета фотонов имеет, однако, преимущество в том, что зависимость амплитуды сигнала от усиления меньще и ослабляется эффект утечек тока внутри фотоумножителя или около его цоколя. Кроме того, сигнал имеет цифровую форму, которая облегчает прямую связь с ручной цифровой обработкой и с контрольно-компьютерной системой. В обоих методах — на постоянном токе и методе счета фотонов — критичным является контроль температуры фотоумножителя, так как спектральная чувствительность (особенно вблизи длинноволновой границы), а также темновой ток зависят от температуры. Фотоумножители с чувствительным в красной области спектра фотокатодом 8-20, такие, как ЕМ1-9558 (щтырьковая замена для ЕМ1-9658 фотоумножителя 8-20), для понижения темнового тока должны работать при температуре примерно —25 °С. Применение чувствительного в красной области фотокатода позволяет работать с длинами волн примерно до 800 нм, хотя если прибор предназначен исключительно для воспроизведения МПТШ-68 выше точки золота, такие длины волн требуются редко.  [c.377]

Программная система позволяет применять для оптимизационных расчетов гиродвигателей методы сканирования, статистических испытаний, градиента, случайного поиска, покоординатного улучшения функции цели (Гаусса—Зейделя). При этом имеется возможность проводить расчеты ГД различных типов асинхронных с короткозамкнутым ротором, синхронных с магнитозлектрическим возбуждением, синхронных реактивных, бесконтактных двигателей постоянного тока, а также ГД различных конструктивных схем и исполнений, с различными алгоритмами управления, что достигается применением общих методов и алгоритмов анализа физических процессов, определяющих функциональные свойства проектируемых объектов, рациональным выбором входных данных.  [c.231]

Параметрами, определяемыми для выбора турбины, являются частота вращения в установившемся режиме п (об/мин), частота вращения при разгоне турбины Прзг (об/мин) и диаметр рабочего колеса Di (м). Для гидротурбин, работающих на ГЭС в СССР, частота вращения, называемая синхронной, должна удовлетворять условиям получения трехфазного тока частотой 50 Гц. Отсюда = [60/р = 30001р, где / = 50 Гц —число пар полюсов. Разгонная частота вращения возникает при аварии в системе регулирования и имеет наибольшее значение при Яотах и сбросе нагрузки с генератора. Она определяется По разгонной характеристике. Коэс ициент. разгона Крзг = увеличивается с увеличением быстроходности турбин.  [c.6]

На рис. 53 показано несколько вариантов концентратора. Он представляет собой диск из графита или сгеклоуглерода с системой прорезей, позволяющей управлять распределением тока в концентраторе, а следовательно, его температурой и электромагнитным полем над зеркалом расплава. При выборе формы прорезей концентратора стремятся обеспечить в формируемом столбике расплава вблизи фронта кристаллизации температурное поле с изотермами, повторяющими профиль выращиваемого кристалла, что необходимо для получения кристалла, хорошо воспроизводящего конфигурацию, задаваемую формообразова-телем [73]. Прорези, показанные на рис. 53, 6, выравнивают температуру концентратора вдоль контура его н.ентрального окна, а показанные на рис. 53, д способствуют снижению температуры на узких гранях этого окна. Концентраторы без сплошной радиальной прорези (рис. 53, д, б, ж) экранируют расплав от магнитного поля, что снижает выделение в нем тепла Джоуля. Концентраторы вида в - е (рис. 53), наоборот, практически не препятствуют доступу магнитного поля индуктора к расплаву, лишь корректируя его распределение по поверхности последнего.  [c.110]


Смотреть страницы где упоминается термин Выбор системы тока : [c.357]    [c.107]    [c.214]    [c.139]    [c.252]    [c.104]    [c.118]    [c.163]    [c.26]   
Смотреть главы в:

Машиностроение Энциклопедический справочник Раздел 5 Том 14  -> Выбор системы тока



ПОИСК



Выбор системы



© 2025 Mash-xxl.info Реклама на сайте