Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Генераторы Параметры

Пренебрегая временем разряда емкости по сравнению с временем заряда, циклические режимы питания емкости можно представить последовательностью зарядных процессов, удовлетворяющих условиям реализуемости относительно токов. Динамические и энергетические показатели циклических режимов определяются в основном параметрами зарядной системы, частотой следования разрядов и законами управления зарядных процессов. С учетом использования серийных генераторов параметры зарядной системы, а также частоту следования разрядов можно считать заданными. Тогда повышение динамических и энергетических показателей достигается оптимальным выбором законов управления зарядом емкости с помощью возбуждения синхронного генератора.  [c.220]


При расчете МГД-генератора параметры переноса необходимы, например, для вычисления коэффициента трения и коэффициента теплоотдачи. Поскольку эффекты трения для крупных МГД-генераторов незначительны, при вычислении коэффициента трения (через коэффициент динамической вязкости) можно с весьма хорошим приближением использовать коэффициент динамической вязкости для замороженного состава газовой смеси. Это тем более оправдано, что значения коэффициента динамической вязкости для эффективного и замороженного состава мало различаются между собой (для рассматриваемых давлений и температур в МГД-генераторе). При вычислении теплоотдачи энергетический эффект диссоциации можно учесть путем вычисления эффективного коэффициента теплоотдачи (через эффективный коэффициент теплопроводности) либо, используя коэффициент теплоотдачи для замороженного состава, при вычислении эффективного температурного напора с помощью эффективной энтальпии.  [c.111]

Для расчета турбины обычно задают мощность на зажимах генератора, параметры свежего и отработавшего пара и число оборотов.  [c.44]

Время гашения поля ротора зависит от типа генератора, параметров и режима работы вентильного возбудителя. В табл. 8 приведены данные, полученные при испытаниях гидрогенераторов Братской ГЭС, по кото-162  [c.162]

Пример расчета релаксационного генератора. Параметры схе--мы релаксационного ГИ определяются заданными технологическими показателями процесса ЭЭО. Для расчета этих параметров применяют как известные электротехнические формулы, так и опытные зависимости, полученные в соответствующих режимах ЭЭО.  [c.49]

Размер начального деформирования и форма деформирования гибкого колеса являются исходными при расчете параметров зацепления и геометрии генератора [5].  [c.169]

Размер 13о начального деформирования гибкого колеса является исходным при расчете параметров зацепления и геометрии генератора 6].  [c.235]

Гибкое колесо герметичной передачи вьшолняют в виде закрытого цилиндра (рис. 15.1, в), что. значительно увеличивает его жесткость. При этом возрастают уровень напряжений в цилиндре и нагрузка на генератор. Для их уменьшения увеличивают длину цилиндра. Переход цилиндра к стенке выполняют коническим и заканчивают тонкой диафрагмой. Диаметр гибкого колеса dg и параметры зацепления рассчитывают так же, как и для обычной волновой передачи.  [c.238]

Для вычерчивания стандартных символов в ЧА имеется генератор символов. Конструктивные параметры некоторых ЧА приведены в табл. 1.6.  [c.52]


Схема алгоритма компоновки приводов подач рабочих органов станков с ЧПУ (рис. 1.15) включает блок 4 — генератор структур приводов (датчик чисел в двоичном коде). Согласно конкретной структуре производится упрощенный расчет узлов, соответствующих полученной структурной формуле (блок 5). Определяется погрешность полученной неполной компоновки привода (блок 9) и прогнозируется погрешность Д компоновки с учетом элементов, находящихся на остальных уровнях дерева вариантов (блок 8). Если погрешность компоновки больше заданной с учетом прогнозируемой погрешности, то производится отсечение структур приводов в блоке 13. Как только будут исчерпаны все N вариантов приводов (с учетом отсечений), на печать выводятся полные структурные формулы приводов, рассчитанные конструктивные параметры их элементов и значения погрешностей.  [c.36]

Это справедливо в предположении, что длина деталей не изменяется, как это и бывает в большинстве случаев. Линейные размеры конструкции обычно заданы условиями работы машины. У генераторов и преобразователей энергии эти размеры зависят от рабочего объема и параметров рабочего процесса (например, у двигателей внутреннего сгорания — от размеров цилиндра зависящих, в свою очередь, от величины рабочего давления газов) у машин-орудий — от габаритов изделий, подвергаемых обработке на данной машине в металлоконструкциях — от строительной длины и высоты сооружений. Во всех этих случаях применение высокопрочных материалов может влиять лишь на сечение, но не на длину деталей.  [c.178]

Осаждение заряженных частиц, взвешенных в газе, на одном цилиндрическом коллекторе, не имеющем заряда, изучалось в работах [508, 872]. Авторы указанных работ представили данные, характеризующие зависимость между эффективностью осаждения на фильтре в одно волокно и безразмерным параметром, определяемым как отношение поляризационной силы к силе сопротивления. Осаждение частиц аэрозолей под действием поляризационной силы (заряженная частица и нейтральное волокно) было исследовано для произвольно заряженных аэрозолей с частицами диаметром 0,1 и 1 мк. Были использованы два разных генератора  [c.474]

Параметрами ультразвуковой сварки являются мощность генератора колебаний, давление сварки, амплитуда колебаний и время сварки. Ультразвуковую сварку применяют для получения точечных и шовных соединений металлов и сплавов небольшой толщины (как правило, менее 1 мм) и для сварки пластмасс.  [c.120]

Работой компилятора управляет монитор, который осуществляет вызов в необходимые моменты анализатора, генератора и конструктора, располагаемых в отдельных оверлейных сегментах, фиксирует время их выполнения, организует единообразный доступ к внутренне БД и наборам данных на внешних носителях, обрабатывает режимные параметры (опции) компилятора. Опции позволяют управлять форматом вывода, задавать объем ОП, доступной рабочей программе, выводить в удобной форме информацию из внутренней БД, распечатывать структуру матрицы Якоби, таблицы перенумерации и т, п.  [c.144]

Анализ типовых структурных схем передачи энергии при разных сварочных процессах (табл. 1.3) позволяет обосновать предлагаемую выше классификацию. Например, при дуговой сварке электрическая энергия ЭЛ из сети проходит следующий путь трансформируется в сварочном трансформаторе или генераторе для получения нужных параметров тока и напряжения  [c.24]

Совокупность уравнений генератора, системы регулирования и нагрузки является предметом экспериментального исследования по оптимальному плану, составленному методами планируемого эксперимента. В результате каждого эксперимента определяются показатели заданного переходного процесса. Переход от одного эксперимента к другому осуществляется варьированием факторов в виде параметров и характеристик математической модели исследуемой системы. Таким образом, благодаря сочетанию методов математического моделирования и планируемого эксперимента, можно получить уравнения, связывающие алгебраическим образом динамические показатели с варьируемыми факторами системы. Исключая несущественные факторы, для рассматриваемой системы получаем следующие уравнения в различных переходных режимах [8]  [c.98]


Основная ценность оптимальных соотношений, подобных (4.55)—(4.58), заключается в том, что они позволяют исключить из процесса оптимизации генератора расчет индуктора и однозначно определять его параметры при заданных значениях факторов. Однако в каждом конкретном случае к использованию таких оптимальных соотношений надо подходить с должной осторожностью, ибо не всегда частичный критерий оптимизации (максимальное использование индуктора) соответствует с требуемым приближением полному критерию оптимальности. Кроме того, в некоторых случаях на расчет индуктора налагается ряд дополнительных ограничений, например по диаметру вала, что не учтено при получении (4.55) —(4.58).  [c.107]

Рис. 5.4. Структурный граф электромагнитного расчета авиационных синхронных генераторов нд — номинальные данные ОЛ — обмоточные данные t — полюсное деление I—активная длина в — воздушный зазор а — полюсное перекрытие — ширина в высота паза якоря fnj — МДС приведенной реакции якоря г,, х,. — относительные параметры Oj — коэффициенты магнитной цепи Е , — ЭДС, магнитный поток и индукция в воздушном зазоре Е , — то же. по про- Рис. 5.4. Структурный граф электромагнитного расчета авиационных <a href="/info/214712">синхронных генераторов</a> нд — номинальные данные ОЛ — обмоточные данные t — полюсное деление I—активная длина в — <a href="/info/270245">воздушный зазор</a> а — полюсное перекрытие — ширина в высота паза якоря fnj — МДС приведенной <a href="/info/77362">реакции якоря</a> г,, х,. — относительные параметры Oj — коэффициенты <a href="/info/76923">магнитной цепи</a> Е , — ЭДС, <a href="/info/11660">магнитный поток</a> и индукция в воздушном зазоре Е , — то же. по про-
При построении вычислительных алгоритмов ЭМП для оптимального выбора варьируемых конструктивных параметров целесообразно использовать функции ограничений в виде равенств с целью сокращения размерности задач оптимизации. Отдельные параметры оптимизации могут быть однозначно определены через явные или неявные решения ограничений-равенств. Неявные решения при расчетах на ЭВМ находятся приближенно с помощью обратных итерационных связей. Для этого заранее устанавливается погрешность выполнения равенств, которая позволяет преобразовать равенства к двусторонним неравенствам. Например, для синхронного генератора ограничения-равенства по предельным значениям перегрузочной способности, механического напряжения ротора и МДС возбуждения можно представить в виде [8]  [c.142]

Эквивалентные параметры R,, L, приближенно определяются через параметры обмотки якоря синхронного генератора [15]  [c.221]

Из рассмотрения этой табл. 3 легко получить как бифуркационные значения параметров, так и характер изменения стационарных движений генератора при увеличении амплитуды внешнего воздействия.  [c.184]

Итак, для заданного гауссова пучка всегда можно так подобрать зеркала и их расположение, чтобы он преобразовался сам в себя . При рассмотрении квантовых генераторов практический интерес представляет обратная постановка вопроса каковы параметры гауссова пучка, удовлетворяющего принципу цикличности, при заданных расположении и фокусных расстояниях зеркал Вычисления (см. упражнение 250), основанные на формуле (229.1), приводят к следующему результату для зеркал с одинаковыми фокусными расстояниями / )  [c.803]

Для привода различных вспомогательных механизмов используются на всех тепловозах двигатёли малой мощности общепромышленных серий П и ПН, рассчитанные на напряжение 64. 75 или 100 В, в зависимости от принятого напряжения вспомогательного генератора. Параметры этих двигателей приведены Б табл. 10.  [c.91]

Рассчитываем профиль кулачка генератора. Параметры гибкого подшипника (табл, 6.6) D,i =80 г),о з мм, Дп =60 ,i,ois мм В = 13мм аш = 7,541 мм гщ = 23 мм внутреннее кольцо 3,9 мм = 31,23 мм наружное кольцо Гда = 4,1 ММ] / = 38,77 мм (если и не даны, их можно рассчитывать, приближенно по рекомендациям на стр. 184). Радиальный зазор подшипника в пределах 0,013 -г 0,033 мм (по нормам для обычных подшипников класса точности О [ 10,56]).  [c.198]

Контрольную внешнюю характеристику тягового генератора, параметры которой вносятся в формуляр (паспорт) тепловоза, целесооб-  [c.194]

Тип регулятора Тим генератора Параметры диапазона стабилизации при 125 + 0) С Параметры диапазона сгабилизацни при изменении температуры, частоты вращения и нагрузки AIVri при /. =, 3A, B, Hf более Масса, кг  [c.56]

Волновая передача основана на принципе преобразования параметров движения вследствие волнового деформироваиия одного из звеньев механизма. Этот принцип впервые был предложен Москвити-ным в 1944 г. для фрикционной передачи с электромагнитным генератором волн (см. ниже), а затем Массером в 1959 г. для зубчатой передачи с механическим генератором .  [c.188]

Метод Виллиса позво ляет просто получить формулы для передаточных отношений, но не вскрывает принципа преобразования параметров движения путем деформирования гибкого звена механизма. Для того чтобы выяснить это, рассмотрим движение точек невраш,ающегося гибкого колеса при его деформировании вращающимся генератором. Отметим, что в нашей конструкции гибкое колесо подобно оболочке (толщина значительно меньше других размеров).  [c.190]

Для уменьшения износа зубьев и потерь на трение в зацеплении выгодно уменьшать использование кланового эффекта. С этой целью параметры зацепления следует выбирать так, чтобы зацепление осуществлялось преимущественно в зоне малых углов ф (в зоне бо.шиой оси генератора).  [c.195]

Турбоэнергетические системы. Использование солнечной радиации находит применение и в традиционной двухступенчатой схеме преобразования энергии тепловая— -механическая— -электрическая. В частности, NASA разрабатывает солнечные турбоэлектрические генераторы, известные под названием Санфлауэр (подсолнечник) [169]. Одной из наиболее сложных проблем является создание системы охлаждения. Применение покрытий позволяет поддерживать оптимальные температурные параметры цикла, уменьшать площадь и массу радиатора. На рис. 8-24 представлена схема солнечной энергетической системы с турбогенератором [170]. Теплота, полученная от выхлопных газов, и скрытая теплота конденсации излучаются с поверхности радиатора. Коэффициент полезного действия установки зависит от температуры котла, которая ограничивается жаропрочностью материалов, и от температуры радиатора. Без 204  [c.204]


Числовой подход к решению задачи требует применения ЭВМ и поисковых методов оптимизации. При решении данного примера в качестве параметров оптимизации приняты высота полюсного наконечника hp, высота hm и ширина Ьт полюсного сердечника, высота ярма hj. Однако независимыми являются только параметры Лт и bm, так как hj жестко связан с Ьт, а Ар однозначно определяется одним из равенств а р = Одоп или,Вкр = Вдсл. Они обусловлены тем, что возникающее в процессе оптимизации стремление увеличить окно обмотки возбуждения приводит к превращению соответствующих неравенств в равенства. Все остальные исходные данные расчета индуктора с учетом предыдущих этапов расчета генератора предполагаются фиксированными. Для поиска оптимальных решений использованы градиентный метод и метод локального динамического программирования. Числовое решение рассматриваемой задачи не достигает конечной цели, т. е. не приводит к уравнениям расчета оптимальных значений параметров оптимизации. Конечную цель можно достичь только при сочетании числовых результатов с методами планирования эксперимента. При этом в качестве единичного эксперимента следует рассматривать отдельное оптимальное решение рассматриваемой задачи, полученное для конкретного набора исходных данных. В качестве факторов можно рассматривать любые независимые исходные данные.  [c.105]

При конструировании комбинированных алгоритмов поиска предпочтение следует отдавать комбинациям методов, которые не требуют специальных математических конструкций и экспериментальной настройки параметров и быстро осваиваются проектировщиками. В качество примера рассмотрим алгоритм, использующий последовательную комбинацию методов случайного перебора, покоординатного поиска и локального динамического програ.ммиро-вания. Этот алгоритм применяется для проектирования синхронных генераторов и бесконтакных сельсинов и обеспечивает высокую надежность функционирования [8].  [c.147]

С учетом современных методов построения ППП разработан и получил широкое применение при проектировании ЭМП ряд пакетов как объектно-независимых, так и объектно-ориентированных [65]. Объектно-ориентированные ППП предназначены для решения проектных задач сравнительно узкого класса ЭМП и применяются соответственно в САПР синхронных двигателей, крупных электрических машин, трансформаторов, синхронных генераторов автономной электроэнергетики и т. п. Объектно-независимые ППП предназначены в основном для решения задач оптимизации параметров и анализа динамических режимов практически любых ЭМП. К их числу можно отнести пакет для многокритериального оптимального проектирования ЭМП в диалоговом режиме (ППП МОПО) [65] и пакет для моделирования динамических процессов электромеханических систем ( 7.4).  [c.155]

Методология расчетного проектирования ээлектромеханических преобразователей в САПР изложена в гл. 5. Общность рассмотренных методов и алгоритмов демонстрируется на двух примерах оптимизации расчетных проектов синхронных генераторов и бесконтактных сельсинов. Оба примера детально рассмотрены в [8]. Следует напомнить, что на стадии расчетного проектирования оптимизируются, в основном, конфигурация, обмоточные данные, размеры активной части ЭМП при заданных принципиальных конструктивных вариантах исполнения. Число варьируемых параметров исчисляется десятками, а количество расчетных.связей — сотнями, что делает задачу оптимизации весьма сложной и громоздкой.  [c.200]

Из-за линейности (7.44) решение поставленной задачи получается с помощью алгоритмов поиска оптимальных релейных управлений. Для конкретизации рассмотрим процесс сброса нагрузки АСГ со следующими относительными значениями параметров генератора г- = 0,026 Га = 0,0055 J d = 1,866 tad=l,8 х,= = 1,066 д а = 1,0 Лв = 2,0. Параметры нагрузки до и после переходного процесса созф=0,8 г о=1,28 г о<, = 3,2 x o=0,96 Хн . = 2,4. Установившиеся значения токов до и после переходного процесса i[c.219]

В уравнениях зарядной системы (7.50) предполагаетсй, >йо частота вращения генератора постоянная, а параметры не зависят от насыщения (коэффициенты уравнений постоянны). Однако эти допущения непринципиальны и при необходимости их можно учесть без ущерба для алгоритмов поиска оптимума.  [c.221]

Генератор преобразования, содержащий малый параметр у, выберем в виде s= iY i g a + к. с. Величина y k подлежит определению. Собирая члены одного порядка малости, находим  [c.265]

В отличие от активных модуляторов добротности, у которых момент выключения потерь определяется в)1еш-ними факторами, включение добротности пассивными модуляторами полностью определяется плотностью излучения внутри резонатора и их оптическими свойствами. В качестве пассивных модуляторов (или пассивных затворов) могут использоваться просветляющиеся фильтры, пленки, разрушающиеся под действием излучения, полупроводниковые зеркала с коэффициентом отражения, зависящим от интенсивности света, органические красители и т. д. Особое место среди пассивных затворов занимают затворы на основе просветляющихся фильтров. Исключительная простота таких затворов в сочетании с высокими параметрами получаемых с их помощью моноимпульсов излучения обеспечила им весьма широкое распространение. В основе работы этих затворов лежит способность просветляющихся фильтров обратимо изменять коэффициент поглощения под действием интенсивных световых потоков. Введение в резонатор пассивного затвора (рис. 35.10) приводит к увеличению порогового уровня накачки, в результате чего к моменту начала генерации па метастабилышм уровне накапливается значительное число активных частиц. При возникновении генерации лазерное излучение, проходящее через затвор, резко уменьшает его потери и запасенная энергия излучается в виде мощного импульса. Длительность этого импульса почти такая же, как и в режиме мгновенного включения добротности. Применение этих затворов значительно упрощает конструкцию генератора и позволяет получить параметры выходного импульса, близкие к предельным.  [c.284]


Смотреть страницы где упоминается термин Генераторы Параметры : [c.138]    [c.157]    [c.195]    [c.206]    [c.100]    [c.816]    [c.137]    [c.223]    [c.147]    [c.159]    [c.160]    [c.162]    [c.274]   
Машиностроение Энциклопедический справочник Раздел 4 Том 10 (1948) -- [ c.304 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте