Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система катодной защиты

Источниками блуждающих постоянных токов обычно являются пути электропоездов, заземления линий постоянного тока, установки для электросварки, системы катодной защиты и установки для нанесения гальванических покрытий. Источники блуждающих переменных токов — это обычно заземления линий переменного тока или токи, индуцированные в трубопроводах проложенными рядом электрическими кабелями. Пример возникновения блуждающего постоянного тока от трамвайной линии, где стальные рельсы используются для возвращения тока к генераторной станции, показан на рис. 11.1. Вследствие плохого контакта рельсов на стыках и недостаточной изоляции их от земли часть тока выходит в почву и находит пути с низким сопротивлением, например подземные газо- и водопроводы. В точке А труба попадает под воздействие катодной защиты и не подвергается коррозии, а в точке В, напротив, сильно корродирует, так как по отношению к рельсам является анодом. Если в точке В труба защищена неметаллическим покрытием, это усугубляет коррозионные разрушения, так как в этом случае все блуждающие токи выходят через дефекты в покрытии трубы, что вызывает увеличение плот-, ности тока на ограниченных участках поверхности и ускоряет разрушение трубы.  [c.210]


Сила блуждающих токов может колебаться с большими или меньшими интервалами, в зависимости от колебаний нагрузки на источнике тока. Этим они отличаются от гальванических токов или токов катодной защиты, которые относительно стабильны. Поэтому блуждающие токи часто можно обнаружить, регистрируя потенциал корродирующей системы по отношению к электроду сравнения в течение 24 ч. Можно также установить происхождение этих токов, найдя, например, генератор, нагрузка которого меняется в течение суток аналогично изменениям потенциала. Если блуждающие токи возрастают в 7—9 и 16—18 ч, то источником их, вероятнее всего, являются трамвайные рельсы. Если предполагается, что источником блуждающих токов служит система катодной защиты, то для проверки можно через равные промежутки времени быстро включать и выключать защитный ток, наблюдая изменения потенциала корродирующей системы.  [c.213]

Анодные заземлители служат для создания электрической цепи в системе катодной защиты. Основными параметрами их являются  [c.39]

ЮЛ. АНОДНЫЕ ЗАЗЕМЛИТЕЛИ В СИСТЕМАХ КАТОДНОЙ ЗАЩИТЫ  [c.228]

Наибольшее влияние на потенциал других трубопроводов и кабелей обычно оказывают воронки напряжения над анодными заземлителями в системах катодной защиты, в которых имеется высокая плотность защитного тока и большой градиент потенциалов в грунте. Поскольку при этом происходит смещение потенциалов только в отрицательную сторону, опасности анодной коррозии не возникает. Однако в коррозионных системах группы П (см. раздел 2.4), например для алюминия и свинца в грунте, все же может произойти катодная коррозия. Величина натекающих токов зависит от влияющего напряжения, т. е. от потенциала в воронке напряжения над сооружением, испытывающим влияние СКЗ (или местом), по отношению к далекой земле, и от сопротивления изоляции этого сооружения. В принципе при анализе влияния, оказываемого катодной воронкой напряжений, следует различать два случая  [c.238]

На другие подземные трубопроводы, пересекающиеся в области воронки напряжений с трубопроводами, имеющими катодную защиту, за пределами воронки напряжений натекает защитный ток, стекающий с них в области катодной воронки напряженнй, вызывая там анодную коррозию. Потенциал незащищенного трубопровода (испытывающего влияние), измеренный при помощи электрода сравнения над местом пересечения, представляет собой в основном омическое падение напряжения, вызванное защитным током, текущим в грунте к дефекту изоляции трубопровода с катодной защитой. На рис. 10.16 схематически показано распределение потенциалов в грунте, характер воронки напряжений и распределение потенциалов на другом трубопроводе, испытывающем влияние системы катодной защиты.  [c.240]


На трубопроводе, испытывающем влияние системы катодной защиты, кроме выполнения уравнительной перемычки могут быть проведены и другие мероприятия для уменьшения степени этого влияния.  [c.243]

При сравнительно больших плотностях защитного тока и большой его суммарной величине едва ли мол но избежать значительных падений напряжения в грунте как на анодных заземлителях, так и на катодных поверхностях, так что соседние сооружения, не включенные в систему катодной защиты, могут подвергнуться неблагоприятному воздействию [7]. В таком случае на всех посторонних сооружениях, в особенности находящихся в зоне действия станций катодной защиты с большим током, необходимо провести измерения и при необходимости предупредительные мероприятия, например подключить их к системе катодной защиты через омические сопротивления. При сравнительно большом защитном токе подводить его во избежание вредного влияния блуждающ,их токов следует не в непосредственной близости от строительных сооружений, имеющих стальную арматуру поблизости от железобетонных сооружений тоже следует избегать слишком большой плотности защитного тока. Если некоторая часть постоянного тока, отводимого в землю, попадет в арматуру строительной конструкции, то  [c.271]

Система катодной защиты резервуара с мазутом с применением протекторов  [c.273]

Рис. 12.4. Система катодной защиты топливного склада с преобразо вателями, питаемыми от сети Рис. 12.4. Система катодной защиты <a href="/info/94736">топливного склада</a> с преобразо вателями, питаемыми от сети
Для защиты от коррозии при укладке в землю свинцовую оболочку кабелей обвертывают несколькими чередующимися слоями пропитанной бумаги и жидкотекучего битума. Для механической защиты на кабелях небольшого диаметра предусматривается броня из тесно прилегающих друг к другу витков круглой проволоки па кабелях большого диаметра выполняется броня в виде плющеной проволоки (плоской оплетки). Поверх брони располагается слой пропитанного джута, который хотя и дает некоторую защиту от коррозии, но не обеспечивает электрической изоляции оболочки кабеля по отношению к земле. Бесспорные преимущества по защите от коррозии имеют бесшовные и беспористые оболочки (шланги) из полиэтилена толщиной 1,6—4,0 мм. Активная катодная защита от коррозии поэтому применяется главным образом для кабелей со свинцовой оболочкой, имеющих джутовую изоляцию. Кабели с оболочками из других металлов могут быть подключены к системе катодной защиты, но при этом должны быть проведены особые предупредительные мероприятия [3]. У кабелей с гофрированной стальной оболочкой жилы охватываются лентой из углеродистой стали, сваренной продольным швом без нахлестки. На изготовленной таким способом трубе-оболочке выполняют поперечные гофры для придания ей гибкости. Впадины гофров заполняют пластичной массой, прочно сцепляющейся и с металлом, и с полимерным материалом, а затем всю конструкцию обматывают лентой из полимерного материала. Поверх этого слоя далее получают экструдированием полимерную оболочку из полиэтилена. Полимерная оболочка получается практически беспористой и поэтому обеспечивает хорошую защиту от коррозии. Дефекты могут образоваться только на муфтах и в местах механических повреждений.  [c.299]

Кабели с алюминиевой оболочкой по возможности не следует соединять с кабелями других типов, поскольку алюминий имеет самый отрицательный потенциал среди всех материалов, применяемых для оболочек кабелей, из-за чего любой дефект в защитном покрытии становится анодом. При очень малом отношении площадей анода и катода плотность тока получается большой, и кабель с алюминиевой оболочкой из-за этого быстро разрушается. Алюминий может подвергаться также и катодной коррозии (см. рис. 2.16). Поэтому при подключении кабелей с алюминиевой оболочкой к системам катодной защиты потенциал кабеля (по медносульфатному электроду сравнения) нельзя снижать до более отрицательных значений, чем —1,3 В (см. раздел 2.4). Кабели с алюминиевой оболочкой прокладывают лишь в исключительных случаях, и то только тогда, когда грунт не содержит большого количества солей, а блуждающие токи отсутствуют.  [c.299]


На рис. 14.6 показана система катодной защиты специального кабеля, подведенного к антенне радиовышки и имеющего оцинкованную стальную броню без покрытия. Участок С низкоомным грунтом для размещения анодного заземлителя удалось найти только на расстоянии  [c.305]

Е — заземлитель станции, А — анодный заземлитель системы катодной защиты  [c.308]

Для настройки и контроля работы системы катодной защиты вдоль трассы кабеля нужно иметь измерительные пункты (см. раздел 11.2). Целесообразно предусматривать эти пункты там, где располагаются кабельные муфты. При этом расстояния между измерительными пунктами получаются около 0,5 км. Для локализации случайных контактов рекомендуется также сооружать измерительные пункты для контроля тока в стенке трубопровода.  [c.312]

Контроль системы катодной защиты  [c.312]

Рис. 17.5. Крепление анодов системы катодной защиты (с наложением тока от постороннего источника) для трубчатых свай погрузочного моста / — анодный кабель 2 —растяжки 3 — защитная стальная труба 4 — анод в перфорированной пластмассовой защитной трубе NN — уровень воды Рис. 17.5. Крепление <a href="/info/39586">анодов системы катодной защиты</a> (с наложением тока от постороннего источника) для трубчатых свай погрузочного моста / — анодный кабель 2 —растяжки 3 — защитная <a href="/info/165283">стальная труба</a> 4 — анод в перфорированной пластмассовой защитной трубе NN — уровень воды
Для проектирования системы катодной защиты от коррозии вначале нужно определить исходные данные, в первую очередь сопротивление электролита, площадь поверхности, нуждающейся в защите, и необходимую плотность защитного тока. Площадь защищаемой поверхности можно взять из конструкторских чертежей, причем необходимо учитывать геометрические формы конструкции. В случае шпунтовых стенок для получения эффективной длины фактическую длину нужно умножить на коэффициент формы (обычно составляющий 1,3—1,5).  [c.344]

Системы катодной защиты от коррозии следует проектировать всегда с большим запасом. Затраты на завышенную мощность станции катодной защиты в сравнении со стоимостью всего объекта невелики к тому же и срок службы анодов (анодных заземлителей) увеличится, если имеющиеся резервы мощности не будут использоваться. Более мощная защитная установка дает возможность осуществлять предварительную поляризацию в случае объектов без покрытия. В случае поверхностей с покрытием запас мощности позволит компенсировать повреждения или старение защитного слоя. Далее описываются некоторые примеры катодной защиты сооружений, соприкасающихся с морской водой.  [c.345]

Дренаж. Как видно из рис. 11.1, коррозию блуждающими токами можно полностью устранить, если соединить трубу В с рельсами С металлическим проводником с низким сопротивлением. Такой способ называется дренажем. Если разрушение вы-лывается системой катодной защиты, в линию дренажа можно включить резистор, чтобы избежать большого изменения потенциала незащищенной части системы при включении и выключении тока катодной защиты. Такое сопротивление в значительной мере предохраняет незащищенную часть системы от разрушения. В то же время оно позволяет избежать большого увеличения катодного тока, необходимого для защиты дополнительных конструкций, присоединяемых дренажем. Если по какой-то причине блуждающие токи периодически меняют направление, в дренажную линию включают выпрямляющее устройство (диод), тогда ток любого направления безопасен для конструкции.  [c.214]

Сплавы кремний—железо стойки в крепких кислотах серной, азотной, фосфорной (чистой), уксусной, муравьиной и молочной— при всех концентрациях вплоть до температуры кипения. Их применяют также в качестве коррозионностойких анодов при электролитическом получении меди и в системах катодной защиты. Они недостаточно стойки в галогенах, расплавах щелочей растворах НС1, HF, Н3РО4, загрязненной HF, а также в H SO Fe lj, гипохлоритах и царской водке. Сплав обычно являете  [c.384]

Преимуществами катодной защиты являются её высокая эффективность (-95...99%), возможность защиты больших металлических площадей в различных средах, автоматическое регулирование поляризационного защитного по-гснциала, а йсдостйткамй- вероятность усиления коррозии соседних металличе-ских сооружений, не входящих в систему защиты данньк сооружений необходимость регулярного контроля и ремонта высокая начальная стоимость монтажа системы катодной защиты.  [c.4]

Рис. 8,5. Насаживаемый анод системы катодной защиты (размеры — в миллиметрах) а — стальной лист б — окраска в — пластмассова пластина г — щиток д — титаио вый лист (титановый палец, ти тан + пластина) / и 2 — сальнико вые втулки 3—стенка корпуса судна 4 — предохранительная коробка (коффердам) Рис. 8,5. Насаживаемый <a href="/info/39586">анод системы катодной защиты</a> (размеры — в миллиметрах) а — <a href="/info/58253">стальной лист</a> б — окраска в — пластмассова пластина г — щиток д — титаио вый лист (титановый палец, ти тан + пластина) / и 2 — сальнико вые втулки 3—стенка корпуса судна 4 — <a href="/info/274195">предохранительная коробка</a> (коффердам)
Во всех системах катодной защиты, в которых сопротивление в цепи тока и требуемый защитный ток остаются постоянными, применяют защитные установки с настраиваемым напряжением на выходе. При малых мощностях и токах настройка делается при помощи отводов и Клемм на вторичной обмотке трансформатора. Однако при более высоких мощностях и для простоты настройки целесообразно применить разделительный трансформатор с фиксированным вторичным напряжением для максимального напряжения защитного тока на выходе из установки, а на первичной обмотке включить перед ним регулировочный трансформатор, работающий как автотрансформатор для. экономии энергии. Этот регулировочный трансформатор может иметь кольцевой сердечник или быть стержневым для бесступенчатой настройки, или же иметь отводы для подсоединения к переключателю ступеней. Рекомендуется эпизодически приводить в действие контактные дорожки регулировочных трансформаторов и переключателей для поддержания их чистоты, а во время ревизий тщательно очищать их от загрязнений.  [c.221]


Такое влияние проявляется и на участках трубопровода за изолирующим фланцем, причем обычно при малых напряжениях закорачивать этот фланец не требуется. При более высоком напряжении и смещении потенциала в положительную сторону изолирующий фланец в таком случае можно закоротить уравнительным сопротивлением. В случае водопроводов может потребоваться установка внутри них дополнительной системы катодной защиты или же применение участка с изолирующей внутренней футеровкой (см. раздел 11.6).  [c.238]

Данные после пускового измерения должны быть занесены в учетную карту станции катодной защиты их используют как поминальные значения для последующих сравнительных измерений. Для лучшей наглядности их наносят па илаыы (схе лы) распределения потенциалов и подвергают обработке (см. рис. 3.24), Обработка может быть выполнена также и с помощью ЭВМ. По участкам между измерительными пунктами для контроля тока в трубопроводе могут быть определены значения плотности защитного тока, пригодные для сопоставления с результатами последующих измерений и позволяющие обнаруживать неполадки в системе катодной защиты.  [c.259]

Резервуары и их эксплуатационные трубопроводы, оборудуемые системой катодной защиты, должны быть электрически изолированы от всех других металлических сооружений. В случае резервуаров-хранилищ это делается установкой изолирующих трубных вставок (фланцев), которые для обеспечения полной защиты должны располагаться так, чтобы все эксплуатационные стальные трубопроводы, соединенные с резервуарами, а также и подсоединительные изолированные медные трубопроводы, если они уложены в землю, могли бы быть включены в систему катодной защиты. Таким образом, при вводах в здания изолирующие фланцы должны располагаться внутри зданий и в местах отбора топлива, например у опор бензозаправочных колонок.  [c.267]

Резервуар с мазутом (мазутохранилище), нуждающийся в защите, располагается (рис. 12.2) под землей поблизости от здания. Граница имеющегося в распоряжении земельного участка проходит на расстоянии нескольких метров от резервуара со стороны, противоположной зданию. Стальные трубопроводы, подсоединенные к мазутному резервуару, которые тоже должны быть подключены к системе защиты, имеют изоляционное покрытие. Изолирующие фланцы, необходимые для электрической изоляции мазутного резервуара, располагаются внутри здания. Для расчета системы катодной защиты приняты следующие параметры, полученные при пробном пуске системы емкость резервуара (двухстенная конструкция) 20 м площадь поверхности резервуара и трубопроводов 50 м сопротивление растеканию тока с мазутного резервуара в грунт 30 Ом сопротивление изолирующих фланцев (вставок) 28 Ом удельное электросопротивление грунта в месте расположения анодных зазем-лителей, измеренное при расстояниях между зондами 1,6 и 3,2 м (среднее значение для восьми измерений) 35 Ом-м требуемый защитный ток (при потенциале выключения по медносульфатному электроду l/ u/ usOi =—плотность защитного тока 200 мкА-м .  [c.273]

Рнс. 12.3. Система катодной защиты топливозаправочной станции с преобразователем, питаемым от сети / — искровые разрядники 5 — наполнительные (заправочные) колодцы 3 — измерительный канал на глубине около 2,3 м < —анодные и катодные кабели J — преобразователь станции катодной защиты б — изолирующие фланцы 7 — топливоразборные колонки  [c.276]

Строительные сооружения или колодцы для водопроводных линий тоже часто выполняются из железобетона. В месте ввода трубопровода в стенку колодца может легко получиться контакт между трубой и стальной арматурой. В таком случае при сооружении станции катодной защиты для трубопровода достаточное снижение потенциала поблизости от колодцев не будет обеспечено [17]. На рис. 13.7 показано, что под действием коррозионного элемента воронка напряжений отодвигается от колодца на расстояние до нескольких метров. При плотности защитного тока около 5 мАх Хм для бетонной поверхности даже небольшого колодца, имеющего площадь бетона 150 м, требуется защитный ток порядка 0,75 А. Для большого распределительного колодца с площадью поверхности бетона 500 м нужен защитный ток в 2,5 А. Такие большие защитные токи могут быть локально подведены только при помощп дополнительных анодных заземлителей. Эти заземлители в таком случае размещают в непосредственной близости от ввода трубопровода в бетонную стенку колодца. Такая локальная катодная защита становится необходимым дополнением к обычной системе катодной защиты трубопровода, которая в районе железобетонного колодца в ином случае будет неэффективной.  [c.296]

Мероприятия по предотвращению или уменьшению блуждающих токов регламентированы в нормали VDE 0150 [1]. Земля не должна использоваться в обычных условиях работы для прохождения тока. Исключением являются только небольшие и кратковременно протекающие токи от установок связи, токи от железных дорог с тягой на постоянном токе, линии высоковольтных электропередач и системы катодной защиты. Для этих установок регламентированы особые требования. Все провода, по которым течет ток, и части установки, относящиеся к цепи рабочего тока, должны быть изолированы. В протяженных установках ностояп-ного тока с большими рабочими токами целесообразно предусматривать контроль замыкания на землю. Это позволит сразу же выявить замыкание на землю и устранить неисправность в общем случае до того, как произойдет второе замыкание.  [c.315]


Смотреть страницы где упоминается термин Система катодной защиты : [c.11]    [c.10]    [c.17]    [c.199]    [c.228]    [c.234]    [c.242]    [c.244]    [c.262]    [c.285]    [c.291]    [c.293]    [c.293]    [c.304]    [c.305]    [c.313]    [c.315]   
Катодная защита от коррозии (1984) -- [ c.303 , c.415 , c.416 ]



ПОИСК



V катодная

Анодные заземлители в системах катодной защиты

Аноды систем катодной защит

Катодная защита

Контроль системы катодной защиты

Оцени а работы системы катодной защиты для нефтегазовых скважин

Сулимин Ю.В., Сулимин В.Д. Современная система катодной защиты от коррозии

Эксплуатация и обслуживание систем катодной защиты



© 2025 Mash-xxl.info Реклама на сайте