Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тяговые подстанции —

I - рельс 2 - контактный провод 3 - разъединителе контактной сети 4 - тяговая подстанция 5 - трубопровод  [c.43]

Допустимое падение напряжения в дренажном кабеле при подключении его к минусовой шине тяговой подстанции расстояние ма дцу отсасывающим пунктом  [c.66]

При наличии блуждающих токов наиболее эффективным способом защиты является электродренажная защита. Основной принцип ее состоит в устранении анодных и знакопеременных зон на подземном металлическом сооружении. Это достигается отводом блуждающих токов с анодных зон сооружения в рельсовую часть цепи или на отрицательную сборную шину отсасывающих линий тяговой подстанции. Потенциал сооружения смещается в отрицательную сторону, а анодные зоны, вызванные блуждающими токами, ликвидируются.  [c.4]


Положительный полюс источника питания от тяговой подстанции подключается к контактному проводу, а отрицательный - к рельсам. При такой схеме электроснабжения тяговый ток от положительной шины тяговой подстанции по питающим фидерам поступает через контактную сеть и токоприемник к двигателю электровоза, а затем через колеса и рельсы к отрицательной шине тяговой подстанции. Так как рельсы не полностью изолированы от земли, часть тягового тока в соответствии с законом Кирхгоффа стекает с них в землю. Сила стекающего тока, который и является блуждающим, тем больше, чем меньше переходное сопротивление между рельсами и землёй и чем выше продольное сопротивление рельсов (переходное сопротивление "рельс-земля" 0,1-1,0 Ом/км). При условиях, способствующих утечке тока в землю (большое сопротивление стыковых соединений на рельсах, загрязнённость балласта и т.д.), сила блуждающего тока в земле может достигать 70-80% от общей силы тягового тока, т. е. десятков и сотен ампер. Так как на участке между двумя тяговыми подстанциями могут находиться несколько электровозов, то в зависимости от их расположения и силы тягового тока, потенциалы отдельных участков рельсового пути будут изменяться как по величине, так и по знаку.  [c.22]

Блуждающие токи, протекая в земле и встречая на своём пути подземные металлические сооружения, сопротивление которых намного меньше земли (трубопровод, кабель и др.), натекают на них. Ток будет течь по металлическому сооружению до тех пор, пока не встретит благоприятных условий для возвращения на минусовую шину тяговой подстанции (чаще всего в местах повреждения изоляции трубопроводов). Блуждающие токи могут иметь радиус действия до нескольких десятков километров в сторону от токонесущих сооружений. В местах входа блуждающих токов в трубопровод и выхода из него в землю протекают электрохимические реакции. В зоне входа в него происходит катодный процесс, который приводит к подщелачиванию грунта,  [c.23]

Электродренажная защита - наиболее эффективная защита от коррозии под действием блуждающих токов. Основной принцип её состоит в устранении анодных зон на подземных сооружениях. Это достигается отводом дренажом блуждающих токов с участков анодных зон сооружения в рельсовую часть цепи, имеющую отрицательный или знакопеременный потенциал, или на отрицательную сборную шину отсасывающих линий тяговой подстанции. Потенциал сооружения смещается в отрицательную сторону, а анодные зоны, вызванные блуждающими токами, ликвидируются. При этом катодные зоны в местах входа блуждающих токов в сооружение сохраняются. Очевидно, что электрический дренаж работает только в том случае, когда разность потенциалов соору жение-элемент рельсовой сети положительна или искусственно становится положительной, т. е. потенциал ПСМ отрицательнее потенциала рельсовой сети.  [c.26]


Прямой электродренаж следует присоединять в сетях электрофицирован-ных железных дорог к отсасывающему пункту или к тяговому рельсу на расстоянии не более 50 метров от отсасывающего пункта, к средней точке путевого дросселя, к сборке отсасывающих линий тяговой подстанции.  [c.27]

В расчетах принимается среднемесячная сила тока тяговой подстанции. Максимальную силу тока в электродренажной цепи Г р, А, вычисляют по формуле /6/  [c.32]

Kj - коэффициент, учитывающий расстояние от места пересечения трубопровода электрифицированной железной дорогой до тяговой подстанции  [c.32]

На рис. 33 приведена схема, поясняющая возникновение блуждающих токов. Ток от тяговой подстанции 4 приводит в движение электродвигатель электровоза 5 и возвращается к подстанции по рельсам 1. Однако по рельсам протекает лишь часть тока, другая часть, достигающая 20 7о от общего тягового тока, возвращается к тяговой подстанции через землю, так как изоляция рельсов от земли несовершенная, причем чем больше расстояние между тяговыми подстанциями, чем меньше сечение рельса и хуже он изолирован от земли, тем больше утечка токов в землю. Эти токи, распространяясь по земле, попадают в подземные металлические сооружения 3 (в месте входа токов образуется катодная зона— потенциал сооружения смещается в отрицательную сторону). На участках сооружения, проходящих около тяговой подстанции, ток из сооружения стекает в землю, здесь на сооружении возникает анодная зона — потенциал сооружения смещается в положительную сторону. Б анодной зоне происходит интенсивный процесс коррозионного разрушения металла.  [c.77]

Так как электрифицированный транспорт перемещается, нагрузка изменяется, то катодная зона перемещается по сооружению, а амплитуда потенциала изменяется. Поэтому на сооружении обычно кроме устойчивой анодной зоны в районе подстанции и катодной зоны по середине между тяговыми подстанциями имеются и знакопеременные зоны, разделяющие анодные и катодные зоны.  [c.77]

Харьковский электромеханический завод поставил преобразовательные агрегаты для тяговых подстанций электрифицированной железнодорожной линии Сурамского перевала мощностью 2000 кет. Тот же завод поставил преобразовательные агрегаты для Днепропетровского алюминиевого завода мощностью (со стороны постоянного тока) 9100 кет каждый, вертикальные двигатели для насосов канала имени Москвы мощностью 3500 кет, 6000 б, 214 об/мин.  [c.95]

Изобретение в 1889—1891 гг. М. О. Доливо-Добровольским системы трехфазного переменного тока открыло пути для централизованного электроснабжения трамвая от крупных электростанций через преобразовательные тяговые подстанции постоянного тока.  [c.130]

В 1929 г. был электрифицирован 18-километровый пригородный участок Москва — Мытищи Северной ж. д. с моторвагонной тягой на постоянном токе напряжением 1500 в. Цельнометаллические вагоны для этого участка и тяговые двигатели для них были построены теми же заводами. Преобразование тока на тяговых подстанциях осуществлялось ртутными выпрямителями, изготовленными ленинградским заводом Электросила В том же году началась подготовка к электрификации на постоянном токе напряжением 3000 в первой магистральной линии — Сурамского перевального участка между станциями Хашури и Зестафони протяженностью 63 км. Тогда же на заводе Динамо приступили к проектированию шестиосных магистральных электровозов типа Зо-Зо кроме того, несколько электровозов было заказано в США и Италии.  [c.231]

В 1932 г. состоялась I Всесоюзная конференция по электрификации железных дорог. Одобрив использование для целей электрификации постоянного тока напряжением 3000 в, она рекомендовала также применение (после соответствующей опытной проверки) системы однофазного переменного тока промышленной частоты напряжением 20 кв, более выгодной по техническим и экономическим показателям (уменьшение числа тяговых подстанций и превращение их из понизительно-трансформаторных в понизительные, значительная экономия меди вследствие уменьшения сечения контактных проводов, снижение потерь энергии в проводах и пр.), но предполагающей дополнительные затраты при замене воздушных линий межстанционной связи кабельными линиями для устранения электрических помех и недостаточно изученной к тому времени в эксплуатационных условиях.  [c.231]


В 1933 г. тем же заводом было начато производство ртутных выпрямителей на напряжение 3000 в выпрямленного тока для тяговых подстанций магистральных железных дрог.  [c.231]

Провести весь комплекс измерений на рельсах, тяговых подстанциях и отсасывающих пунктах согласно требованиям ГОСТа 9 015-74.  [c.71]

Почти на всех электрифицированных железных дорогах с тягой на постоянном токе для возвращения рабочего тока к генератору (тяговой подстанции) используют ходовые рельсы. Ходовые рельсы укладывают на деревянных или бетонных шпалах, и на железных дорогах на поверхности они имеют более или менее хорошее электрическое соединение с грунтом. Грунт является электрическим проводником ионов, подключенным параллельно ходовым рельсам. Железнодорожную сеть следует считать заземленной на всей ее длине. Эти обстоятельства и связанная с ними опасность коррозии были выявлены уже давно (см. раздел 1.4). При соответствующем строительном исполнении и надлежащем контроле блуждающие токи от железных дорог можно уменьшить. Требуемые для этого мероприятия изложены в нормативных документах [1, 8], а также в рекомендациях Объединения предприятий общественного транспорта [9. Однако поскольку полностью избежать блуждающих токов нельзя, целесообразно, а в ряде случаев даже необходимо проводить дополнительные мероприятия по защите трубопроводов и кабелей. Важнейшими предпосылками для уменьшения блуждающих токов являются  [c.316]

Необходимое число тяговых подстанций для питания железных дорог на постоянном токе и расстояния между ними зависят от эксплуатационных особенностей. Для уменьшения блуждающих токов эти показатели следует выбирать так, чтобы разность потенциалов в рельсовой сети в среднем за определенное время не превысила некоторых предельных значений fl]. При этом необходимо проводить различие между средней разностью потенциалов в центральной части (ядре) железнодорожной сети и средним падением напряжения участков пути, ответвляющихся от центральной части сети.  [c.317]

ТЯГОВЫХ подстанций часто оказывается изменение напряжения питания с отдельных подстанций.  [c.318]

Почти на всех железных дорогах ФРГ с тягой на постоянном токе положительный полюс преобразовательных тяговых подстанций соединен с контактным проводом или с токоведущим (третьим) рельсом, а отрицательный полюс —с ходовыми рельсами. Такая полярность считается обязательной [9]. Предлагавшаяся ранее система с тремя проводами и переключением полярности по участкам не оправдала себя. Соединение плюсового полюса с ходовыми рельсами технически возможно и прежде при использовании ртутных выпрямителей было даже целесообразным по соображениям защиты от прикосновения (для снижения напряжения прикосновения), но вызывало трудности при осуществлении мероприятий по защите от коррозии типа дренажа или усиленного дренажа блуждающих токов. Поэтому следует рекомендовать всегда соединять минусовой полюс с ходовыми рельсами.  [c.319]

Для контроля среднего тока нужно сопоставить сумму токов всех участков пути в районе одной тяговой подстанции с суммой усредненных во времени токов тяговых питающих подстанций. При несовпадении следует проверить количество электроэнергии, потребляемой ваго-н.ши различных типов.  [c.320]

Рис. 16.2. Распределение токов и потенциалов на консольном участке железнодорожного пути UW—тяговая подстанция Г — равномерно распределенная токовая нагрузка удельное электросопротивление единицы длины рельсовой линии Рис. 16.2. Распределение токов и потенциалов на консольном участке <a href="/info/294051">железнодорожного пути</a> UW—тяговая подстанция Г — <a href="/info/100646">равномерно распределенная</a> токовая <a href="/info/447194">нагрузка удельное</a> электросопротивление <a href="/info/104809">единицы длины</a> рельсовой линии
В сети с пересечениями или при двустороннем питании, например от нескольких соединенных параллельно тяговых подстанций, наклон прямых для распределения тока I при одной и той же токовой нагрузке хотя и сохраняется, но прямые могут сместиться параллельно самим себе. Для условий, принятых на рис. 16.3,6, кривая тока пересекает нулевую линию, т. е. в пределах рассматриваемого участка пути при х=х, происходит изменение знака тока, причем направление тока в рельсах в узловых точках п п т становится противоположным. При произвольно принятом потенциале Un в точке с 1=0 должен наблюдаться максимум потенциала. Потенциал здесь должен быть более высоким, чем в обеих узловых точках п и т. Однако независимо от распределения тока на участке пути по рис. 16.3 можно представить, что ток от равномерно распределенной токовой нагрузки /п-т=/ п, п—т поступает поровну в обе узловые точки п и т.  [c.322]

Здесь представлено распределение токов и потенциалов для случая движения одного вагона, ток I которого стекает в рельсы в конце участка параллельного расположения рельсов и трубопровода. Вблизи вагона блуждающий ток стекает с ходовых рельсов и натекает через грунт на трубопровод при работе без дренажа этот ток (его направление показано стрелкой) в районе тяговой подстанции вновь стекает с трубопровода и возвращается через грунт к ходовым рельсам, вызывая в этом месте анодную коррозию трубопровода. Кривые / и 2 пока-казывают изменение потенциала рельса и грунта около рельса по отношению к далекой земле. На том участке, где рельсы положительны (с координатой от х=1 до х = 112), происходит катодная, а на участке отрицательных рельсов от //2 до О — анодная поляризация трубопровода. Поляризация трубопровода U—Ur представлена кривой 3. При низкоомном дренаже блуждающего тока к ходовым рельсам перед подстанцией трубопровод принимает здесь потенциал рельсов. Изменение смещенного потенциала вдоль участка параллельного расположения трубопровода и рельсов представлено кривой 4, а изменение тока в трубопроводе — кривой 5. Потенциал труба — грунт при этом может  [c.328]

Условия, показанные на рис. 16.6, для большей наглядности сильно упрощены и относятся только к одному моменту времени. Практически на участке пути всегда находятся несколько вагонов, причем потребление тока у них меняется. В таком случае токи и потенциалы подвергаются сильным колебаниям во времени. Без проведения защитных мероприятий потенциалы труба—грунт на краях тягового участка трамвайной линии обычно, однако, получаются всегда бояее отрицательными, а поблизости от тяговых подстанций — более положительными. В широкой промежуточной области происходят изменения в обе  [c.329]


Многие сети газоснабжения и водопроводные сети в городах еще состоят из старых труб, имеющих в ряде случаев очень плохое изоляционное покрытие. У силовых кабелей и кабелей телефонных сетей оболочка обычно тоже почти не обеспечивает достаточной электрической изоляции, если только она не выполнена пластмассовой. Мероприятия по защите от блуждающих токов на каком-либо из таких сооружений сами по себе обычно невозможны, потому что имеется много соединений с потребителями и случайных контактов на пересечениях в грунте. В общем случае все трубопроводы и кабели, расположенные в грунте поблизости от тяговых трамвайных подстанций, подвергаются-опасности коррозии. Поэтому часто приходится рекомендовать совместные мероприятия по защите от блуждающих токов [16]. Более крупные трамвайные сети питаются от большого числа тяговых подстанций. Простые или усиленные дренажи блуждающих токов следует сооружать по возможности в непосредственной близости от подстанций. На подстанциях большой мощности, например на центральных подстанциях постоянного тока, для защиты распределительных сетей обычно  [c.334]

Следует учесть, что и перекрестный ток между ходовыми рельсами и трубопроводом на всем участке их параллельного расположения равен нулю (1д—0). Это однако не означает отсутствие какой-либо опасности коррозии. В этом случае на конце участка блуждающий ток стекает и с ходовых рельсов, и о трубопровода в грунт, а поблизости от тяговой подстанции вновь натекает на ходовые рельсы и на трубопровод.  [c.460]

Борьба с утечкой токов для ее ограничения и снижения а) уменьшением падения напряжения в рельсах трамваев, электрических железных дорог и метрополитена (уменьшением расстояния между тяговыми подстанциями, увеличением числа отсасывающих пунктов, увеличением сечения рельсов, уменьшением сопротивления стыков рельсов, увеличением числа между рельсовых и междупутных соединителей) б) повышением переходного сопротивления между токоносителем (рельсом, гальванической установкой) и землей (соответствующей пропиткой деревянных шпал,  [c.395]

Дренажные установки, которые являются наиболее эффективным методом, отводят блуждающие токи из анодной зоны подземного сооружения в рельсовую сеть или на отрицательную шину тяговой подстанции (рис. 281). Прямой дренаж имеет двухсторон-  [c.396]

Характер поля блуждающих токов, а следовательно, расположение анодных и катодных зон на подземном металлическом сооружении, зависит от ряда трудноучитываемых факторов. Ток, потребляемый моторным вагоном, зависит от скорости движения и веса состава, профиля пути, состояния рельсов и т.п. и изменяется от максимальных значений до нуля. При рекуперативном торможении изменяется и направление тока. Непрерывное изменение точек приложения тяговых нафузок и их величины вызывает соответственно и изменение характера полей блуждающих токов. Характер поля блуждающих токов усложнен также тем, что рельсовые пути могут иметь сложную конфигурацию, образуя систему замкнутых и связанных между собой контуров, соединенных с соответствующими тяговыми подстанциями при помощи системы отсасывающих кабелей. Кроме того, существенным является и то, что количество поездов, одновременно находящихся на участке, также непрерывно меняется. Существенное влияние на характер распределения поля блуждающих токов имеет состав грунта, его влажность, величина переходного сопротивления между щпа-  [c.22]

Для нормальной работы дренажа падение напряжения в самом дренаже и в дренажном кабеле должно быть меньше разности потенциалов сооружение-рельсы . Потому применение дренажной защиты оправдано лишь при относи-lejibHo близком pa пoJюжeнии защищаемого сооружения от рельсов или отсасывающих пунктов тяговых подстанций. При больщой длине дренажного кабеля, для уменьшения потери напряжения, необходимо увеличить его сечения, что может оказаться экономически нецелесообразным. В таком случае рекомендуется переходить на защиту с применением катодных станций или протекторных установок.  [c.26]

При эяектродренажной защите магистральных трубопроводов силу тока в электродренажной цепи определяют из расчета, что из рельсов электрифицированной железной дороги в трубопровод ток утечки составляет не более 20% токов нагрузки тяговой подстанции, т.е. силу тока в электродренажной пепи А, вычисляют по формуле  [c.32]

Известно также, что сумма Ii+h+...+In=Iges представляет собой ток, поступивший от тяговой подстанции. В рассматриваемом простом случае одностороннего питания распределение потенциалов в центральной части (ядре) сети можно рассчитать наложением напряжении на отдельных участках пути. Например, для разности напряжений между точками рельсов / и 6 можно записать  [c.323]

Из формулы (16.13 ) видно большое влияние длины тягового участка /, поскольку он входит в выражение в третьей степени. При выборе расстояний между тяговыми подстанциями нужно также учитывать, что допускаемые по нормали VDE0115 предельные значения напряжений на рельсах наземных железнодорожных путей распространяются на всю железнодорожную сеть, поскольку пути в туннеле и наземные пути образуют общую рельсовую сеть со сквозным электрическим соединением. При определенном профиле рельсов с известной величиной их сопротивления на единицу длины на величину падения напряжения в туннеле может повлиять также качество изоляции рельсов и сквозного соединения всех секций туннеля (значения и / j-должны быть низкими). Согласно измерениям в новых и хорошо дренируемых туннельных сооружениях (со стоком воды), при укладке ходовых рельсов на обычном щебеночном основании может быть достигнута проводимость (утечка с ходовых рельсов на несущую конструкцию туннеля) в расчете на единицу длины G j.<0,l См-км-. Хотя этот показатель с течением времени увеличивается, однако лишь при самых неблагоприятных обстоятельствах он может превысить  [c.327]

Синхронная запись разности напряжений между трубопроводом и рельсом Ur-s, потенциала труба—грунт t u/ usOi отводимого тока/в районе тяговой подстанции трамвайной линии с проведением различных защитны] мероприятий и без них показана на рис. 16,9.  [c.331]

При усиленном дренаже блуждающих токов ток отводится из трубопровода к рельсам при помощи преобразователя, питаемого от сети. Преобразователь включается в линию отвода блуждающих токов обратно к рельсам, причем минусовой полюс подсоединяется к защищаемой установке (сооружению), а плюсовой полюс — к ходовым рельсам или к минусовой сборной шине на тяговой подстанции. Различные исполнения защитных преобразователей и возможности их применения описаны в разделе 9. На участке рисунка г показана запись параметров, получающихся при применении нерегулируемого преобразователя с напряжением на выходе 2 В, подсоединнтельные кабели которого, имеющие сопротивление около 0,4 Ом, действуют как ограничитель тока. При этом достигается катодная защита, эффективность которой однако в случае трубопроводов с плохим изолирующим покрытием быстро уменьшается по мере удаления от защитной установки. Сильные колебания защитного тока могут быть уменьшены путем увеличения сопротивления, ограничивающего ток, с помощью добавочного сопротивления R. Однако тогда и потенциал труба — грунт в среднем становится менее отрицательным. Если требуется обеспечить только защиту от блуждающих токов,, то сопротивление R настраивается так, что с увеличением защитного тока потенциал труба—грунт становится лишь немного более отрицательным. Однако эффект сглаживания тока при работе преобразователей, питаемых от сети, может быть достигнут и без потери мощности на омическом сопротивлении, если предусмот-  [c.331]

Рис. Г6.10. Влияние блуждающих токов на трубопровод, пересекающий трамвайные пути / — станция катодной защиты 2 — трасса трубопровода 3 — установка дренажной защиты 4 — участок трамвайной линии с интенсивным движением 5 — то же, с редким движением трамваеи й — направление тока 7 — преобразователь тяговой подстанции в — трамвайная линия 3 — территория города (заштриховано) /О—потенциал рельсов Рис. Г6.10. Влияние блуждающих токов на трубопровод, пересекающий трамвайные пути / — <a href="/info/39790">станция катодной защиты</a> 2 — трасса трубопровода 3 — <a href="/info/183992">установка дренажной</a> защиты 4 — участок трамвайной линии с интенсивным движением 5 — то же, с редким движением трамваеи й — направление тока 7 — преобразователь тяговой подстанции в — трамвайная линия 3 — территория города (заштриховано) /О—потенциал рельсов


Смотреть страницы где упоминается термин Тяговые подстанции — : [c.396]    [c.43]    [c.66]    [c.66]    [c.32]    [c.77]    [c.233]    [c.318]    [c.321]    [c.323]    [c.326]    [c.330]    [c.331]   
Подвижной состав и основы тяги поездов (1976) -- [ c.0 ]



ПОИСК



Мощность тяговых подстанций

Мощность тяговых подстанций сортировочных устройствах

О разрешении применения электроэнергии на отопление тяговых подстанций

О частичном изменении Правил техники безопасности при эксплуатации электроустановок потребителей применительно к обслуживанию электроустановок тяговых подстанций электрифицированных железных дорог

Подстанции

Подстанции тяговые — Исполнение конст

Подстанции тяговые — Исполнение конст руктнвное

Подстанции электрические тяговые

С (СК) тяговых

Схемы и электрооборудование тяговых подстанций

Тяговая подстанция 99 — железобетонные 67Тяговые характеристики тепловозов 125, 126 — металлические

Тяговая подстанция 99 — железобетонные 67Тяговые характеристики тепловозов 125, 126 — металлические блокигорочная

Тяговая подстанция железобетонные электровозов

Тяговые подстанции и контактная сеть



© 2025 Mash-xxl.info Реклама на сайте