Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Первые интегралы количеств движения

Первые интегралы количеств движения 299  [c.429]

Рассмотрим случай, когда теорема об изменении количества движения дает первые интегралы уравнений движения точки.  [c.326]

Пуля, попадая в контейнер баллистического маятника, движется затем вместе с контейнером как единое целое. Количество движения и кинетический момент относительно точки подвеса маятника, которые имела пуля до попадания в контейнер, сохраняются. Им соответствуют первые интегралы уравнений движения. Кинетическая энергия системы уменьшается за счет тепловых потерь.  [c.388]


Первые интегралы уравнений движения, которые можно получить на основании теоремы об изменении количества движения.  [c.52]

Это два простейших интеграла, второй из которых есть не что нное, как общий интеграл первого первый же интеграл, очевидно, показывает, что составляющая количества движения по оси г, т. е. по неподвижной оси, перпендикулярной, по предположению, к направлению действующей силы, остается постоянной. Он называется поэтому интегралом количества движения.  [c.82]

Полученное соотношение является первым интегралом уравнений движения системы и сохраняет постоянное значение во все время движения системы. Постоянная определяется из начальных условий. В этом и заключается закон площадей в динамике системы материальных точек, или закон сохранения момента количества движения.  [c.318]

Каковы необходимые и достаточные уравнения движения свободных механических систем необходимые, но недостаточные Что представляют собой буквенные обозначения формул (2.2.1) — (2.2.4) 2. К каким теоремам приводят необходимые, но недостаточные уравнения движения свободных систем 3. Какова роль теоремы о количестве движения в механике свободной системы и абсолютно твердого тела 4. Какие следствия вытекают из теоремы о количестве движения 5. Какие выражения называются первыми интегралами уравнений движения свободных механических систем Когда их можно записать  [c.68]

Доказанные выше теоремы позволяют установить условия существования трех основных типов первых интегралов. Если внешние силы отсутствуют, то не меняется во времени количество движения системы, называемое в этом случае интегралом количества движения. Если момент внешних сил равен нулю, то не меняется кинетический момент системы, называемый в этом случае интегралом момента количества движения. Наконец, если все действующие силы потенциальны и не зависят от времени, то полная механическая энергия является интегралом энергии рассматриваемой системы.  [c.71]

Так как количество независимых первых интегралов уравнений движения ие может быть больше определенного числа, то рассматриваемые два интеграла можно вывести нз 2и интегралов с произвольными постоянными, равными начальным Значениям переменных. Еслн этн начальные значения обозначить через ( 1,. ..), (Pi,. ..), то тогда будем иметь  [c.372]

В этих трех случаях теорема о количестве движения дает первые интегралы дифференциальных уравнений движения. В первом и во втором случаях, т. е. когда сила постоянна или является функцией времени, теорема применяется в конечной форме, выражаемой уравнениями (147). Из уравнений (147) по заданным проекциям силы находят проекции скорости на координатные оси. третьем случае теорема применяется в дифференциальной форме.  [c.286]


В предыдущих главах мы уже встречались с понятием первого интеграла уравнений движения. Роль таких первых интегралов играли различные функции, которые во время движения не изменяются в силу законов сохранения — закона сохранения количества движения (импульса), закона сохранения момента количества движения (кинетического момента системы), закона сохранения механической энергии и т. д. Формулы, выражающие  [c.265]

В случаях, отличных от рассмотренных, для получения из теоремы об изменении количества движения первых интегралов надо вычислить импульс S или его проекции 5 , S , S . Поскольку вообще F=F x, у, 2, х, у, z, f), то, как видно из равенства (6), для вычисления импульса надо знать х (/), у (/), z (/), т. е. общее решение уравнений движения точки. Но если известно общее решение. то использование уравнений (3) или (5) для отыскания первых интегралов утрачивает смысл.  [c.327]

Общие теоремы динамики для прямолинейного движения точки, в ряде случаев первые интегралы уравнения (2) могут быть получены из теорем об изменении количества движения или кинетической энергии ( 33). Представив уравнение (2) в виде  [c.352]

Из изложенного видно, что, когда сила зависит только от времени t или только от расстояния х, для решения задач можно пользоваться первыми интегралами, которые в этих случаях дают соответственно теоремы об изменении количества движения и кинетической энергии точки. Примеры таких решений рассмотрены в 33 (п. 1 и п. 8). Если же сила зависит О от скорости движения, то общие теоремы первых интегралов не дают, и для решения соответствующей задачи необходимо непосредственно интегрировать дифференциальное уравнение движения.  [c.355]

Из теоремы об изменении количества движения для точки и системы при некоторых условиях для внешних сил можно получить так называемые первые интегралы системы дифференциальных уравнений точки и системы. Эти первые интегралы называют законами сохранения количества движения или проекции количества движения на ось. Рассмотрим эти законы сохранения для точки и системы одновременно, считая материальную точку механической системой, состоящей из одной точки.  [c.261]

Соотношения (25 ) являются первыми интегралами дифференциальных уравнений движения системы (3). Закон сохранения кинетического момента системы показывает, что одни внутренние силы не могут изменить кинетический момент системы так же, как они не изменяют ее количество движения.  [c.272]

Из теоремы об изменении количества движения для точки и системы при некоторых условиях для внешних сил можно получить так называемые первые интегралы системы дифференциальных уравнений точки и системы. Эти первые интегралы называют законами сохранения  [c.287]

Первые интегралы дифференциальных уравнений движения, вытекающие из теоремы об изменении момента количества движения  [c.391]

Иа основании вышеизложенного приходим к выводу, что теорема об изменении момента количества движения может дать либо три независимых первых интеграла, либо один. Случай двух первых интегралов приводит к дополнительным ограничениям, которые необходимо наложить на начальные условия, а это в свою очередь показывает, что константы интегрирования С и Су должны быть равны нулю. Поэтому нельзя получить два независимых первых интеграла.  [c.393]

Атомное ядро создает кулоновское поле, которое можно считать сферически симметричным или центральным, потенциал которого является функцией только расстояния г от центра. Таким образом, электроны атома движутся в центрально симметричном поле, при этом момент количества движения является первым интегралом движения, т. е. остается постоянным во времени. Здесь дополнительно накладывается еще условие квантования. Орбитальный мо-  [c.184]

Сохраняются также первые интегралы движения механики полная энергия, импульс, момент количества движения, так как можно считать, что сталкивающиеся частицы образуют замкнутую механическую систему.  [c.265]

Применение теоремы об изменении момента количества движения относительно оси позволило получить зависимость между проекциями скорости и координатами движущейся точки, т. е. один из первых интегралов уравнений динамики [его называют (вспомним формулы (59) и (60) 92) интегралом площадей в проекции на плоскость yz происхождение названия станет понятным из следующего пункта].  [c.156]


Таким образом, имеются все необходимые предпосылки для построения оболочечной модели ядра в поле сферического потенциала движутся не взаимодействующие между собой частицы — нейтроны и протоны, которые имеют полуцелый спин и подчиняются принципу Паули. Потенциал в первом приближении одинаков для нейтронов и протонов, так как кулоновское отталкивание для протонов становится заметным только у тяжелых ядер. Это заключение подтверждается совпадением магических чисел для протонов и нейтронов. Благодаря сферической симметрии потенциала орбитальный момент количества движения / является интегралом движения, причем всем 21 -f 1 ориентациям  [c.191]

Перейдем к выводу первой формулы Вине. Пусть материальная точка т движется под действием центральной силы. Теорема об изменении момента количества движения в векторной форме (15. 10) приводит в этом случае, как показано в следствии 1 п. 2. 3 гл. XV, к первому интегралу  [c.427]

Интегралы эти понятны непосредственно из общих теорем. Первый интеграл является интегралом живых сил, второй интеграл — интеграл момента количеств движения. В самом деле. Действительные неремещения твердого тела с одной неподвижной точкой находятся среди возможных. Работа активных сил, приводящихся к одной равнодействующей, проходящей через неподвижную точку, на действительном перемещении равна нулю следовательно, имеет место интеграл живых сил 2Т = h. Далее, твердое тело может вращаться вокруг любой неподвижной оси, проходящей через неподвижную точку О. Результирующий момент действующих сил относительно неподвижной точки равен нулю, поэтому из общей теоремы о моменте количеств движения следует,  [c.185]

Общие теоремы динамики позволяют нам, не исследуя движения каждой точки механической системы, находить общие динамические характеристики движения системы. Эти теоремы устанавливают связь между данными динамическими характеристиками (количеством движения, кинетическим моментом, кинетической энергией) и действующими на систему силами. Применение теорем избавляет от необходимости каждый раз при непосредственном использовании дифференциальных уравнений движения системы точек производить операции суммирования и интегрирования, которые уже были выполнены при выводе данных теорем. При некоторых условиях для действующих на систему сил теоремы позволяют просто получить первые интегралы, т. е. соотношения, в которые не входят производные второго порядка от координат по времени.  [c.172]

Очевидно, что материальная точка будет всегда оставаться в плоскости, содержащей центр сил и касательную к орбите. Так как в этой плоскости мы имеем две степени свободы, то нам нужны два диферен-циальных уравнения движения. Их можно составить разными способами, но проще всего исходить из двух первых интегралов, которые можно иметь на основании теоремы о моменте количеств движения и уравнения энергии.  [c.197]

Первые интегралы. Мы видели в предыдущем пункте, что в настоящем случае, для движения Пуансо, второе основное уравнение (1) или эквивалентные ему уравнения Эйлера (5) допускают интеграл (векторный) момента количеств движения  [c.84]

Первые интегралы. При принятых предположениях мы начнем с определения в явной форме первых интегралов нашей задачи, получающихся из общих теорем о движении системы. Предположим, что в неподвижной системе осей (с началом в О) ось С вертикальна и направлена вниз и что система Охуг, неизменно связанная с телом, как обычно, совпадает с системой главных осей инерции, так что соотношения между проекциями вектора угловой скорости и результирующего момента количеств движения имеют вид  [c.99]

Прежде всего легко видеть, что ось перманентного вращения в пространстве может быть только вертикалью. Действительно, речь идет о том, чтобы показать, возможно ли удовлетворить уравнениям (34), (35) и, следовательно, их первым интегралам (28), (32), предполагая в них постоянной в пространстве угловую скорость о . Но в таком случае, как мы знаем (т. I, гл. IV, п. 11), эта угловая скорость будет постоянной также и в теле, откуда следует на основании соотношений между векторами ю и К, что будет постоянным в теле также и момент ЛГ количеств движения достаточно принять во внимание интеграл живых сил (32), который можно написать в виде  [c.104]

Здесь к определению в квадратурах оо решений системы (34 ), (35 ) и, следовательно, оо движений тяжелого твердого тела, закрепленного в одной своей точке, мы придем уже не путем добавления к интегралам живых сил и моментов нового частного интеграла, а, придавая частное значение произвольной постоянной в одном из этих двух классических первых интегралов, а именно в интеграле моментов количеств движения, найдем, что посредством полученных  [c.171]

Самый распространенный прием получения первых интегралов уравнений (1) основан на изучении поведения основных динамических величин системы количества движения, кинетического момента, кинетической энергии. Изменение этих величин во времени описывается основными теоремами динамики, являющимися непосредственными следствиями уравнений (1). Утверждения, описывающие условия, при которых некоторые из основных динамических величин остаются постоянными, называются законами сохранения.  [c.156]

Проверка показывает, что (fi, Н) = О и (/2, Н) = О, т. е. /1 г/ /2 — первые интегралы. Они представляют собой проекции момента количества движения материальной точки относительно центра О этот момент постоянен, так как рассматриваемое силовое поле является центральным) на оси Oqi и Oq2. Согласно теореме Якоби-Пуассона, функция (/i, /2) тоже должна быть первым интегралом. Имеем  [c.336]


По поводу различных задач, относящихся к движению системы материальных точек и рассмотренных до сего времени, можно сделать одно важное и интересное замечание Во всех случаях, когда силы являются функциями только координат движущихся точек и когда задачу удалось свести к интегрированию дифференциального уравнения первого порядка с двумя переменными, оказывается также возможным свести эту задачу к квадратурам. Мне удалось превратить это замечание в общее положение, которое, как мне кажется, дает новый принцип механики. Этот принцип, так же как и другие общие принципы механики, дает возможность получить интеграл, но с той разницей, что другие принципы дают только первые интегралы дифференциальных уравнений динамики, тогда как новый принцип приводит к последнему интегралу. Этот принцип обладает общностью, более высокой, нежели другие принципы, потому что он применим к случаям, когда аналитические выражения сил, а также уравнения, выражающие структуру системы, содержат координаты движущихся точек в любой форме. С другой стороны, принципы сохранения живых сил, сохранения площадей и сохранения центра тяжести во многих отнощениях имеют преимущество перед новым принципом. Прежде всего, эти принципы дают конечное уравнение между координатами движущихся точек и составляющими их скоростей, тогда как интеграл, получаемый на основании нового принципа, требует еще квадратур. Во-вторых, применение нового принципа предполагает, что уже найдены все интегралы, кроме одного, предположение, которое осуществляется лишь в очень небольшом количестве задач. Но это обстоятельство не может уменьшить- ценности нового принципа, в чем, я надеюсь, убедит применение его к нескольким примерам.  [c.294]

Основываясь на геометрическом смысле констант с я Су легко можно было бы показать, что других зависимостей между ними не существует. Если, вместо интегралов (18.27), иметь в виду эквивалентные им скалярные интегралы (18.19) и (18.21), то можно высказать следующее положение между шестью первыми интегралами (18.1,9) и (18.21) существует одна зависимость (18,28), Следовательно, законы изменения количества движения и кинетического момента могут дать пять независимых первых интегралов. Шестой независимый интеграл, как мы увидим, даёт в некоторых случаях закон изменения кинетической энергии.  [c.162]

Рассматривая законы количеств движения и кинетических моментов, мы видели, что при некоторых условиях имели место законы сохранения количеств движения или кинетических моментов, представлявшие собой с математической точки зрения первые интегралы уравнений движения, ибо в них не фигурировали производные второго порядка. Сформулируем теперь аналогичный закон сохранения для рассматриваемого закона изменения кинетической энергии если все силы, действующие на точки материальной системьс, потенциальны, то во все время движения системы сумма кинетической и потенциальной энергии,  [c.211]

Интегрируемые задачи механики встречаются крайне редко. Как правило количество первых интегралов уравнений движения недостаточно для получения общего решения. В этой ситуации используются приближенные методы исследования свойств движений, среди которых отметим метод разделения движений и усреднения (асимптотический метод). При этом для описания движения используются быстрые и медленные переменные типа переменных действие-угол. Обсуждаемый метод эффективен при наличии диссипативных сил в механической системе, что обуславливает эволюцию медленных переменных. Если для точных уравнений движения известны аттракторы, к которым стремятся решения, и если приближенная система, полученная на основе обсуждаемого метода, обладает теми же аттракторами, то существует уверенность, что в качественном плане приближенные уравнения ухватывают основные свойства точных решений. Вопрос о количественной близости приближенных и точных решений решается индивидуально и не всегда положительно, если в системе возникают резонансы между частотами, препятствующие определению коэффициентов соответствующих рядов (проблема малых знаменателей). Изложим основные идеи метода разделения движений и проиллюстрируем его на примере эволюции движения деформируемой планеты, представленной в естественном состоянии однородным вязкоупругим щаром.  [c.290]

С математической точки зрения основные теоремы динамики — теоремы о движении центра инерции, об изменении количества движения, об изменении кинетического момента и об изменении кинетической энергии дают возможность находить в частных случаях первые интегралы дифференциальных уравнений движения. Возможность получешгя этих интегралов завггеггт от особенностей системы сил. приложенных к точкам материальной системы. Эти свойства были подчеркнуты при рассмотрении соответствующих теоре.м на протяжении последней главы.  [c.105]

Проверка показывает, что (/i, //) = ( и (/ , 11)= О, т. о. / н /2 — первые интегралы. Они представляют собой проекции момента количества движения материальной точки отпоснгелыю центра О (этот мо.мент ностояноп, так как рассматриваемое силовое ноле является центральным) на оси Ogi и Одг. Согласно теореме Якоби — Пуассона, фупкция (/i, /2) тоже должна быть первым интегралом. Имеем  [c.284]

Найти первые интегралы движения сферического маятника длины /, положение которого определяется углами 9 и tp. Ответ. 1) Интеграл, соответствующий циклической координате t ) (интеграл моментов количества движения относительно оси г)з 4sin e = ni  [c.372]

Последнее предварительное замечание. Если не вводится никаких специальных предположений относительно распределения масс, то общие теоремы о движении системы не приводят к другим первым интегралам, кроме интегралов живых сил и момента количеств движения (относительно вертикали) на системе уравнений (34), (35) это сказывается в том, что эта система, вообще говоря, не заключает в себе никаких соотношений в конечном виде между векторами о> и и, кроме соотношений (28), (32). Хотя, с аналитической точки зрения уравнение (35) допускает очевидный интеграл = onst.  [c.103]

Первые интегралы. Уравнения Вольтерра, или уравнения спонтанного движения гиростата с внутренними установившимися движениями, так же как и уравнения Эйлера, допускают два первых интеграла интеграл моментов количеств движения и интеграл живых сил (ср. гл. VIII, п. 9). Эти интегралы легко получаются формальным путем из тех же уравнений (48 ), но еще проще получить их, если об ратиться и здесь к уравнению моментов количеств движения в векторной форме.  [c.223]


Смотреть страницы где упоминается термин Первые интегралы количеств движения : [c.502]    [c.306]    [c.71]    [c.86]    [c.231]   
Курс теоретической механики Том 2 Часть 1 (1951) -- [ c.299 ]



ПОИСК



Интеграл движения

Интеграл количеств движения

Интегралы движения первые

Интегралы первые

Количество движения

Общий случай, когда теоремы проекций и моментов количеств движения дают первый интеграл

Первые интегралы дифференциальных уравнений движения, вытекающие из теоремы об изменении момента количества движения

Первые интегралы количеств движения моментов

Первые интегралы уравнений движения, которые можно получить на основании теоремы об изменении количества движения Применение теоремы об изменении количества, движения

Теоремы о количестве движения и о моменте количества движения. Первые интегралы



© 2025 Mash-xxl.info Реклама на сайте