Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон сохранения в форме дифференциальной

Закон сохранения, см. также Уравнение сохранения Закон сохранения в форме дифференциальной 139  [c.608]

Если внутри контрольного объема среда однородна (т.е. весь объем находится в пределах одной фазы), то из соотношения (1.1) можно получить общее уравнение законов сохранения в дифференциальной форме.  [c.19]

Это соотношение определяет общую формулировку законов сохранения в дифференциальном виде, или дифференциальное уравнение сохранения в общей форме. Из самого метода вывода (1.1а) ясно, что это соотношение и каждое его слагаемое имеют такой же смысл, что и исходное уравнение (1.1). Различие лишь в том, что в (1.1а) все величины относятся к бесконечно малому эйлерову  [c.19]


Далее действуем тем же способом, что и в 8 при выводе уравнений гидродинамики при го1 = 0. Записываем все уравнения в форме дифференциальных законов сохранения. Уравнение непрерывности при этом остается неизменным  [c.96]

Это закон сохранения в дифференциальной форме.  [c.139]

Равенство (14), или (15) выражает в аналитической форме закон сохранения количества движения механической системы и представляет собой первый векторный интеграл дифференциальных уравнений движения (3, 102) для того случая, когда главный вектор внешних сил равен нулю.  [c.576]

Одинаковость математического описания аналогичных явлений имеет глубокие физические корни. Общность законов сохранения энергии, количества движения, массы и т. д., вытекающая из закона сохранения материи, и общность законов переноса энергии, количества движения и т. д. в физических полях приводит к тому, что распределения температуры, потенциала скорости, электрического потенциала, магнитной напряженности и т. д. в однородных потенциальных полях описываются одинаковыми по форме дифференциальными уравнениями.  [c.74]

Таким образом, дополнительное уравнение диффузии, представляющее собой закон сохранения массы компонента смеси, имеет вид (в дифференциальной форме)  [c.35]

Состояния движущ,егося газа с известными термодинамическими свойствами определяются заданием скорости, плотности и давления как функций от координат и времени. Для нахождения этих функций используют систему уравнений, которая представляет собой выраженные в дифференциальной форме общие законы сохранения массы, импульса и энергии. Эти уравнения замыкаются термическим и калорическим уравнениями состояния.  [c.32]

Система уравнений газовой динамики, выражающая в дифференциальном виде законы сохранения массы, импульса и энергии, в декартовых координатах имеет следующую дивергентную форму  [c.40]

В методе интегральных соотношений исходные дифференциальные уравнения записывают в дивергентной форме, что удобно для решения задач газовой динамики, где именно такую форму имеют законы сохранения (см. п, 6 2.1). Рассмотрим двумерный случай. Исходную систему уравнений в частных производных запишем в следующем общем виде  [c.182]

Здесь е — внутренняя энергия, приходящаяся на единицу объема. В дифференциальной форме закон сохранения энергии записывается следующим образом  [c.11]


На рис. 1.3 представлен фиксированный в пространстве дифференциально малый единичный контрольный объем, через поверхности которого протекает жидкость, проходят потоки вещества, количества движения, энергии. Для этого контрольного объема законы сохранения можно записать в следующей общей форме  [c.9]

Обобщенное уравнение Бернулли. Уравнение, выражающее закон сохранения импульса, в дифференциальной форме может быть записано в виде  [c.84]

В первом разделе работы Умов вводит основные понятия, включая понятие потока энергии, и получает на их основе математическое выражение закона сохранения энергии в дифференциальной и интегральной формах. Во втором и третьем разделах он исследует законы движения энергии в конкретных случаях в упругих телах, Б жидких средах и при переносе энергия между взаимодействующими телами, пространственно отделенными друг 01 друга. В каждом случае он получает математические выражения компонент вектора плотности энергии— уравнения движения энергии.  [c.153]

В зависимости от характера процесса те или иные члены в (3.8) могут обращаться в нуль. Это уравнение носит название первого закона термодинамики. Он представляет собой математическое выражение закона сохранения энергии для системы, которая обменивается с внешней средой энергией в форме теплоты и работы. Уравнение (3.8) можно также записать в дифференциальной форме-  [c.48]

Уравнение движения имеет вид 1х = gx. Это линейное дифференциальное уравнение с постоянными коэффициентами можно проинтегрировать согласно (3.246). В том, что закон сохранения энергии удовлетворяется, можно убедиться либо в его дифференциальной форме — путем рассмотрения уравнения движения, либо в его интегральной форме — рассматривая решение этого уравнения  [c.333]

Закон сохранения массы (3.5) запишем в дифференциальной форме  [c.133]

Приведенная система дифференциальных уравнений теплопроводности (энергии), движения и уравнения сплошности описывает множество явлений распространения тепла в движущемся потоке жидкости, так как она получена при использовании общих законов сохранения энергии и вещества, поэтому она характеризует лишь основные принципиальные стороны этих явлений, общие для всего указанного множества. Частные особенности отдельных конкретных тепловых явлений характеризуются так называемыми условиями однозначности. Применительно к процессам конвективного теплообмена условиями однозначности задаются геометрическая форма и размеры системы, в которой изучаются процессы конвективного теплообмена физические свойства жидкости, входящие в рассмотренную систему дифференциальных уравнений распределение температуры и скорости в прост-ранстве нной области, в которой исследуется явление для какого-то начального момента времени распределение скорости на твердых и жидких границах исследуемой пространственной области. На жидких границах (во вход-  [c.137]

Как известно, уравнение первого закона термодинамики — закона сохранения и превращения энергии — в дифференциальной форме записывается следующим образом  [c.5]

Закон сохранения энергии. Уравнение энергии в дифференциальной форме для элементарной струйки  [c.49]

Наиболее важное свойство МКО состоит в том, что уравнение (5.76) выражает в интегральной форме закон сохранения соответствующей экстенсивной величины для контрольного объема Vp, т.е. отвечает уравнению (5.72). Тем самым для любой группы контрольных объемов (КО) и, следовательно, для всей пространственной области гарантируется реализация свойства сохранения. Это проявляется при любом числе КО, а не только в предельном случае — при очень большом их числе. Таким образом, даже решение на грубой сетке удовлетворяет точным интегральным балансам. Это свойство МКО особенно важно при построении решения дифференциальных уравнений переноса с нелинейными, существенно переменными (разрывными) коэффициентами и источниковыми членами, описывающих, например, распространение теплоты  [c.152]


Как видно из формулы (85.9), уравнение Больцмана представляет собой сложное нелинейное интегро-дифференциальное уравнение, приближенное решение которого возможно только в некоторых весьма частных случаях. Однако, как мы увидим в последующих параграфах, уравнение Больцмана позволяет получить ряд важных следствий весьма общего характера. Ограничиваясь рассмотрением только упругих столкновений и считая массы молекул одинаковыми, запишем законы сохранения импульсов и энергии при ударе в форме  [c.470]

Напряжения, скорости и плотность по обе стороны поверхности разрыва связаны между собой условиями, которые должны удовлетворять основным уравнениям механики сплошной среды и уравнениям состояния выбранной реологической модели. Основные уравнения механики сплошной среды лучше использовать в интегральном виде, так как для разрывных процессов интегральная формулировка физических законов по сравнению с дифференциальной обладает большей общностью. Для непрерывных же процессов интегральная и дифференциальная формулировки полностью эквивалентны [например, закон сохранения массы в интегральной форме (V.8) и дифференциальное уравнение неразрывности (V.10), закон сохранения импульса в интегральной форме (V.14) и дифференциальные уравнения движения (V.18)l. Используя закон сохранения массы (V.8) и закон сохранения импульса  [c.247]

Запись закона сохранения количества движения в локальной форме приводит к дифференциальному уравнению движения сплошной среды  [c.123]

Аналитические методы позволяют описать статику и динамику теплотехнических объектов управления с достаточной для решения многих задач степенью точности. Уравнения статики, как правило, получают на стадии теплотехнических расчетов обьекта. Описание динамики вновь проектируемых объектов обычно отсутствует. Дифференциальные уравнения являются наиболее общей формой описания динамических свойств объекта. Составление дифференциальных уравнений базируется на использовании физических законов, определяющих процессы в системе. При описании теплотехнических объектов используют уравнения теплового и материального балансов, уравнения теплообмена, теплопроводности и другие конкретные формы выражения основных физических законов сохранения энергии, вещества, количества движения и т.д.  [c.551]

Равенство (2.3) есть дифференциальная форма записи закона сохранения массы в переменных Эйлера при наличии пространственно-распределенных источников с плотностью д.  [c.41]

Равенство (6.3) — запись закона сохранения энергии в дифференциальной форме.  [c.69]

В предыдущих главах были получены дифференциальные уравнения, представляющие собой запись основных законов сохранения. Закон сохранения массы в общем случае при наличии источников массы имеет вид (2.3) гл. II. При приведении уравнений, представляющих собой запись законов сохранения, к более простому виду предполагалось, что источники массы отсутствуют. Сохраняя это предположение и в дальнейшем, выпишем полученные в дифференциальной форме законы сохранения.  [c.70]

Законы сохранения (дивергентные формы уравнений) широко применяются в методе интегральных соотношений, при построении консервативных разностных схем и при постановке вариационных задач газовой динамики. Примерами являются публикации [1-4]. Теорема Нетер и ее обобшение [5] позволяют находить законы сохранения для систем дифференциальных уравнений второго порядка. Для применения этих теорем необходимо изучить групповые свойства исходных уравнений [6] и использовать вариационный принцип, из которого эти уравнения следуют. Для вырожденных функционалов, порождающих уравнения первого порядка, теряется взаимно однозначное соответствие между группами, допускаемыми уравнениями, и законами сохранения некоторым группам могут соответствовать дивергентные уравнения, состоящие из нулей [5]. Теорема Нётер использована, например, Ибрагимовым [7] для получения полной системы законов сохранения безвихревых течений газа, описываемых уравнением второго порядка для потенциала скоростей.  [c.17]

Перейдем теперь к описанию несплошной среды. Среди всех величин только плотность р измеряется в граммах на сантиметр кубический и давление Р или напряжение 8г — в килоджоулях на сантикетр кубический. Умножив все эти величины на объемную концентрацию вещества р = В/(В + 0), как бы размажем их на весь о<бъем и сделаем непрерывными. После этого запишем для р, РР и 54 законы сохранения в дифференциальной форме. Закон сохранения массы примет вид  [c.244]

Установление взаимосвязи для Е-ж С-групп было непосредственно связано с установлением теорем Нетер, Более правильным будет сказать, что если взаимосвязь С-симметрия — сохранение была получена на основе уже установленных теорем Нетер, то сами эти теоремы были доказаны, прежде всего, на пути решения проблемы сохранения энергии — импульса в общей теории относительности (ОТО). Основополагающее значение в развитии взаимосвязи симметрия — сохранение в этот период имела работа Гильберта Основания физики (1915 г.) . Но начало было положено эйнштейновскими работами 1913—1914 гг., в которых были намечены основы ОТО Именно в этих работах впервые появляются эйнштейновский псевдотензор энергии — импульса гравитационного поля и соответствующий закон сохранения в дифференциальной форме. Однако достаточно полный анализ проблемы сохранения энергии — импульса в ОТО, а главное, общерелятивистский аспект взаимосвязи симметрия — сохранение в работах Эйнштейна в явном виде отсутствовали. Гильберт в упомянутой статье и Эйнштейн в трех статьях, от-  [c.247]


Общая теория законов сохранения для систем дифференциальных уравнений в частных производных, следующих из вариационного принципа, излагается, например, в [ ], с. 227-261. Дивергентный закон сохранения всегда имеет форму = О, где —нространственно-временной 4-вектор. Тривиальность закона сохранения означает, что уравнение = О удовлетворятся тождественно для любых физических полей 1р .  [c.132]

Классический путь теоретического исследования физического явления состоит в том, что с помощью наблюдений и построенных на основе их гипотез устанавливаются основные законы, управляющие явлением. При этом привлекаются и известные к настоящему времени законы (например, закон сохранения энергии). Строится физическая модель явления, и на ее основе составляется система уравнений, описывающая изучаемое явление. Устанавливаются важные для изучаемого явления краевые условия (физические свойетва тел, форма системы, в которой протекает явление, особенности протекания процессов на границах, начальное состояние системы). Система дифференциальных уравнений вместе с краевыми условиями представляет собой математическую формулировку задачи или математическую модель, которая подвергается теоретическому исследованию.  [c.6]

Эти последние преобразования дифференциальных уравнений движения второго порядка системы притягивающихся или отталкивающихся точек во всех отношениях совпадают (не считая небольших различий в написании) с изящными каноническими формами, данными Лагранжем в Me anique Analytique, но нам казалось, что стоит вывести их заново из свойств нашей характеристической функции. Предположим (как это часто считается удобным и даже необходимым), что п точек системы не являются целиком свободными и подвержены не только своим собственным взаимным притяжениям и отталкиваниям, но связаны любыми геометрическими условиями и подвергаются влиянию любых внешних факторов, согласующихся с законом сохранения живой силы так, что число независимых отметок положения будет менее велико, а силовая функция менее проста, чем раньше. Тогда мы можем доказать при помощи рассуждения, очень сходного с предыдущим, что и при этих предположениях (которые, однако, дух динамики все более и более склонен исключать) накопленная живая сила, или действие V системы, представляет собой характеристическую функцию движения уже разобранного выше рода. Эта функция выражается тем же законом и формулой вариации, подверженной тем же преобразованиям, и обязана удовлетворять таким же способом, как и выше, конечной и начальной зависимости между ее частными производными первого порядка. Она приводит при помощи варьирования одной из этих двух зависимостей к тем же каноническим формам, которые были даны Лагранжем для дифференциальных уравнений движения, и дает, исходя из изложенных выше принципов, их промежуточные и конечные интегралы. По отношению же к тем мыслимым случаям, в которых закон живой силы не имеет места, наш метод также неприменим однако среди людей, наиболее глубоко занимавшихся математической динамикой вселенной, все более крепнет убеждение, что представление о таких случаях вызывается недостаточным пониманием взаимодействия тел.  [c.189]

Метод интегральных соотношений позволяет исходные уравнения записызать в дивергентной форме. Именно в дивергентной форме могут быть представлены дифференциальные уравнения механики и термодинамики, выражающие законы сохранения массы, количества движения, энергии. При этом можно аппроксимировать не сами неизвестные функции, а некоторые комплексы от них, стоящие иод интегралом и обычно имеющие определенный физический смысл, например количества подведенного Q или аккумулированного тепла 2. Широкий выбор интерполяционных выражений и проекционных функций j( ), учитывающих характер решения, позволяет получить достаточно точные результаты уже при сравнительно небольшом числе приближений.  [c.96]

Математическое описание задач тепло- и мас-сопереноса включает в себя, как правило, систему из нескольких взаимосвязанных дифференциальных уравнений переноса, каждое из которых по форме отвечает уравнению (5.74). В качестве примера в табл. 5.2 приведены коэффициенты диффузии и источниковые члены дифференциальных уравнений переноса, выражающих законы сохранения массы, импульса и энергии и описывающих в декартовой системе координат теплообмен при ламинарном течении вязкой химически однородной жидкости [52, 63]. В уравнениях переноса импульса члены, описывающие вязкие напряжения и не вощедщие в член div( igrad и ), (3 = X, у, z,  [c.150]

Уравнение (1.113) выражает закон сохранения энергии в неидеаль-жой среде в дифференциальной форме. Воспользуемся представпе-лием тензора напряжений в виде суммы шарового тензора и де-виатора и запишем (1.113) в виде  [c.30]

II t соответственно, то закон сохранения массы dm pdV в дифференциальной форме имеет вид pdV = onst или  [c.17]

Важным требованием црп численном моделпровапнп негладких или ударно-волновых динамических процессов является выполнение дискретных аналогов интегральных законов сохранения массы, импульса, энергии и термодинамического неравенства (второго закона термодинамики) [20, 161, 192], в частности построение разностных схем, аппроксимирующих дивергентные формы дифференциальных уравнений в частных производных [74, 75]. Эти требования входят в понятие консервативности разностных схем и полной консервативности [46, 47, 101, 162], при которой для копечио-разпостпой или дискретной системы также выполняются определенные эквивалентные преобразования, аналогичные дифференциальным преобразованиям системы уравнений в частных производных.  [c.27]

Численное решение получаемых уравнений в форме системы обыкновенных дифференциальных уравнений (законов сохранения импульса для каждого узла — сосредоточенной массы) осуществляется в виде явной схемы по времени (3.2.5). При этом по заданным узловым скоростям с предыдущего полуцелого временного слоя определяются приращения в узлах, (Аеар)е в элементах, А ,- на узловых линиях стыковки элементов. Далее по реологическим соотношениям упруговязкопластического деформирования вычисляются напряжения в элементах и моменты в узловых линиях затем рассчитываются обобщенные внутренние силы в узлах используя уравнения движения, определяются ускорения в узлах и новые скорости для следующего шага по А . Таковы главные этапы алгоритма явной однородной схемы расчета дискретной модели.  [c.97]

Клейна, Лоренца, Вейля, Э. Нетер и др.), несмотря на известную общность их, содержали несколько различные подходы к решению проблемы сохранения энергии — импульса в ОТО. Ключом к пониманию упомянутых работ (и всевозможных выражений для сохраняющихся величин), включая гильбер-товскую работу 1915 г., явилась как раз вторая статья Клейна, написанная почти одновременно с основной работой Э. Нетер. Она содержала весьма общий, простой и наглядный подход к.решению вопроса о дифференциальной форме закона сохранения энергии — имйульсй в ОТО, с точки зрения которого весь спектр различных формулировок этого закона становился легко обозримым. Решающим элементом в достижении простоты и общности клейновского построения был принятый им весьма общий способ варьирования независимых переменных в интеграле действия ОТО. Вариации мировых параметров  [c.249]


Уравнения, представляющие собой запись законов сохранения, вместе с дополнительными соотношениями, содерлощимися в предыдущей главе, образуют систему уравнений гидромеханики. В главе VI на с. 70 была выписана система уравнений, представляющая собой запись в дифференциальной форме законов сохранения закона сохранения массы, закона количества движения, закона момента количества движения и закона сохранения энергии.  [c.81]


Смотреть страницы где упоминается термин Закон сохранения в форме дифференциальной : [c.315]    [c.19]    [c.131]    [c.133]    [c.187]    [c.20]    [c.33]   
Линейные и нелинейные волны (0) -- [ c.139 ]



ПОИСК



Дифференциальные законы сохранения

Закон сохранения

Закон сохранения в форме дифференциальной интегральной

Закон сохранения энергии. Уравнение энергии в дифференциальной форме для элементарной струйки

Переменные Лагранжа и Эйлера. Законы сохранения в интегральной и дифференциальной формах

Сохранение

Форма дифференциальная



© 2025 Mash-xxl.info Реклама на сайте