Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волновые функции полные

Поведение полной энергии в зависимости от расстояния R для симметричной и антисимметричной волновых функций электрона показано на рис. 92,6. При уменьшении расстояния между ядрами для антисимметричных волновых функций полная энергия возрастает. Это означает, что для сближения ядер надо затратить  [c.301]

Мультиплетность, До сих пор при классификации электронных состояний не учитывалось влияние электронного спина. Электронная собственная функция рассматривалась как функция только пространственных координат электронов, а тины симметрии учитывали только свойства симметрии этих орбитальных волновых функций. Полные электронные собственные функции должны учитывать тот факт, что каждый электрон имеет спин. V = /г, который может ориентироваться параллельно или антипараллельно некоторому избранному направлению. Пока мала связь индивидуальных спинов с орбитальным движением, спины отдельных электронов образуют результирующую 8, полуцелую при нечетном и целую при четном числе электронов точно так же, как в атомах и двухатомных молекулах. Результирующий спин S характеризует каждое электронное состояние ). Любой из однозначных типов симметрии, рассмотренных выше, может встретиться с любым из значений S, совместимых с числом имеющихся электронов.  [c.21]


Определив понятие спиновой волновой функции, В. Паули вводит оператор спина S, действующий на волновую функцию Ф (s ). Таким образом, в полном соответствии с общими принципами квантовой механики собственный механический момент электрона (спин) изображается линейным самосопряженным оператором спина 5.  [c.111]

Здесь г]) — волновая функция координат х, у, z) Е — полная энергия и V —потенциальная энергия частицы. Для одномерного случая уравнение упрощается  [c.127]

Полная волновая функция, описывающая промежуточное ядро со всеми его N состояниями, получится, если построить сумму  [c.318]

Здесь h—постоянная Планка i)3 — волновая функция Eh — полная энергия осциллятора.  [c.151]

Итак, волны материи сменились волнами вероятности . Уже в конце 20-х годов была вполне осознана невозможность толкования волновой функции как напряженности некоторого материального поля, подобного гравитационному или электромагнитному. Планк писал в 1928 г. То, что эта величина не может быть представлена наглядно в обычном смысле, но имеет только непрямое, символическое значение, следует уже из того, что волны движутся, вообще говоря, вовсе не в обычном трехмерном, а в так называемом конфигурационном пространстве . Планк имеет в в виду, что в роли аргумента волновой функции могут выступать не обязательно пространственные координаты, но также величины иных полных наборов.  [c.93]

С математической точки зрения волновая функция я1)л(л ) есть параметрическая функция. Роль параметра играют значения тех величин, которые точно определены в состоянии s>. Учитывая сделанные ранее замечания о структуре амплитуд состояний, можем сказать, что аргументом волновой функции служат величины одного полного набора, а ее параметром — величины другого набора. Принято говорить, что (л ) есть собственная функция величин s-набора, заданная в представлении, определяемом величинами л -набора (или проще в -представлении).  [c.118]

Полный ортогональный набор волновых функций образуется а) падающими волнами, приходящими слева в область 1, и б) падающими вол-  [c.717]

Как уже отмечалось, волновая функция описывает состояние квантовой системы, обладающей полным набором физических величин, т. е. совокупностью независимых динамических переменных  [c.189]

Чистые и смешанные состояния. Для того чтобы полностью определить волновую функцию, описывающую данное состояние, необходимо посредством измерений задать полный набор динамических переменных. Волновая функция рассматриваемого состояния является собственной функцией операторов, представляющих полный набор физических величин. При этом условии волновая функция определяется полностью и дает максимально полное описание системы, которое возможно в квантовой меха-  [c.114]


Однако в квантовой механике возможны и такие состояния, которым не соответствует никакая волновая функция. Это возможно в том случае, когда по каким-либо причинам нельзя определить состояние с помощью полного набора величин и надо довольствоваться неполным описанием. В этом случае в результате измерений физических величин в рассматриваемой системе можно установить  [c.114]

Это означает, что четность сферической функции YT зависит только от четности квантового числа /. Следовательно, и четность полной волновой функции частицы, движущейся в цент-рально-симметричном поле, совпадает с четностью квантового числа /.  [c.177]

Из формулы (37.22) следует, что квантовое число S полного спина двух электронов может быть либо О, либо 1. Спрашивается какие из волновых функций (52.20а)-(52.20г) принадлежат полному спину 1 и какие принадлежат к полному спину О Прежде всего ясно, что функции (52.20а) и (52.20в) принадлежат полному спину 1, поскольку при полном спине О невозможны проекции спина, отличные от нуля. Эти функции симметричны. Если полный спин 1 описывается некоторыми функциями, то и линейная комбинация этих функций должна описывать полный спин 1. Но линейная комбинация, чтобы стать волновой функцией, должна обладать определенной симметрией, а это возможно лишь тогда, когда составляющие ее функции обладают одинаковой симметрией. Отсюда следует, что все функции, описывающие в данном случае полный спин 1, должны обладать одинаковой симметрией. Поэтому функция (52.206)  [c.274]

Полная функция двух электронов равна произведению спиновой волновой функции двух электронов на волновую функцию их пространственного движения. Если пренебречь взаимодействием электронов, то в качестве волновых функций пространственного движения электронов можно взять функции (52.15) и (52.16), обладающие определенной четностью. Из двух функций (52.15) и  [c.275]

Очевидно, что произведение двух симметричных функций - симметричная функция, произведение двух антисимметричных функций - симметричная функция. Произведение симметричной функции на антисимметричную - антисимметричная функция. Из восьми полных волновых функций четыре являются симметричными относительно перестановки электронов и четыре-антисимметричными  [c.275]

Как и следовало ожидать, энергия взаимодействия для симметричных и антисимметричных координатных функций различна. При рассмотрении атома гелия и принципа Паули было показано, что полная волновая функция электрона с учетом спина должна всегда быть антисимметричной. Следовательно, выражение (60.13а), полученное для симметричной координатной функции, соответствует антисимметричной спиновой функции. Это означает, что (Л) есть энергия  [c.309]

Возможность описать каждый электрон внутри атома своей собственной волновой функцией означает, что можно говорить об определенном состоянии каждого электрона внутри атома, характеризуемом своими квантовыми числами т . Полная энергия атома по (5) равна просто сумме энергий  [c.197]

Для атома оператор энергии Н обладает сферической симметрией. Волновая функция для атома ф, удовлетворяющая сферической симметрии и другим указанным выше требованиям симметрии, соответствует принципу Паули и является собственной функцией следующих пяти операторов 1) оператора энергии, 2) оператора квадрата орбитального момента количества движения, 3) оператора квадрата спинового момента, 4) оператора квадрата полного момента количества движения электронной оболочки атома и 5) оператора проекции полного момента количества движения на одну из координатных осей. Это означает, что состояние атома в целом может быть охарактеризовано совокупностью квантовых чисел L, S, J, Mj, которым с точки зрения векторной модели соответствуют моменты j и проекция полного  [c.204]

AJM—волновая функция полного момента. В индекс А этой функции входят j, Uy, J2, 02- Если каждое из состояний И i a.,I3ix2 преобразуются при замене — t при помощи (21,13), то используя свойство коэффициентов векторного сложения (см. 27)  [c.122]

Блох составил систему магнитных волновых функций, которые связаны с гайзенберговскими функциями атомарного типа, как волны возбуждения с в (143.36). Рассмотрим систему N атомов, имеющих по одному валентному электрону. Мы предположим, что одноэлектрс н-ные волновые функции ф (г — г (л))=ф подобны функциям атомарного типа. За основную невырожденную волновую функцию полной системы Блох выбрал Фд, которая соответствует состоянию с одинаково направленными спинами всех электронов. Энергия этого состояния  [c.648]


Совокупность тождественных частиц может находиться в состояниях только с определенным видом симметрии, т. е. система находится либо в симметричном состоянии (волновая функция симметрична), либо в состоянии антисимметричном (волновая функция антисимметрична). Свойства симметрии обусловлены природой самих частиц, образующих систему, и они сохраняются во времени (так как НР12 — 12 = О)- Это означает, что если в начальный момент времени система находилась в симметричном или антисимметричном состоянии, то никакие последующие воздействия lie изменяют характера симметрии системы. Состояния разного типа симметрии не смешиваются между собой. Различие в симметрии волновых функций или ij) ) проявляется Б различии статистических свойств совокупности частиц, и это оказывается связанным со спином частиц. В. Паули удалось показать, что частицы, обладающие целым спином О, ], 2,... (л-мезоны s = О, К-ме-зоны S = О, фотоны S = 1), описываются симметричными волновыми функциями и подчиняются статистике Бозе—Эйнштейна. Эти частицы часто называют бозонами. Согласно статистике Бозе— Эйнштейна, в каждом состоянии может находиться любое число частиц (бозонов) без ограничения. Частицы же с полуцелым спином Va, /2,. . . (электроны — S = V2, протоны — s = Vj, нейтроны — S = мюоны — S = Vj) — описываются антисимметричными волновыми функциями и подчиняются статистике Ферми— Дирака. Часто их называют фермионами. Согласно статистике Ферми—Дирака в каждом состоянии, характеризуемом четырьмя квантовыми числами (п, /, т, s) (полным набором), может находиться лишь одна частица (принцип Паули).  [c.117]

Поскольку зарядовая переменная Т. для нуклоиа при 1имает только два значения, то для рассмотренных зарядовых свойств нуклона оказалось удобным построить математический аппарат по аналогии с развитой ранее теорией спина ( 17). Волновую функцию oji, описывающую состояние нуклона, запишем в виде матрицы — столбца с двумя строками. Полную волновую функцию представим в виде произведения снин-координатной функции на зарядовую функцию /, зависящую только от зарядовой переменной  [c.138]

В случае сил Бартлета оператор Р действует только на спиновую часть волновой функции. Для квантовомеханической системы, состоящей из двух частиц, спиновая волновая функция симметрична относительно спиновых переменных, если полный спин системы s равен единице, и асимметрична при s == 0. Уравнение Шредингера при наличии сил Бартлета запишется  [c.161]

Согласно принципу Паули, в лдном квантовом состоянии, характеризуемом волновой функцией iji , не может находиться более двух электронов с разной ориентацией спинов. Удовлетворяющая этому условию полная волновая функция системы должна быть антисимметричной, т. е. при перемене местами двух электронов (перестановке их координат и проекции спина) она должна менять знак. Функция Л ф (Г ) этому условию не удовлетворяет. Анти-i  [c.214]

Итак, для полного описания всей совокупности состояний электрона в кристалле достаточно рассматривать только область значений к, ограниченную первой зоной Бриллюэна. Тем не менее, иногда полезно считать, что волновой вектор может изменяться по всему к-пространству. Поскольку для любых двух значений к, от-личаюш,ихся на вектор 2пН, все волновые функции и уровни энергии одинаковы, энергетическим уровням можно приписывать индексы п так, чтобы при заданном п собственные функции и соб-  [c.221]

Математический формализм, позволяющий рассматривать волновые функции системы многих частиц в теории металлов, предложил Тисса [116, 117] с целью применения к проблеме сверхпроводимости. Его функции являются обобщенными функциями Блоха и описывают координированное движение группы электронов с некоторым полным импульсом. Хотя этот метод и не был достаточно развит, он, по-видимому, мог бы быть удобным в теории, в которой постоянные токи играют доминирующую роль. Мы, однако, полагаем, что возражения, выдвинутые Лондоном против всех этих теорий, справедливы.  [c.754]

Возможно, что колебания мало влияют на фазовый переход. Разность энергий представляет собой лишь небольнгую часть полной нулевой энергии колебаний. С другой стороны, возможно, что существенно затрагивается лишь малое число колебаний, однако это маловероятно, так как в переходе, по-видимому, принимает участие большая часть колебаний. Если это заключение правильно, то необходимо иметь возможность рассматривать методами теории возмущений, если не электроны, то колебательные координаты ([120], стр. 913). В этом случае можно было бы соответствующим каноническим -преобразованием заменить электронно-фононное взаимодействие взаимодействием между электронами. Таким образом, можно было бы строго учесть взаимодействие, даваемое (40.11), и попытаться получить хорошее описание электронных волновых функций при помощи гамильтониана, включающего этот тип взаимодействия. (Сохранение только диагональных членов, как это было сделано в теории возмущений, вряд ли может оказаться удовлетворительным приближением.) Тем самым проблема электронно-фонон-ного взаимодействия будет заменена не намного менее трудной проблемой рассмотрения газа Ферми—Дирака с настолько большими взаимодействиями, что к ним нельзя применить методы теории возмущений.  [c.778]

УЛсвязь — схема построения волновых функций атомных состояний, где состояния отдельных атомных электронов характеризуются полными угловыми моментами j, которые затем складываются в полный угловой момент атома J.  [c.267]

Координатное представление. Стационарное состояние квантового объекта (электрона и т. д.) во всем пред-П1ествующем изложении описывалось волновой функцией 4 = (x,y,z), которую удобно обозначать (х), понимая под х всю совокупность пространственных переменных. Эту функцию можно представить в виде разложения по некоторой ортонорми-рованной полной системе собственных функций в виде Ц>(х) = Та и (х), (20.7)  [c.128]


Постановка задачи. В стационарной теории возмущений рассматривается постоянно существующее возмущение. Нестационарная теория возмущений позволяет изучить процесс появления возмущения. Поскольку в этом случае полный гамильтониан (включающий возмущение) зависит от времени, энергия не сохраняется и поэтому стационарных состояний не существуеп. Следовательно, в этом случае задача о нахождении поправок к собственным значениям энергии не возникает. Задача состоит в приближенном вычислении волновых функций уравнения  [c.241]

При учете взеимодействия электронов обменное вырождение отсутствует, но свойства симметрии волновых функций сохраняются, поскольку они являются следствием тождественности частиц, которая соблюдается и при взаимодействии. Принцип Паули полная волновая функция электронов должна быть антисимметричной функцией относительно перестановки любой пары электронов. Обменная энергия взаимодействия является кулоновской энергией, возникающей благодаря квантовому эффекту обмена электронов между различными состояниями. Обменная энергия, знак которой определяется ориентировкой спинов, является величиной того же порядка, что и потенциальная энергия электрона в кулоновском поле ядра, т.е. она значительно больше энергии взаимодействия магнитных моментов электронов.  [c.275]

Совершенно по-другому обстоит дело в том случае, когда электрон находится в состоянии с симметричной волновой функцией. Как видно на рис. 92, б, полная энергия l,oi умень-шаегся, когда расстояние между ядрами уменьшается, если только это расстояние больше Rq. Таким образом, при уменьшении расстояний между ядрами выделяется энергия, а это означает, что между ядрами действуют силы притяжения. При R < Rq энергия при уменьшении расстояния R возрастает, Это означает, что при R < Rq между ядрами действуют силы отталкивания. Ядра находятся в устойчивом равновесии на расстоянии R = Rq друг от друга при R> Rq возникают силы притяжения, которые стремятся уменьшить это расстояние и сделать R = R при R < R,j возникают силы отталкивания, которые стремятся увеличить расстояние и сделать R = Rq. Следовательно, имеется устойчивое состояние двух ядер и электрона, т.е. образовалась молекула.  [c.302]

Параводород и ортоводород. Многочисленные эксперименты показывают, что спин протона равен Vi- Следовательно, протоны подчиняются принципу Паули. В полной аналогии с тем, что было сказано о двух электронах в атоме гелия, можно заключить, что полная волновая функция, описывающая состояние протонов в молекуле водсзрода, должна быть антисимметричной. Поэтому спиновая часть этой волновой функции может быть либо симметричной, либо антисимметричной. Это означает, что спины протонов могут быть направлены либо параллельно, либо антипараллельно. Молекулы водорода, у которых спины протонов антипарал-лельны (полный спин двух протонов S = 0), называются молекулами параводорода. При параллельных спинах (S = 1) молекулы называются молекулами ортоводорода. В обычном водороде молекулы параводорода содержатся в отношении (2 О + 1) (2 1 -Ь -I- 1) = 1 3, потому что ортоводород имеет в три раза больше спиновых состояний, чем параводород. Молекулы параводорода и ортоводорода ведут себя как два самостоятельных вида молекул, потому что в обычных столкновениях между молекулами взаимная ориентировка спинов в молекулах практически никогда не изменяется и нет взаимопревращения молекул параводорода и ортоводорода.  [c.312]

Метод Хартри не учитывает, как и метод Слетера, ни обменной, энергии, ни спиновых взаимодействий. Учет обменной энергии и спиновых взаимодействий был дан В. А. Фоком [3 .40] g методе В. А. Фока также предполагается, что каждый электрон в атоме характеризуется своей волновой функцией зависящей от трех квантовых чисел п , Ij , т . Но полная функция атома ф строится таким образом, чтобы, во-первых, она была антисимметрична относительно перестановок координат, т. е. удовлетворяла бы принципу Паули, и, во-вторых, учитывала бы наличие у электронной оболочки атома в целом результирующего спинового момента собственные значения квадрата которого равны 5(5-]- Если N есть полное число электронов, входящих в состав атома, то при N четном число S — целое или нуль, а при N нечетном — полуцелое. Это соответствует тому обстоятельству, что спиновые моменты электронов могут располагаться либо параллельно, либо антипараллельно друг к другу. Число k = — S, очевидно, равно числу пар электронов  [c.202]

Учет обменных сил приводит к необходимости составления соответствующего инте-гродифференциального уравнения. Полная волновая функция, включающая спиновые координаты, должна быть антисимметричной относительно перестановки электронов. Расчеты становятся настолько слож- ными, что для их выполнения требуется применение электронно-счетных машин.  [c.471]

На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]


ОРБИТА электронная — траектория движения электрона вокруг ядра в атоме или молекуле ОРБИТАЛЬ —волновая функция одного электрона, входящего в состав электронной оболочки атома или молекулы и находящегося в электрическом иоле, создаваемом одним или несколькими атомными ядрами, и в усредненном электрическом поле, создаваемом остальными электронами ОСЦИЛЛЯТОР как физическая система, совершающая колебания ангармонический дает колебания, отличающиеся от гармонических гармонический осуществляет гармонические колебания квантовый имеет дискретный спектр энергии классический является механической системой, совершающей колебания около положения устойчивого равновесия) ОТРАЖЕНИЕ [волн происходит от поверхности раздела двух сред, и дальнейшее распространение их идет в той же среде, в которой она первоначально распросгра-нялась диффузное характеризуется наличием нерегулярно расположенных неровностей на поверхности раздела двух сред и возникновением огражен1 ых волн, идущих во всех возможных направлениях зеркальное происходит от поверхности раздела двух сред в том случае, когда эта поверхность имеет неровности, размеры которых малы по сравнению с длиной падающей волны, а направление отраженной волны определяется законом отражения наружное полное сопровождается частичным поглощением световой волны в отражающей среде вследствие проникновения волны в Э1у среду на глубину порядка длины волны полное внутреннее происходит от поверхности раздела двух прозрачных сред, при котором преломленная волна полностью отсутствует]  [c.257]


Смотреть страницы где упоминается термин Волновые функции полные : [c.555]    [c.519]    [c.201]    [c.109]    [c.190]    [c.110]    [c.274]    [c.275]    [c.275]    [c.277]    [c.392]    [c.248]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.16 , c.129 ]



ПОИСК



Волновая функция

Волновой полный

Волновые функции. Энергия вэаимодействия. Равновесное расстояние. Полный спин молекулы. Параводород и ортоводород Валентность. Метод валентных связей

Классификация полной внутренней волновой функции

Полная система волновых функций

Полные волновые функции электронов для твёрдого тела



© 2025 Mash-xxl.info Реклама на сайте