Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочки пологие Уравнения основные

Если стрела подъема перекрытия превосходит 1/5 пролета, то расчет оболочки по уравнениям (1.179) может оказаться недостаточно точным. Связано это в основном с принятием допущений типа (1.177), (1.178). Что касается погрешности, связанной с пренебрежением тангенциальными смещениями в формулах для изменения кривизны и кручения, то она менее существенна и названные пренебрежения могут быть использованы в более широком диапазоне пологости. Последнее дает основание рекомендовать  [c.76]


Согласно 1, в качестве исходных уравнений для исследования устойчивости оболочек примем уравнения теории пологих оболочек (технической теории). Рассмотрим классический вариант задачи устойчивости, когда докритическое (основное) напряженное состояние является безмоментным, Усилия в срединной плоскости обозначим через ри pz и s.  [c.107]

Сингулярные интегральные уравнения основных задач об изгибе бесконечной пластины с криволинейными разрезами можно построить аналогично соответствующим плоским задачам. Нил<е предложен иной, более общий прием, в котором используется фундаментальное решение (функция Грина) бигармонического уравнения. Такой подход в дальнейшем будет применен при решении задач об-упругом равновесии пологих оболочек с трещинами.  [c.249]

Пологие оболочки. Оболочкой называется тело, один размер которого — толщина к — мал по сравнению с двумя другими. Ее можно назвать пологой, если кривизна любого участка оболочки невелика. Приведем основные соотношения геометрически и физически нелинейной теории пологих оболочек, основываясь на уравнениях монографии [39] и теории пластического течения. В качестве координатных линий X, у используются линии кривизны срединной (равноудаленной от лицевых) поверхности, ось направлена вдоль нормали к срединной поверхности, к центру ее кривизны.  [c.25]

Книга представляет собой элементарное систематическое изложение теории оболочек. После вывода основных уравнений общей линейной теории уделено внимание различным упрощенным ее вариантам теории пологих оболочек и безмоментной теории (и краевому эффекту). Обсуждаются частные случаи общей теории — теория оболочек вращения, в том числе цилиндрических оболочек.  [c.2]

Получены два основных уравнения линейной теории пологих оболочек, которые содержат две неизвестные величины w и ц>.  [c.244]

Подстановка в (10.133), (10.134) выражений (10.116), (10.117), (10.121) приводит к основным уравнениям теории пологих оболочек с начальным прогибом  [c.246]

Таким образом, расчет пологих оболочек сводится к решению двух основных уравнений (10.135) с двумя неизвестными функциями W, ф.  [c.246]


Уравнение (д) является основным разрешающим уравнением пологой круговой цилиндрической оболочки. Оно должно быть проинтегрировано при краевых условиях  [c.294]

Уравнения (6.118) выведены в предположении, что оболочка до потери устойчивости получает малые перемещения, поэтому для основного состояния принимают линейную теорию пологих оболочек, а в критическом состоянии прогибы становятся большими, сравнимыми с толщиной оболочки, и используют нелинейную моментную теорию.  [c.181]

Таким образом, получаем основную систему уравнений (а) и (б) теории пологих оболочек  [c.251]

Пологие оболочки. Основные уравнения пологих оболочек в усилиях, перемещениях и смешанной форме  [c.254]

ПОЛОГИЕ ОБОЛОЧКИ. ОСНОВНЫЕ УРАВНЕНИЯ  [c.255]

Техническая теория гибких упругопластических оболочек развита в работах [24, 26] техническая теория ползучести тонких оболочек при малых прогибах с использованием деформационной теории и гипотезы старения — в работах [8, 9]. Дифференциальные уравнения ползучести гибких пологих оболочек с физическими соотношениями, линеаризованными относительно основного безмоментного состояния, приведены в работе [18].  [c.16]

Второе основное уравнение для пологих оболочек получается из уравнения совместности деформаций, которое строится путем исключения перемещений из (9.6.20) и (9.6.21). После ряда преобразований и использования (9.6.23) выведено уравнение  [c.156]

Два уравнения (9.6.25) и (9.6.26) являются основными разрешающими соотношениями для пологих оболочек. Они могут быть упрощены для прямоугольной системы координат, для которой А=В= а=х —у и операторы. 2, 2  [c.156]

Теория устойчивости на данном этапе в основном развивалась вширь исследовались различные классы оболочек, разные виды нагрузок, метод же решения оставался стандартным. За- дачи решались на основе канонизированных уравнений пологих оболочек. Функция прогиба аппроксимировалась тригонометрическим рядом. Обычно в ряде удерживалось малое количество членов. Этим оболочка как система с бесконечным числом степеней свободы заменялась системой с малым числом степеней свободы.  [c.10]

Уравнения теории полог их оболочек могут быть записаны в форме (6.14)—(6.17) как для модели 1, так и для натуры 2. Связь между переменными и постоянными величинами, входящими в эти уравнения, устанавливается путем введения масштабов для каждого из основных параметров  [c.115]

С помощью зависимостей (6.28) и введения безразмерных координат xjl, yjl решение системы дифференциальных уравнений теории пологих оболочек может быть представлено в критериальной форме. В частности, для основных переменных, измеряемых в процессе проведения экспериментов на моделях, имеем  [c.118]

Остальные масштабы основных параметров, входящих в уравнения (6.32)—(6.35), те же, что и для уравнений пологой оболочки. Они определяются зависимостями (6.19). Индексы 1 и 2 относятся соответственно к модели и натуре.  [c.121]

Уравнения (1.11) и (1.12) являются основными уравнениями упругих неравномерно нагретых гибких пологих конических оболочек из ортотропного материала.  [c.81]

Ниже излагается упрощенный вариант основных уравнений теории трансверсально-изотропных оболочек, основывающийся на допущениях о пологости оболочки. Построенную таким образом  [c.97]

Ниже излагается упрощенный вариант основных уравнений теории трансверсально-изотропных оболочек, основывающийся на допущениях о пологости оболочки. Построенную таким образом теорию будем называть технической теорией трансверсально-изотропных оболочек.  [c.125]

Разрешающее уравнение задачи термоупругости. Рассмотрим тонкую пологую оболочку, ослабленную криволинейными трещинами. Будем считать материал изотропным в смысле термомеханических свойств. Предположим, что оболочка находится в стационарном температурном поле и не испытывает внешней силовой нагрузки. Отнесем срединную поверхность оболочки к декартовой системе координат (х, у) ось 2, определяющую расстояние точки от срединной поверхности, направим нормально к ней (см. рис. 68). Разделим общее температурное поле ti (л , у, г) на основное (х, у, 2), возникающее в сплошной оболочке, и возмущенное t (л , у, z), вызванное наличием трещин  [c.288]


При n — 0 уравнения (IX.Ill) совпадают с интегральными уравнениями первой основной задачи для пластины, находящейся в условиях плоского напряженного состояния или поперечного изгиба. Следующее приближение in — 1, 2) определяется из той же системы уравнений, в которых правые части выражаются через нулевое приближение. Воспользуемся полученными выше результатами для построения асимптотического решения задачи в случаях прямолинейной и дугообразной трещины или кругового отверстия в пологой оболочке двоякой кривизны.  [c.295]

Интегрирование уравнения (3.128) можно проводить уже после интегрирования основной системы, так как эта система является вамкнутой, и практически всегда. имеется достаточное количество граничных условий для ее интегрирования (исключением, являются только статически неопределимые оболочки, т. е. оболочки, в которых осевая сила F (s) не может быть определена из уравнения равновесия). Лишь в исключительных случаях (короткие и пологие оболочки) система уравнений (3.124)—(3.127) может быть проинтегрирована-методом начальных параметров. Чаще же, в связи с наличием краевых эффектов, метод начальных параметров оказывается неприменимым, и следует использовать либо метод ортогонализации С. К. Годунова, либо метод-факторизации (см. гл. И.)  [c.193]

Третий этап связан с именами К. Маргерра, В. 3. Власова, Чен Вей-Цанга, В. И. Феодосьева и др. авторов. Основной труд К. Маргерра вышел в 1938 г. В нем идея Т. Кармана распространена на случай собственно пологой оболочки, сами уравнения К. Маргерра эаписаны в декартовых координатах на плоскости. В середине сороковых годов появились исследования В. 3. Власова [15, 16] и Чен Вей-Цанга [72, 73]. В них краевые задачи теории собственно  [c.60]

Так как выпучивание о(5олочек и пластин носит ярко выраженный локальный характер, то каждую выпучину с достаточной для практики степенью точности рассматриваем как пологую оболочку, Поэтому основные дифференциальные уравнения выпучивания в малой окрестности точки бифуркации в скоростях имеют вид  [c.340]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

Связанная система уравнений (50) и (51) по своей структуре аналогична системе, описывающей большие прогибы однородных пластин (см. работу Тимошенко и Войновского-Кригера [163] с. 418), включающей в отличие от системы (50), (51) нелинейные операторы, а также основным уравнениям линейной теории пологих оболочек ([163 ], с. 559). В нелинейной теории пластин й в теории пологих оболочек связь между уравнениями осуществляется через коэффициенты, зависящие от кривизны, а в рассматриваемом здесь случае слоистых анизотропных пластин эта связь вызвана неоднородностью материала (она осуществляется с помощью оператора включающего элементы матрицы 5 /, которые зависят, в свою очередь, от элементов матрицы Ац и матрицы Вц, входящих в исходные соотношения упругости). Это означает, что при постановке граничных условий на краях слоистой анизотропной пластины необходимо одновременно рассматривать силовые факторы и перемещения, соответствующие как плоскому, так и изгибному состояниям. При этом на каждом краю следует сформулировать по четыре граничных условия.  [c.178]

В данном параграфе построены основные соотношения МГЭ для цилиндрических складчатых и пологих оболочек. Рассмотрим сначала цилиндрические складчатые оболочки, как конструкции, имеюшдх более простые дифференциальные уравнения деформирования составляюшцх элементов.  [c.479]

Настоящая монография посвящена изложению особенностей применения МКЭ к расчету тонких оболочек. Описываются все известные в настоящее время подходы к построению конечных элементов тонких пологих и непологих оболочек на основе различных вариа -ционных формулировок (функционалы Лагранжа, Кастильяно, Рейссне-ра, Ху-Ваиицу, смешанные и гибридные постановки) и разрешающих уравнений либо теории оболочек (с учетом гипотез Кирхгофа-Лява или с учетом деформаций поперечных сдвигов), либо теории упру -гости. Основное внимание уделяется проблеме удовлетворения требований, гарантирующих быструю сходимость. Приводятся различные способы улучшения свойств элементов с анализом возможности распространения этих приемов с одних типов элементов на другие. Имеется обширная библиография.  [c.2]

Рассмотрим подъемистую оболочку с неособой срединной поверхностью ( 9.13) и неасимптотическими краями. Ее приближенный расчет, вообще говоря, можно выполнить методом расчленения ( 9.13) (исключение представляет случай, когда основное напряженное состояние имеет слишком большую изменяемость к нему мы еще вернемся). Эго равносильно принятию предположения 1, так как и в теории основного напряженного состояния 7.1), и в приближенной теории простого краевого эффекта ( 8.9) в первых двух уравнениях равновесия перерезывающие усилия Ni, N отбрасываются. В случае, когда оболочка вырождается в пластинку, предположение 1 превращается в тривиальное утверждение, так как коэффициенты при Ni, N, в первых двух уравнениях равновесия при этом обращаются в нуль. Но пологая оболочка занимает промежуточное положение между подъемистой оболочкой и пластинкой, поэтому естественно ожидать, что предположение 1, имеющее силу для крайних случаев, останется правильным и для промежуточного случая.  [c.141]


Уравнения (б.ЗЗв) и (6.34), первые опубликованные (за исключением членов, учитывающих внешние нагрузки иг, /, / ) в 1933 г., стали известны как уравнения Доннелла представляли собой, по-видимому, впервые опубликованные как теорию пологих оболочек, так и вариант цвсвязанных уравнений оболочек. Как было доказано, они очень полезны, особенно основное уравнение (6.34), описывающее условие равновесия в поперечном направлении, к оторо -в случае цилиндрических оболочек со свободно опертыми или защемленными краями мож ет дать явное решение, если игнорировать сравнительно малозначащие условия на перемещения и и v. Уравнения (б.ЗЗв), а также выражения ( 6.31ж) необходимы при удовлетворении остальных типов условий на краях. Более подробно область применимости этих уравнений будет рассмотрена в> 7.1, рис. 7.2.  [c.462]

Настоящая монография посвящена исследованию распределения напряжений около трещин в двумерных телах. На основе метода сингулярных интегральных уравнений рассмотрены задачи теории упругости и термоупругости, а также задачи об изгибе пластин и пологих оболочек для однородных изотропных областей, ослабленных криволинейными трещинами. В предыдущей монографии автора Распределение напрялсений около трещин в пластинах и оболочках ( Наукова думка , 1976 соавторы В. В. Панасюк и А. П. Дацышин) предложен метод решения таких задач для системы произвольно ориентированных прямолинейных трещин. Здесь этот метод обобщен на случай гладких н кусочно-гладких криволинейных разрезов-трещин, что дало возможность единым подходом рассмотреть в общей постановке основные граничные задачи для конечных или бесконечных многосвязных областей, ослабленных отвер-стиями н трещинами произвольной формы. По каждому классу задач приведены примеры их решеии51 предложен-  [c.3]

Построение фундаментального решения. Одно из основных допущений при рассмотрении задач о сосредоточенных воздействиях на оболочки произвольной формы заключается в том, что область возмущения исходного состояния, создаваемого сосредоточенной нагрузкой, можно моделировать пологой оболочкой с постоянными кривизнами, равными значениям кривизн реальной оболочки в точке приложения нагрузки. Такие задачи эквивалентны задачам о построении фундаментального решения системы дифференциальных уравнений статики пологих оболочек (IX.3) и их решению посвящено значительное число работ [45, 59, 144, 258, 372J.  [c.275]

Построено интегральное представление комплексной функции напряжений для пологой оболочки через скачки перемен ений, усилий и моментов при переходе через контуры криволинейных разрезов. При этом использованы соответствующие интегральные представления функции напряжений Эри при обобш.енном плоском напряженном состоянии и функции прогиба при изгибе пластины. При удовлетворении граничных условий на разрезах для основных граничных задач получены комплексные интегральные уравнения.  [c.281]

Зависимости (2.1.1), (3.2.8), (3.3.4), (3.3.7), (3.3.8) составляют полную систему уравнений задачи устойчивости, составленную для того случая, когда пренебрега-ется как нелинейностью основного равновесного состояния, так и докритическими деформациями. Для оболочек тонкостенных пологих и для теряющих устойчивость с образованием большого числа выпучин, в пределах каждой из которых оболочку можно рассматривать как пологую, эти уравнения допускают дальнейшие упрощения. В этом случае можно отождествить метрику на поверхности приведения с евклидовой метрикой (Л = = 1), принять приближенные равенства (3.2.21), отождествить компоненты тензоров поверхности с их физическими составляющими, а оператор ковариантного дифференцирования с оператором частного дифференцирования д . Соответствующая данному приближению система линейных дифференциальных уравнений устойчивости слоистых пологих оболочек включает в себя следующие группы зависимостей  [c.62]

Относительно простые уравнения, учитывающие геометрическую нелинейность задачи, получаются, если ввести допущение о том, что в процессе ползучести оболочки при возмущенном движении, обусловленном некоторыми отклонениями от идеальной формы, напряжения и деформации в ней мало отличаются от напряжений и деформаций основного безмо-ментйого состояния. Введение этого допущения позволяет привести задачу об определении прогибов и напряжений пологой оболочки в условиях ползучести к системе из двух нелинейных интегродифференциальных уравнений относительно прогиба и функции напряжений, зависящих от координат на срединной поверхности и времени [87], Эти уравнения отличаются от уравнений, которые были получены ранее [83, 77] при исследовании условных критериев устойчивости, только слагаемыми, учитывающими геометрическую нелинейность. Сведение задачи к системе из двух уравнений позволяет использовать для решения задач ползучести оболочек эффективный прием, аналогичный тому приему, который был предложен Карманом и Тзяном при решении нелинейных задач для упругих оболочек. Прием состоит в разыскании функции прогибов в виде ft (О Щ (х, у), где Wi x, у) — задаваемые функции координат. Вид функции напряжений устанавливается с помощью уравнения совместности. Второе уравнение интегрируется по координатам приближенно в смысле Бубнова — Галеркина. Задача сводится к системе нелиь ей-ных интегральных уравнений относительно функций интегрирование которых при заданных начальных условиях  [c.273]


Смотреть страницы где упоминается термин Оболочки пологие Уравнения основные : [c.326]    [c.343]    [c.11]    [c.156]    [c.40]    [c.252]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.187 ]

Прочность Колебания Устойчивость Т.3 (1968) -- [ c.187 ]



ПОИСК



К пологая

Оболочки пологие

Оболочки пологие оболочек

Оболочки пологие — Уравнение Вла

Оболочки уравнения

Основные уравнения пологих цилиндрических оболочек

Пологие оболочки. Основные уравнения пологих оболочек в усилиях, перемещениях и смешанной форме

Пологйе оболочки

Теория весьма пологих оболочек. Основные уравнения устойчивости оболочек

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте