Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетический оператор эволюции

Можно также получить иную, очень компактную форму кинетического оператора эволюции УГУ- Действительно, выразив дополнительное условие (17.1.12) в новой форме (17.3.1), получае-ем кинетическое уравнение (17.2.2) в виде  [c.200]

Выражения, полученные для коэффициентов переноса, например вязкости, можно также интерпретировать следующим образом. Рассмотрим оператор эволюции ехр Kt), связанный с линеаризованным кинетическим уравнением (13.1.6). Пусть оператор имеет такой вид, что решение этого уравнения записывается следующем образом  [c.105]


Выражение для времени релаксации (коэффициента трения) через корреляционную функцию случайных сил было получено Кирквудом [103]. Это был первый результат в теории неравновесных процессов, выведенный из первых принципов статистической механики. Поучительно отметить, однако, что в формуле Кирквуда эволюция описывалась полным оператором Лиувилля L, а не оператором + L, как в формуле (2.5.24). Кроме того, корреляционная функция вычислялась по каноническому распределению Гиббса с полным гамильтонианом Я. На первый взгляд различия в формулах для времени релаксации могут показаться несущественными, но это не так. Строго говоря, формула Кирквуда дает для времени релаксации значение = оо, а формула (2.5.24) дает конечное значение. Кирквуд привел некоторые интуитивные соображения, согласно которым интегрирование по времени в его формуле должно выполняться по интервалу Гц, значительно меньшему, чем само время релаксации Чтобы обосновать предположение Кирквуда, нужно выяснить поведение точной корреляционной функции (2.5.21) и роль проектирования в операторе эволюции. Исследование корреляционных функций такого рода будет проведено в главе 5. Здесь мы только отметим, что при описании системы полным гамильтонианом (2.5.1), который включает кинетическую энергию примесной частицы, необходимо отделить динамику случайных (микроскопических) процессов от среднего детерминированного движения примеси. Фактически это делает проекционный оператор в формуле (2.5.21). Отбрасывая проектирование в операторе эволюции, мы должны также отбросить кинетическую энергию примесной частицы в гамильтониане, т. е. вычислять корреляционную функцию случайных сил для неподвижной примеси. В этом самосогласованном приближении время релаксации дается выражением (2.5.24).  [c.138]

Хорошо известно, что простейшими моделями в равновесной статистической механики ЯВЛЯЮТСЯ системы с малой плотностью или со слабым взаимодействием, так как изучение каждой из них можно начинать с очень простого нулевого приближения — системы свободных частиц. Аналогичная ситуация имеет место и в теории неравновесных процессов. Как отмечено в разделе 2.1.1, для разреженного газа и для систем со слабым взаимодействием можно ввести кинетическую шкалу времени или, как ее иногда называют, кинетическую стадию эволюции. На этой стадии все многочастичные функции распределения полностью определяются одночастичной функцией распределения. При этом основная задача состоит в том, чтобы получить кинетическое уравнение для одночастичной функции распределения. В настоящей главе мы применим метод неравновесного статистического оператора к выводу кинетических уравнений для классических систем и рассмотрим несколько типичных примеров.  [c.163]


Ясно, что уравнение (4.4.2) является очень сложным, несмотря на то, что прямое взаимодействие между частицами учитывается только в низших порядках теории возмущений. Основные трудности при работе с таким кинетическим уравнением связаны со сложной структурой оператора эволюции (4.1.9) и с эффектами памяти. В разделе 4.1.2 мы видели, что интеграл столкновений можно привести к марковскому виду, если гамильтониан Я не зависит явно от времени. Интересно, что аналогичная процедура оказывается возможной и в случае сильного переменного поля. Детали формальных преобразований, приводящие уравнение (4.4.2) к марковскому виду, описаны в приложении 4В. Здесь же мы хотим лишь пояснить, почему марковское приближение может быть применимо к описанию кинетических процессов в переменном поле.  [c.297]

Уравнение (7.2.64) является точным и может служить основой для получения различных приближенных кинетических уравнений. Фактически дело сводится к построению подходящего приближения для ядра K t). В пределе слабого рассеяния оператор эволюции ехр[ — г ( + Q Q)] можно заменить более простым оператором  [c.113]

Уравнение (7.3.15) можно назвать основным кинетическим уравнением для системы в термостате. Оно справедливо при любой интенсивности взаимодействия между системой S и термостатом. Конечно, в общем случае явное выражение для ядра (7.3.16) является чрезвычайно сложным. Приближенное основное кинетическое уравнение можно получить, применяя теорию возмущений к резольвенте оператора эволюции примерно так же, как это делалось в разделе 7.2.1.  [c.119]

Основное кинетическое уравнение (7.3.15) легко обобщить на случай открытой системы, взаимодействующей с переменными внешними полями. Для этого нужно решить уравнение (7.3.13) с зависящим от времени оператором Лиувилля iLg t). Тогда ядро 1Z в основном кинетическом уравнении будет содержать оператор эволюции, упорядоченный по времени (см. задачу 7.11).  [c.119]

Из выражения (7.3.16) видно, что ядро основного кинетического уравнения имеет по крайней мере второй порядок по Я. Поэтому, если взаимодействие между подсистемой S и термостатом является слабым, то в операторе эволюции можно опустить QL Q а эффекты памяти в (7.3.15) исключить с помощью соотношения  [c.120]

Напомним также, что кинетические коэффициенты (8.1.10) содержат эволюцию во времени микроскопических потоков не с обычным оператором Лиувилля zL, а приведенную эволюцию. Соответствующий оператор эволюции имеет вид упорядоченной экспоненты  [c.160]

Это выражение напоминает формулы Грина-Кубо для кинетических коэффициентов в обычной гидродинамике. Необходимо, однако, обратить внимание на несколько важных различий между гидродинамическими кинетическими коэффициентами и их обобщением, используемым в теории флуктуаций. Прежде всего отметим, что проекционный оператор Qa исключает из потоков все вклады флуктуационных гидродинамических мод. С другой стороны, в обычном гидродинамическом подходе проекционный оператор Мори Q исключает лишь те вклады в микроскопические потоки, которые линейны по гидродинамическим переменным. Другое важное отличие состоит в том, что временная эволюция потоков в выражении (9.1.57) определяется приведенным оператором Лиувилля L = а в обычных формулах Грина-Кубо оператор эволюции выражается через оператор L = QLQ, из которого не исключены вклады гидродинамических флуктуаций. Наконец, средние значения в (9.1.57) вычисляются с распределением которое описывает состояние с фиксированными ( замороженными ) гидродинамическими флуктуациями, в то время как в обычных формулах Грина-Кубо корреляционные функции микроскопических потоков вычисляются в равновесном или локально-равновесном состоянии. Можно сказать, что величины (9.1.57) представляют собой затравочные кинетические коэффициенты, учитывающие вклад только микроскопических корреляций ). Напротив, кинетические коэффициенты в уравнениях для усредненного движения содержат вклады гидродинамических флуктуаций. Отметим также, что затравочные кинетические коэффициенты (9.1.57) зависят от переменных а (г) через распределение Следовательно, они сами являются флуктуирующими величинами.  [c.227]


Многие величины в неравновесной статистической механике, например, кинетические коэффициенты в уравнениях переноса и ядра в основных кинетических уравнениях, выражаются через временные корреляционные функции с приведенным оператором эволюции, который содержит проектирование. Если взаимодействие является слабым или мал параметр плотности, такие корреляционные функции можно вычислить, применяя теорию возмущений (см., например, главу 7). Однако во многих физически интересных случаях нельзя ограничиться несколькими членами ряда теории возмущений, поэтому необходим метод, позволяющий проводить суммирование бесконечных последовательностей главных членов. Для корреляционных функций с приведенным оператором эволюции пока не удалось разработать метод такого суммирования, аналогичный диаграммной технике для функций Грина.  [c.283]

Точное основное кинетическое уравнение. Прежде чем начать более детальное обсуждение свойств основного кинетического уравнения (18.23), просуммируем ряд теории возмущений в выражении (18.9) и получим точное уравнение для матрицы плотности поля. Есть два подхода можно вычислить все коммутаторы, входящие в (18.9), либо использовать оператор эволюции (15.11) модели Джейнса-Каммингса-Пауля. В данном разделе последуем второму методу.  [c.575]

Интересно отметить, что структура этих формул напоминает структуру общих выражений (2.3.58) для кинетических коэффициентов через корреляционные функции микроскопических потоков в квазиравновесном состоянии. Разумеется, эта аналогия не случайна, поскольку временная эволюция разреженного газа определяется оператором столкновений Больцмана, а роль квазиравновесного распределения играет локальная функция Максвелла.  [c.240]

При вычислении интеграла столкновений в кинетическом уравнении (4.1.19) мы должны, вообще говоря, учесть, что эволюция операторов определяется гамильтонианом который включает взаимодействие частиц с внешним полем. Если внешнее поле не является настолько сильным, чтобы существенно влиять на процессы столкновений, то можно считать, что эволюция операторов определяется гамильтонианом свободных частиц Я в отсутствие поля. В этом приближении влияние поля учитывается только в левой части уравнения (4.1.19) через матрицу П. Итак, кинетическое уравнение (4.1.19) для одночастичной матрицы плотности в марковской форме (4.1.23) можно записать в виде  [c.255]

Предположим, что суммирование по 5 в (4.3.30) ведется в пределах 1 < 5 < ш. Тогда в квазиравновесном состоянии приведенные матрицы плотности при s <т рассматриваются как независимые неравновесные величины, а матрицы плотности более высокого порядка выражаются через них. Частный случай ш = 1 соответствует граничному условию Боголюбова, согласно которому все приведенные матрицы плотности в отдаленном прошлом выражаются через одночастичную. Если в формуле (4.3.30) мы положим 5 = О при 5 > 3, то получим статистический оператор для квазиравновесного ансамбля, в котором заданными величинами являются одночастичная и двухчастичная матрицы плотности. Этот ансамбль описывает важные долгоживущие корреляции, например, связанные двухчастичные состояния ). Эволюция системы описывается системой уравнений для одночастичной и двухчастичной матриц плотности. Здесь мы не будем излагать эту довольно сложную теорию, а рассмотрим один частный, но важный пример обобщенного квазиравновесного статистического оператора, который соответствует объединению кинетического и гидродинамического описаний квантовых процессов [128].  [c.289]

Возвращаясь снова к уравнениям (5.3.18), мы видим, что основные величины, представляющие интерес в излагаемом формализме, — это частотная матрица и матрица функций памяти. Элементы частотной матрицы (5.3.19) выражаются через статические равновесные корреляционные функции и, в принципе, могут быть вычислены методами равновесной статистической механики. В частном случае, когда динамические переменные Рп коммутируют друг с другом ), частотная матрица равна нулю. С другой стороны, вычисление элементов матрицы функций памяти (5.3.20) или матрицы (5.3.23) в -представлении является, как правило, очень сложной проблемой. Главные трудности связаны с тем, что эволюция микроскопических потоков в кинетических коэффициентах (5.3.17) описывается приведенным оператором Лиувилля (5.3.15), который имеет гораздо более сложную структуру, чем обычный оператор L.  [c.377]

Другой пример процессов, для которых кинетические коэффициенты выражаются через временные корреляционные функции с обычным определением эволюции микроскопических потоков, это медленные (марковские) процессы в системах, состоящих из слабо взаимодействующих подсистем. В таких случаях корреляционные функции вычисляются с частично-равновесным статистическим оператором (6.2.7), где T t) = l/P t) — неравновесная температура подсистемы и — некоторый эффективный гамильтониан. Кинетический коэффициент в частично-равновесном состоянии имеет вид  [c.36]

Подведем итоги. Мы убедились в том, что с точки зрения общей теории неравновесных процессов стандартный метод временных функций Грина основан на граничном условии полного ослабления корреляций в отдаленном прошлом, которое эквивалентно граничному условию Боголюбова к цепочке уравнений для классических функций распределения или квантовых многочастичных матриц плотности. Как мы знаем, при таком выборе граничного условия корреляционные эффекты проявляют себя как эффекты памяти в кинетических уравнениях. Поэтому марковские кинетические уравнения, получаемые в стандартном методе функций Грина, применимы только к системам, которые достаточно хорошо описываются в рамках модели слабо взаимодействующих квазичастиц. Для систем с сильными корреляциями нужно вводить новые граничные условия, учитывающие динамику корреляций в системе. Обратим внимание на то, что предельные значения (6.3.108) временных функций Грина выражаются через квази-равновесные функции G , в которых усреднение производится со статистическим оператором зависящим от времени через макроскопические наблюдаемые Р У. Таким образом, соотношение (6.3.108) показывает, что в общем случае предельные гриновские функции зависят от макроскопической эволюции системы. Иначе говоря, уравнения движения для временных гриновских функций должны рассматриваться совместно с уравнениями переноса для Р У. В параграфе 4.5 первого тома был рассмотрен пример такого объединения квантовой кинетики с теорией макроскопических процессов в методе неравновесного статистического оператора. Соответствующая техника в методе функций Грина пока не разработана, так что читателю предоставляется возможность внести свой вклад в решение этой проблемы.  [c.62]


Речь пойдет о начальном этапе эволюции системы из некоторого, вообще говоря, неравновесного состояния, описываемого статистическим оператором ( о) Хотя эта задача имеет долгую историю (см., например, [21, 55, 56, 80, 81, 114, 153, 168]), интерес к ней значительно возрос в последнее время в связи с экспериментальными и теоретическими исследованиями быстрых релаксационных процессов в полупроводниках [83, 149] и столкновений тяжелых ядер [56, 75, 105, 106]. Кинетическое уравнение с учетом начальных корреляций в низшем порядке теории возмущений было выведено в работах [110, 114] из цепочки уравнений для приведенных матриц плотности. Более общее квантовое кинетическое уравнение с начальными корреляциями было выведено методом функций Грина в работе [133], которой мы и будем, в основном, следовать.  [c.62]

Обратим внимание на то, что локальные кинетические коэффициенты (8.1.20) имеют значительно более простую структуру, чем исходные кинетические коэффициенты (8.1.10), так как теперь эволюция микроскопических потоков во времени описывается обычным оператором Лиувилля iL. Переход к марковскому приближению в обобщенных уравнениях переноса, частным случаем которых являются гидродинамические уравнения, подробно осуждался в разделе 2.3.4 первого тома.  [c.162]

Каданова теория критический явлений I 371 КАМ (Колмогорова — Арнольда — Мозера) теорема II 361 Канонические преобразования I 24, 30, 55, 65 Канонический ансамбль I 140 Канонически сопряженные переменные I 20 Каца потенциал I 336 Кинетический оператор эволюции II 178, 192  [c.392]

Операторы эволюции U t) и U t) по-прежнему находятся по формулам (4.2.30), но теперь второй оператор выражается через резольвенту R z), так как матрица W не эрмитова. Дальнейшие преобразования полностью аналогичны выводу квантового уравнения Больцмана (см. раздел 4.2.2). В результате мы приходим к кинетическому уравнению  [c.294]

Для общего случая конденсированной среды и без приближения систем со слабым взаимодействием в книге Д. Н. Зубарева [97] показана возможность описания гидродинамической стадии с помощью некоторой неравновесной функции распределения (т.н. неравновесным статистическим оператором), зависящей от времени через свои параметры. Метод неравновесного статистического оператора Зубарева затем развивался в работах С. В. Пелетминского (см. книгу [99]). Если соответствующим образом выбрать параметры, описывающие состояние системы, то можно построить уравнения для динамических переменных, которые будут справедливыми и на кинетическом этапе эволюции [100, 101.  [c.65]

Переходя к кинетической теории плотных квантовых систем с сильным взаимодействием между частицами, мы должны иметь в виду, что динамику многочастичных корреляций и эволюцию одночастичной матрицы плотности теперь приходится описывать, по существу, на одной и той же шкале времени ). Если в начальном состоянии отсутствуют корреляции между частицами, то для восстановления всех долгоживущих корреляций требуется значительное время. Иначе говоря, квантовая кинетическая теория, основанная на граничном условии, которое вводится с помощью квазиравно-весного статистического оператора (4.1.32), будет существенно немарковскощ т. е. в кинетическом уравнении для одночастичной матрицы плотности важную роль будут играть эффекты памяти. Решать немарковские кинетические уравнения очень сложно. В большинстве задач эффекты памяти удается учесть только в первом приближении, т. е., фактически, для слабо неидеальных систем ). Поэтому кажется разумным попытаться сохранить марковский вид уравнений эволюции, расширив набор базисных динамических переменных. В контексте классической кинетической теории эта идея уже обсуждалась в разделе 3.3.4. Теперь мы хотим распространить ее на квантовые системы.  [c.288]

При вычислении временных корреляционных функций и кинетических коэффициентов мы имеем дело с операторами в представлении Гайзенберга, где временная эволюция операторов определяется гамильтонианом Я. Удобнее, однако, перейти к представлению Гайзенберга с эффективным гамильтонианом (6.2.8). Поскольку предполагается, что оператор взаимодействия Н коммутирует с Р и мы можем записать  [c.30]

Уравнения баланса для наблюдаемых РтУ не являются единственным способом описания релаксационных процессов. Например, в разделе 2.4.1 первого тома излагался проекционный метод Цванцига, который позволяет получить формально замкнутое уравнение для квазиравновесной части статистического оператора, соответствующей сокращенному описанию неравновесного состояния системы. Таким образом, метод Цванцига оперирует не со средними значениями динамических переменных, а с приведенными статистическими распределениями. Уравнения, описывающие эволюцию таких распределений, называются основными кинетическими уравнениями ).  [c.104]

О некоторых методах моделирования турбулентности. Помимо статистического подхода к моделированию турбулентности в настоящее время все более широкое применение находит феноменологический (полуэмпириче-ский) подход и методы прямого численного моделирования турбулентности на основе решения специальных кинетических уравнений или нестационарной системы трехмерных уравнений Навье-Стокса, хотя в силу стохастичности данного явления в реальности удается получать лишь осредненные характеристики движения. Это позволяет, тем не менее, иногда проследить не только эволюцию образований различных пространственных структур с течением времени, но также изучать общую динамику и природу развития турбулентности. Например, результаты численного моделирования явления перебросов в гидродинамической системе (сконструированной в виде многоярусной модели зацепления простейших элементов - триплетов) иллюстрируют каскадный процесс передачи энергии в развитом турбулентном потоке, соответствующий известному закону Колмогорова-Обухова Гледзер и др., 1961) и подкрепляют представления об общих свойствах в поведении динамических систем. Интересно также отметить, что исследование процесса стохастизации динамических систем и сценариев перехода к хаосу при численном моделировании турбулентности служит аналогом решения некорректных задач с использованием оператора осреднения и параметрического расширения Тихонов и Арсенин, 1986). При таком подходе упорядоченная структура турбулентного течения, которая определяется как аттрактор асимптотически устойчивого решения для осредненных величин, представляет собой его регуляризованное описание Белоцерковский, 1997). Следует однако заметить, что использование методов прямого численного моделирования турбулентности для решения практически важных задач (особенно задач, связанных с расчетами турбулентного тепло-и массопереноса в многокомпонентных химически активных смесях) часто затруднительно или является слишком громоздким. Поэтому подобные задачи целесообразнее решать с помощью более простых, полуэмпирических теорий.  [c.16]

Уравнение Паули. При изучении временной эволюции взаимодействующих квантовых систем в картине Шрёдингера основная задача состоит в определении временного развития вектора состояния или оператора плотности интересующей нас системы. Уравнение движения, как для полного, так и для приведённого оператора плотности, должно иметь решение в виде функции от времени. Такое уравнение называется основным кинетическим уравнением, хотя такое же название иногда применяют для уравнений движения различных вероятностных распределений. Был получен целый ряд мощных и достаточно общих основных кинетических уравнений [90-96.  [c.61]


В этом разделе мы обсудим вопрос о том, какими общими свойствами должен обладать оператор измерения М. Прежде всего отметим, что в уравнении (145) оператор М 1/) входит в виде слагаемого наряду с кинетической энергией и полной энергией Нсо. Поэтому оператор М должен иметь размерность энергии, т.е. отношения Й//о, где о — некоторое характерное время измерения. Таким образом, вмешательство оператора М ф) в эволюцию квантовой частицы в общем случае должно возмущать не только волновую функцию, но и энергию этой частицы. Другими словами, измерение некоторого квантового объекта может сопровождаться обменом энергии с внешним окружением. Однако величина этой энергии может быть исчезающе мала, если либо измерение производится очень долго, либо коллапсирование происходит на столь широкие волновые пакеты, что соответствующим изменением энергии можно пренебречь. Например, при измерении физической величины I/, оператор которой коммутирует с гамильтонианом частицы, возмущения энергии не происходит и соответствующее измерение может происходить без разрушения стационарного состояния.  [c.156]

При последовательном квантовом подходе здесь все величины (кроме -Р) следует считать операторами в представлении Гейзенберга, причем -Р зависит от операторов и поля и вещества. Однако в макроскопической электродинамике поля обычно считаются детерминированными величинами, усредненными по объему, меньшему но все еще содержащему много частиц. При этом Р (Е, Н) вычисляется по теории возмущения и усредняется по ансамблю с помощью матрицы плотности вещества (подробнее см. [8, 11, 13]). Получающиеся в результате макроскопические уравнения Максвелла описывают эволюцию поля под действием внешних источников с учетом затухания и их можно рассматривать как кинетические уравнения ( 2.5) для первых моментов поля. В окнах прозрачности вещества затуханием дюжно пренебречь и тогда эти уравнепия определяют унитарное преобразование полей, так что последние можно считать операторами.  [c.103]


Смотреть страницы где упоминается термин Кинетический оператор эволюции : [c.111]    [c.114]    [c.384]    [c.35]    [c.119]    [c.290]    [c.67]   
Равновесная и неравновесная статистическая механика Т.2 (1978) -- [ c.178 , c.192 ]



ПОИСК



Дальнейшее преобразование оператора резольвенты Неприводимый оператор эволюции (z). Основное кинетическое уравнение

Оператор

Эволюция



© 2025 Mash-xxl.info Реклама на сайте