Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Квантовое уравнение Больцмана

Квантовое уравнение Больцмана. Рассмотрим разреженный газ частиц, взаимодействие между которыми описывается короткодействующими силами. В нервом приближении кинетические процессы в системе можно описать с помощью парных столкновений. В случае сильного взаимодействия требуется более точное описание рассеяния двух частиц, так как борновское приближение, рассмотренное в разделе 4.1.6, становится неприменимым.  [c.269]


Более простой, но менее строгий способ вывода квантового уравнения Больцмана приведен в работе [142].  [c.270]

Ясно, что кинетическая теория, основанная на релятивистском (классическом или квантовом) уравнении Больцмана, непригодна для описания неравновесных процессов в произвольных квантово-полевых системах, поэтому естественно обратиться к более общим методам статистических ансамблей и попытаться вывести уравнения переноса для таких систем, исходя из релятивистского уравнения Лиувилля. На этом пути уже достигнут определенный прогресс. Метод неравновесного статистического оператора, изложенный в настоящей книге, применялся в некоторых задачах [13-15, 34, 88]). От-  [c.282]

Разлагая далее р по степеням малого параметра и используя аналогично классическим начальные условия , получают кинетическое приближение первого приближения и т. д. Предполагая малость потенциала взаимодействия пары частиц, находят квантовое кинетическое уравнение Больцмана.  [c.135]

В квазиклассическом приближении, когда все величины медленно изменяются на расстояниях порядка длины волны частицы (т. е. когда состояние частицы определяется координатой и импульсом, но ее импульс и энергия дискретны, частицы квантово неразличимы и удовлетворяют принципу Паули), можно пользоваться кинетическим уравнением Больцмана. Как мы увидим в следующей главе, учет квантовых свойств частиц в этом случае состоит в использовании для приближенного вычисления члена столкновений равновесной функции распределения Ферми — Дирака или Бозе — Эйнштейна.  [c.135]

Это уравнение для определения неизвестной функции g v, х) справедливо не только при использованном простейшем представлении о соударении легкой частицы с атомом, как твердым шариком, но и при учете квантового характера ее движения и рассеяния на атоме. Уравнение (8.58), как уравнение Больцмана а т-приближении (8.42), с которым оно совпадает, является основным в теории явлений переноса в газах.  [c.154]

Введем функцию распределения (г, о, ) для., каждого квантового состояния г,- удовлетворяющую уравнению Больцмана. Интегралы столкновений записываются через g, X, ) — дифференциальные эффективные сечения рассеяния на углы X, ф индексы i и / обозначают состояния молекул до столкновения, k я I — состояния молекул после столкновения, g — начальную относительную скорость сталкивающихся молекул.  [c.68]

Уравнение Больцмана для q-й компоненты v-компонентной газовой смеси в г-м квантовом состоянии имеет вид [Л. 35, 97]  [c.68]


Уравнение Больцмана с учетом квантовых эффектов для газовой смеси имеет вид (при отсутствии внешних сил) [Л. 73 74 3]  [c.152]

Квантовые эффекты не существенны в диапазоне температур 200—300° К [Л. 137], в этой температурной области и выше надо пользоваться классическим уравнением Больцмана  [c.156]

В этом случае данные, полученные с помощью классического уравнения Больцмана [использовались интегралы столкновений для потенциала (12-6), см. табл. 2 приложения], совпадают с данными, полученными по квантово-механическому уравнению Больцмана использовались квантовые интегралы столкновений для потенциала (12-6), см. табл. 13 приложения]. Лучшее совпа-  [c.159]

Квантовое кинетическое уравнение для газа со слабым взаимодействием очень похоже на классическое уравнение Больцмана. Его можно записать в следующем виде  [c.251]

Квантовая кинетика за рамками уравнения Больцмана  [c.282]

КВАНТОВАЯ КИНЕТИКА ЗА РАМКАМИ УРАВНЕНИЯ БОЛЬЦМАНА 283  [c.283]

Если f t, X, I )—функция распределения молекул, находящихся в V-M квантовом состоянии с внутренней энергией то уравнения Больцмана принимают вид (см. 2.6 для простоты поле внешних сил не рассматривается)  [c.176]

Для выявления всех возможных в данной системе типов элементарных возбуждений требуется, однако, явное решение уравнений Швингера для данного конкретного случая. В частности, так обстоит дело в теории плазменных колебаний, для изучения которых аппарат функций Грина является, по-видимому, наиболее естественным. В твердом теле могут оказаться существенными квантовые поправки, что делает несколько рискованным применение стандартной методики кинетического уравнения Больцмана.  [c.157]

Метод Больцмана—Фукса, пригодный для рассмотрения двумерного электронного газа, по идее совершенно отличен от теории, используемой для обычных явлений переноса на поверхности. Нельзя больше производить разделение на уравнение Больцмана в пространстве г, рх, ру, рг) и граничное условие Фукса для 2 = 0. В квантовом пределе (или даже в случае, когда только немногие канальные уровни заполнены) надо исходить из квантовых состояний, которые имеют нулевую компоненту скорости Ух, перпендикулярную поверхности. Любое уравнение Больцмана для квантового предела должно быть тогда записано только в пространстве рх, ру). Механизмы поверхностного и объемного рассеяний тогда дают вклады одного порядка в величину времени релаксации. Этот формализм в теории явлений переноса вблизи квантового предела был исследован Дьюком [102].  [c.141]

В заключение покажем, что уравнение Паули содержит в себе в качестве частного случая кинетическое уравнение Больцмана (и его квантовые обобщения). Пусть наша система — почти классический и почти идеальный газ. В 6Н отнесем взаимодействие частиц друг с другом  [c.356]

При обсуждении квантового уравнения Больцмана в предыдущем параграфе мы уже отмечали, что оно применимо только для разреженных газов. Преимущество этого уравнения по сравнению с классическим уравнением Больцмана состоит в том, что сечение двухчастичного рассеяния выражается через точную квантовомеханическую Т-матрицу. С другой стороны, в квантовом интеграле столкновений Больцмана не учитываются статистические эффекты, присущие ферми- и бозе-системам. Хотя эти эффекты учитываются в интеграле столкновений Улинга-Уленбека, который был выведен в разделе 4.1.6, соответствующая вероятность перехода была получена там лишь в борновском приближении.  [c.282]

Операторы эволюции U t) и U t) по-прежнему находятся по формулам (4.2.30), но теперь второй оператор выражается через резольвенту R z), так как матрица W не эрмитова. Дальнейшие преобразования полностью аналогичны выводу квантового уравнения Больцмана (см. раздел 4.2.2). В результате мы приходим к кинетическому уравнению  [c.294]

Кинетические уравнения типа квантового уравнения Больцмана или уравнения Улинга-Уленбека (см. главу 4 первого тома) получаются из (6.3.81) в приближении Т-матрицы для двухчастичной функции Грина [49]  [c.55]

Вывод квантового уравнения Больцмана с помощью проекционного метода Цванцига приводится в работе [40].  [c.110]


Очевидно, что уравнение Лиувилля (32) Lt-инвариантно. Действительно, если знак оператора Лиувилля L изменить на обратный (в классической механике это можно сделать путем инверсии скорости), а также изменить на обратный знак t, то уравнение Лиувилля не изменится. С другой стороны, легко можно показать [18], что слагаемое в уравнении Больцмана, учитывающее столкновения (правая часть в (29)), нарушает Lt-симметрию, так как оно четно по L. Поэтому ранее поставленный вопрос имеет смысл перефразировать следующим образом как можно нарушить Li-симметрию, свойственную явлениям, служащим объектом изучения классической или квантовой механики Наша точка зрения на этот вопрос состоит в том, что динамическое и термодинамическое описания систем в определенном смысле являются эквивалентными описаниями эволюции системы, связанными друг с другом пеупитарпым преобразованием. Разрешите мне вкратце показать, как мы можем приступить к решению этой задачи. Метод, которым я буду пользоваться, был разработан в тесном сотрудничестве с моими коллегами, работаюп1ими в Брюсселе и Остине [20-22].  [c.147]

Поскольку уровне (1) основано на лучевых понята-ях, в нём акцентируется лишь корпускулярная сторона дуализма волна — частица. Поэтому ур-ыие (1) служит также основой теории переноса нейтронов, где вместо яркости I фигурирует одночастичная ф-ция распределения нейтронов по скоростям, а ур-ние аналогично линеаризованному кинетическому уравнению Больцмана. При квантовой интерпретации излучения яркость 1 пропорциональна ф-ции распределения фотонов по направлениям и по частотам.  [c.566]

Описание сильно неравновесных состояний, а также вычисление кинетич. коэф. производятся с помощью кинетического уравнения Больцмана. Это ур-ние представляет собой интегродифференц. ур-ние для одночастичной ф-ции распределения (в квантовом случае — для одночастичной матрицы плотности, или статистич. оператора). Оно содержит члены двух типов. Одни описывают изменение ф-ции распределения при движении частиц во внеш. полях, другие — при столкновениях частиц. Именно столкновения приводят к возрастанию энтропии неравновесной системы, т, е. к релаксации. Замкнутое, т. е. не содержащее др. величин кинетич. ур-ние, невозможно получить в общем виде. При его выводе необходимо использовать малые параметры, имеющиеся в данной конкретной задаче. Важнейшим примером является кинетич. ур-ние, описывающее установление равновесия в газе за счёт столкновений между молекулами. Оно справедливо для достаточно разреженных газов, когда длина свободного пробега велика по сравнению с расстояниями между молекулами. Конкретный вид этого ур-ния зависит от эфф. сечения рассеяния молекул друг на друге. Если это сечение известно, ур-ние можно решать, разлагая искомую ф-цию по ортогональным полиномам. Таким способом можно вычислить кинетич. коэф. газа, исходя из известных законов взаимодействия между молекулами. Кинетич. ур-ние учитывает только парные столкновения между молекулами и описывает только первый неисчезающий член разложения этих коэф. по плотности газа. Удалось найти и более точное ур-ние, учитывающее также тройные столкновения, что позволило вычислить следующий член разложения.  [c.672]

Первое существенное замечание состоит в следующем. В классической теории кинетическое уравнение в пределе слабого взаимодействия представляет собой дифферешщальное уравнение относительно переменной р. Такая его форма обусловлена тем, что в случав слабого взаимодействия отклонение траекторий частиц при столкновениях очень мало. Как показано в разд. 11.6, предложенный Ландау вывод уравнения, пол вшего его имя, из уравнения Больцмана основан именно на этой идее. В квантовых системах не существует подобной эквивалентности между пределом слабого взаимодействия и пределом малого отклонения. В квантовой механике даже слабый потенциал взаимодействия может привести к очень сильной передаче импульса вследствие принципа нвопрвделвнности Гейзенберга. Квантовый аналог полного уравнения Больцмана по форме точно совпадает с уравнением (18.8.1) это уравнение известно под названием уравнения Юлинга — Уленбека. Единственное отличив от (18.8.1) состоит в том, что функция W связана с точным сечением рассеяния для упругих столкновений, соответствующих заданному межмолеку-лярному потенциалу. Сечение рассеяния (18.8.2) соответствует первому отличному от нуля приближению для точного сечения рассеяния, т. е. первому борновскому приближению ).  [c.251]

Стоит упомянуть о применении метода неравновесных статистических ансамблей к релятивистским квантовым системам. В настоящей книге этот вопрос не рассматривался по двум причинам. Во-первых, объединение идей неравновесной статистической механики и релятивистской квантовой теории поля является далеко не тривиальной проблемой, обсуждение которой привело бы к неизбежному увеличению объема книги ). Другая, более важная, причина состоит в том, что релятивистская статистическая механика находится еще в процессе развития и ее принципы пока не разработаны в той же мере, что и принципы нерелятивистской статистической механики. В настоящее время более или менее завершенным разделом является релятивистская кинетика, основанная на обобщениях уравнения Больцмана с учетом квантовых и релятивистских эффектов. Путем построения нормальных решений релятивистского кинетического уравнения иногда удается вычислить коэффициенты переноса [61], а метод моментов [90], аналогичный методу Трэда в нерелятивистской кинетической теории, позволяет распространить релятивистскую гидродинамику на случай быстрых процессов, когда необходимо учитывать конечную скорость распространения термических возмущений.  [c.282]


Значительная часть содержания изложена на основании простых эвристических предстаплений, положенных в основу кинетической теории газов Больцманом. Приложение больцмановской кинетической теории газов к целому ряду конкретных задач составляет содержание первых шести глав. При этом относительно большое внимание уделено плазме. Это, во-первых, связано с важным своеобразием такого газа ионизованных частиц, а во-вторых, со значительной разработанностью кинетической теории плазмы. Обоснованию кинетической теории газов посвящены две главы, в которых на основании статистической механики дан классический и квантовый вывод интеграла столкновений Больцмана, а также изложены положения, позволяющие выйти за рамки обычной больцмановской кинетической теории газов. Соответствующий выход в область неприменимости теории, основывающейся па обычном кинетическом уравнении Больцмана, дается в последних главах книги. Здесь изложены обобщенные интегралы столкновений для дальподействующих си.п, учитывающие влияние многих частиц плалмы на процессе парного соударения, проявляющееся  [c.7]

Равенство вероятностей прямых и обратных процессов при квантово-механическом описании внутренних степеней свободы симметризует интеграл столкновений и поэтому квантовомеханический подход удобен для обш их исследований. Однако для получения численных результатов необходимо знать все вероятности переходов (дифференциальные сечения столкновений), определение которых представляет самостоятельную сложную и далеко не решенную проблему. Поэтому фактическое вычисление коэффициентов переноса пока удается провести лишь для весьма схематизированных молекул. В тех случаях, когда время возбуждения внутренних степеней свободы много больше времени возбуждения поступательных степеней, удается выразить коэффициенты переноса для равновесного и релаксируюш,его газа с внутренними степенями свободы с приемлемой точностью через известные коэффициенты одноатомного газа (В. С. Галкин и М. Н. Коган, 1968). С другой стороны, известно, что процесс столкновений молекул при не слишком низкой температуре удовлетворительно описывается классической механикой. Но при классическом описании симметрия прямых и обратных процессов нарушается, интеграл столкновений, а с ним и все исследование суш ественно усложняются. Однако для определения коэффициентов переноса можно пойти другим путем, минуя непосредственное использование уравнения Больцмана (В. И. Власов, С. Л. Горелов и М. Н. Коган, 1968). Макроскопические связи тензора напряжений и вектора потока тепла с гидродинамическими -величинами можно получить, например, с помош,ью теории необратимых процессов или с помош ью вариационных принципов, предложенных Л. И. Седовым  [c.427]

Квантовое кинетическое уравнение типа уравнения Больцмана было впервые приведено в работах Улинга и Уленбека [153, 154]. Строгий вывод этих уравнений, основанный на предположении об ослаблении корреляций, был дан Боголюбовым [101, 102]. Другая форма квантового кинетического уравнения, имеющая вид основного кинетического уравнения toaster equation), была предложена Паули [155] и обоснована с помощью приближения хаотических фаз также Боголюбовым (см. [102, с. 5]).  [c.198]

Пусть перед коллапсом волновой вектор пакета был равен к а после коллапса — к/. Можно сказать, что частица со скоростью Йк,//и рассеялась в направлении скорости Йк//т. Процесс этот чисто случайный, так что волновая функция в виде набора волновых пакетов также является случайной. Если выбор вероятностей образования пакетов следует закону то статистическое описание процессов рассеяния и коллапсирования автоматически приведет к уравнению Больцмана с вероятностями переходов, рассчитываемых по правилам квантовой теории.  [c.215]

Вторая цель книги — дать студентам возможность лучше уяснить себе квантовхю механику. Этот курс читается после того, как студенты уже изучили основы квантовой механики, но не обладают еще глубоким ее пониманием. Такое понимание может появиться в результате сравнения полуклассического (основанного на уравнении Больцмана) и квантового (основанного на уравнении Лиувилля) подходов к вопросу об экранировании. Оно может появиться и при анализе пределов применимости принципа Франка — Кондона или при расс. ютрении недиагонального дальнего порядка в колебаниях решетки и сверхпроводимости.  [c.7]

Проблема, которую мы только что изучали классически, теперь будет переформулирована в рамках квантовой механики. Это снимет ограничение рассматривать только малые д, которое лежит в основе классического рассмотрения. Мы теперь интересуемся откликом квантовомеханической системы на приложенное периодическое поле. Наиболее непосредственным образом можно провести этот расчет, используя метод матрицы плотности, который легко сопоставим с классическим описанием. Действительио, мы увидим, что в классическом пределе соответствующие матричные элементы матрицы плотности переходят в фурье-компоненты функции распределения, появляющейся в классических расчетах. Из этого сопоставления будет ясно видно, какие приближения делаются при использовании полуклассических методов и уравнения Больцмана.  [c.325]

Что касается эффекта роста Ж л у нас — роста плотности п 1)) на интервале 0 <<< 2 0, то тут нет парадокса. Процедура получения уравнения Больцмана методом Боголюбова допускает получение и антикинетического интефала столкновений для этого надо выбрать условия ослабления корреляций не при г -+ оо, а при т - -оо. Совершенно так же, как в задаче рассеяния можно искусственно создать сходящуюся волну и общим принципам квантовой теории это противоречить не будет, так и здесь можно наблюдать антикинетическую эволюцию, если только суметь приготовить исходное антикинетическое состояние.  [c.332]


Смотреть страницы где упоминается термин Квантовое уравнение Больцмана : [c.363]    [c.550]    [c.15]    [c.18]    [c.21]    [c.426]    [c.97]    [c.13]    [c.298]   
Смотреть главы в:

Статистическая механика неравновесных процессов Т.1  -> Квантовое уравнение Больцмана



ПОИСК



Больцмана уравнение

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте