Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Косвенный метод решения

Или еще иначе мы можем взять и, v, w, в некоторой форме удовлетворяющей уравнениям (14) или (16), и затем получить граничные условия, к которым они приводят. Таким образом, мы придем к косвенному методу решения, который часто оказывается полезным. Мы также можем использовать некоторые элементарные соображения, как, например, в главе V, и получить приближенные решения. Полученные таким путем приближенные решения нужно потом подставить в общие уравнения для того, чтобы проверить, будут ли в действительности иметь место найденные напряжения. Так, например, было сделано для кручения в 309 главы IX.  [c.410]


Конструкция артиллерийских орудий 537—557, 660 Концентрация напряжений вблизи малого отверстия 509 Косвенный метод решения 410 Косой изгиб, см. изгиб косой  [c.667]

В результате того, что аналитическое решение задачи о кручении бруса с некруглым поперечным сечением является достаточно сложным, возникла необходимость создания косвенных методой исследования этого вопроса. Среди таких методов первое место занимает метод аналогий.  [c.95]

Если удается создать функционал, который необходимо минимизировать выбором всех неизвестных параметров, а также если определены все ограничения (связи), наложенные на эти величины, то такую экстремальную задачу легче решать, чем искать аналитическую форму решения (прямой метод). Теория вариационного исчисления полностью основана на косвенном методе. Ф. Гаусс ввел [10] скалярную функцию, названную мерой принуждения. Она имеет вид  [c.70]

Для максимального извлечения полезных минералов в процессе флотационного обогащения руд необходимо поддерживать в строго определенных пределах размеры частиц, взвешенных в пульпе. Поэтому для металлургической промышленности имеет большое значение решение задачи непрерывного определения размеров частиц и автоматического регулирования процесса обогаш ения по этому параметру. Однако попытки создания прибора для непрерывного определения ситового состава частиц до сих пор не увенчались успехом. В настоящее время широко применяется косвенный метод контроля крупности частиц, основанный на измерении плотности пульпы, зависящей от размеров взвешенных в ней частиц.  [c.159]

Для осуществления управления упругими перемещениями необходимо прежде всего иметь возможность измерять их величину или отклонения. Наиболее радикальным решением было бы непосредственное измерение отклонений расстояния режущих кромок инструмента от баз станка или приспособления, определяющих положение деталей в процессе их обработки. Однако в большинстве случаев непосредственного измерения осуществить не удается и приходится прибегать к косвенным методам измерения. На рис. 2 показана схема измерения расстояния между фрезой и базой приспособления (угольника) с помощью индуктивных датчиков 6 и 7 с отсчетными устройствами. Датчиком 6 измеряют размер Лг, т. е. расстояния от эталонной линейки 5, расположенной параллельно направляющей стола станка, несущего угольник 2 с обрабатываемой деталью 3 и базой индуктивного датчика, закрепленной на кронштейне, который, в свою очередь, укреплен на хоботе. Индуктивный же датчик 7 через бесшарнирный рычаг измеряет осевые перемещения фрезы. Для этого на фрезе 1 крепится диск 4, проточенный на месте после того, как фреза установлена на шпиндель. Таким образом, с помощью  [c.330]


Приемосдаточные испытания проводят для принятия решения о пригодности продукции к поставке или ее использованию. Испытаниям подвергают каждую изготовленную единицу продукции или выборку из партии. Испытания проводит служба технического контроля изготовителя с участием в установленных случаях представителя заказчика. При наличии на предприятии государственной приемки приемосдаточные испытания проводят ее представители. При испытаниях контролируют значения основных параметров и работоспособность изделия. При этом контроль установленных в НТД показателей надежности изделий может осуществляться косвенными методами.  [c.102]

Эффективность прямых методов решения вариационных задач во многом зависит от обоснованного выбора выражений, аппроксимирующих искомые функции. В задачах статистической динамики возможно косвенное представление распределений, осно-  [c.66]

Нетрудно догадаться, что элементарные решения обладают свойством полноты в частичном интервале. Это легко доказать косвенными методами [24], но прямое доказательство, эффектив-  [c.354]

По традиции методы оптимизации в многомерном пространстве делятся на две большие группы — прямые и косвенные. Прямые методы основаны на сравнении вычисляемых значений целевой функции в различных точках, а косвенные — на использовании необходимых и достаточных условий математического определения максимума и минимума функции. Стратегия прямых методов — постепенное приближение к оптимуму при использовании косвенных методов стремятся найти решение, не исследуя неоптимальные точки. В данной главе представлены наиболее распространенные алгоритмы, применяемые для решения многомерных задач оптимизации, сравниваются некоторые написанные на языке Фортран программы их реализации и даются общие указания по выбору алгоритма для решения той или иной задачи  [c.162]

Необходимо развивать исследования не только в области косвенных методов и способов решения проблемы, но и прямого извлечения СО2 из продуктов сгорания с целью либо захоронения, либо полезного использования (см. разд. 7.2).  [c.160]

На рис. 94 приведена классификация устройств активного контроля. Из классификации видно, что системы с прямым и косвенным методами измерения распадаются на ряд подгрупп. Система каждой подгруппы сохраняет метод измерения, но отличается от другой конструктивным решением. Чувствительными элементами устройств активного контроля являются датчики.  [c.139]

Итак, непосредственное определение поля скоростей заключается в решении уравнения Лапласа (3.45) или (3.49) для определения ф(х, у) или ф(х, у), удовлетворяющих граничным условиям данной задачи . Однако в большинстве случаев это является невыполнимой задачей. Поэтому используется косвенный способ решения задач. Выбирается произвольный потенциал скорости ф(л у), который удовлетворяет уравнение Лапласа, и строится картина линий тока. Если некоторые из линий тока совпадают с твердыми поверхностями канала (при решении внутренних задач) или обтекаемого тела (при решении внешних задач), то выбранная )ункция удовлетворяет граничным словиям задачи и является ее решением. В этом случае поле скоростей определяется по формулам (3.43). Если же не будут найдены линии тока, совпадающие с твердыми поверхностями, то выбранная ф(л у) не является решением задачи. Простое угадывание решений достаточно сложных задач не выполнимо. В этом случае используются метод наложения полей и метод конформных отображений.  [c.50]

Для большого класса задач уравнения, описывающие взаимосвязь этих величин, являются интегральными уравнениями (ИУ) первого рода. Остановимся на некоторых методах решения этих уравнений в оптических измерительных системах, при этом можно выделить два вида оператора А. В первом случае оператор А имеет обратный оператор А , т. е. можно построить формулу обращения ИУ (4 1). К таким типам ИУ относятся часто встречающиеся в косвенных измерениях преобразования Абеля, Фурье, Радона, уравнение типа свертки и т. д. Для вычисления формул обращения некоторых из них могут быть использованы достаточно простые и широко известные схемы оптических процессоров, которые для целого ряда случаев могут дать хорошие результаты. Так, например, использование спектроанализатора для анализа оптического волнового фронта, прошедшего через гидродинамический турбулентный процесс, позволяет определить спектр турбулентных пульсаций [112] применение коррелятора позволяет определить масштабы турбулентности реализация простейших методов пространственной фильтрации в лазерных анемометрах позволяет одновременно определять размеры и скорость частиц в потоке (ИЗ] и т. д. Нетрудно заметить, что при решении именно данного класса уравнений возникает наибольшее многообразие оптических схем в зависимости от вида ядра ИУ.  [c.113]


Задача 5.5. Расчетная зависимость косвенного метода измерений имеет вид Р = и I. Решение  [c.47]

Основная трудность решения этой задачи связана с отсутствием надежных и простых прямых методов определения скорости автомобиля, т. е. методов, не связанных с измерением частоты вращения его колес. Поэтому для оценки скорости автомобиля в АБС используют те или иные косвенные методы, в основном основанные на запоминании частоты вращения колес в определен ные периоды времени. Способ решени я данной задачи и после дующая обработка получаемого сигнала являются факторами, существенно влияющими на алгоритм АБС.  [c.118]

Поэтому часто возникает вопрос о методах и области того раздела науки, который относится к надежности и долговечности. Где граница между проблемами надежности и задачами смежных наук Что является содержанием науки о надежности и долговечности Какие основные направления и тенденции развития характерны для нее Анализ многочисленных монографий свидетельствует о том, что еще нет четкой точки зрения по этим вопросам. Часто развивается до гипертрофических размеров одна область теории надежности без учета пропорций и всего комплекса знаний, необходимых для решения задач надежности. Иногда под рубрикой надежности рассматриваются вопросы, имеющие к ней лишь косвенное отношение. При чтении курсов по надежности в высших учебных заведениях не всегда имеет место их логическое построение, соблюдение пропорций разделов и использование прогрессивных воззрений на тот или иной аспект проблемы.  [c.23]

Для развития теории поверхностной прочности и решения основных вопросов трения и изнашивания необходимо знать количественные характеристики и механизм процесса деформации поверхностных слоев при контактировании твердых тел. Прямые методы определения механических свойств поверхностных слоев твердых тел при действии нормальных, а также нормальных и тангенциальных усилий до настоящего времени не разработаны, хотя были предложены приборы И методы, позволяющие косвенно судить о некоторых их прочностных характеристиках.  [c.212]

Согласно данным гл. 9 в поперечно продуваемом движущемся слое можно ожидать близкого совпадения с данными по теплообмену в неподвижном слое. Согласно теоретическому решению [Л. 252] нестационарный теплообмен в неподвижном слое подобен стационарному теплообмену именно при перекрестном (под углом 90°) движении компонентов. Первые опытные данные по этому вопросу были получены в вертикальном теплообменнике, предложенном Е. И, Кашуниным и испытанном без замера температур движущейся чугунной дроби. По данным измерений были определены лишь коэффициенты теплопередачи от газа к воздуху. Использованный затем косвенный метод подсчета коэффициентов теплообмена в камерах условен и в ряде положений ошибочен.  [c.324]

Этот краткий перечен . возможностей рентгеновских исследований показывает, сколь большое значение имеет дифракция на пространственной структуре для решения основных проблем кристаллографии, которая до широкого внедрения методов рентгеноструктурного анализа оставалас . в основном описательной наукой, классифицировавшей кристаллы главным образом по их внешней форме и применявшей косвенные методы.  [c.352]

Таким образом, теория прочности композитов при внеосном растягивающем нагружении развита для случаев, когда либо разрушение происходит не по поверхности раздела, либо разрушение по поверхности раздела учитывается лишь косвенно. При решении более сложной задачи — прямого анализа влияния поверхности раздела на прочность при внеосном нагружении — достигнуто меньше успехов, хотя определенные возможности представляет метод конечных элементов [1]. С помощью теорий, рассматривающих непосредственно поверхность раздела, были предсказаны разумные величины верхнего и нижнего предельных значений поперечной прочности, однако они пока не подтверждены экспериментально. Задача разработки более соверщенного подхода, который позволил бы количественно оценить влияние поверхности раздела на прочность при внеосном нагружении, пока не решена. Ряд проблем возникает из-за трудностей экспериментального определения важных характеристик поверхности раздела, другая группа проблем — из-за того, что неясно, как на основе экспериментальных значений данных характеристик предсказать прочность композита. Это — сложные проблемы драктического и теоретического характера, однако начало их решению может быть положено определением характеристик композита при внеосном растяжении и исследованием разрушенных образцов, что позволяет установить роль поверхности раздела в разрушении композита при растяжении. Результаты ряда таких исследований рассмотрены ниже.  [c.203]

Указав на то, что Ферма вывел закон преломления света из принципа кратчайшего пути (при v = onst принцип кратчайшего времени Ферма переходит в принцип кратчайшего пути), И. Бернулли рассматривает задачу о кривизне луча в неоднородных прозрачных средах. Этому вопросу посвящена его работа Кривизна луча в неоднородных прозрачных средах и решение задачи, предложенной мной в A ta за 1696 г., стр. 269, о нахождении брахистохронной линии, т. е. такой линии, по которой тело должно проходить от одной заданной точки до другой в кратчайшее время затем о построении синхронной кривой, т. е. волны лучей ). И. Бернулли не ищет общих методов решения проблемы отыскания максимума или минимума какой-либо функции, он указывает, что сомневается в самой возможности существования таких общих методов. Его цель—дать метод решения специальной задачи-задачи о брахистохроне — метод, который может оказаться применимым и для других задач аналогичного характера. Прежде всего Бернулли указывает на изумительный, по его мнению, результат, что брахистохроной,, так же как и таутохроной Гюйгенса, является циклоида. Этот результат он нашел двумя путями косвенным и прямым.  [c.782]


Основная трудность расчета поля скорости связана с неизвестным полем давления. Градиент давления составляет часть источникового члена в уравнении сохранения импульса, и при этом отсутствует явное уравнение для его определения. Поле давления определяется через уравнение неразрывности, однако алгоритм нахождения давления неочевиден. Здесь не рассматриваются методы решения, основанные на переходе к другим зависимым переменным, позволяющим исключить давление из определяющих уравнений (например, к переменным завихренность — векторный [готеициал скорости ), а также методы, использующие уравнение Пуассона для расчета давления. Подробно эти вопросы обсуждаются в [46, 55, 73, 79]. Ниже изложен достаточно простой и надежный метод [47] преобразования косвенной информации, содержащейся в уравнении неразрывности, в алгоритм прямого расчета давления.  [c.164]

Если абсолютные значения таких переменных не единственны, получим ли мы сходящиеся решения Используемый в SOLVE итерационный метод приводит к сходимости решения, абсолютные значения которого косвенно определяются начальным приближением. Прямые методы решения в данном случае неприемлемы, так как при их использовании матрица коэффициентов оказывается сингулярной.  [c.98]

Хотя к решению уравнения Шредингера косвенным методом вынуждает пас практическая необходимость, это естественный путь к пониманию решений. Суть состоит в том, что в процессе выбора приближений используется много понятий, проливающих свет на природу поведения ядер и электронов в молекуле. Некоторыми из таких наиболее важных понятий являются электронное состояние, молекулярная орбиталь, поверхность потепциаль-1юй энергии, равновесная конфигурация ядер и функция диполь-ного момента. Когда мы говорим, что понимаем решение, мы имеем в виду, что можем предсказать схему уровней энергии и вид волновых функций данной молекулы без решения уравнения  [c.130]

Для получения более точного решения уравнения (7.1) косвенным методом необходимо внести поправки в эти приближения. Поправки, связанные с влиянием ангармоничности, центробежного искажения и кориолисова взаимодействия при решении колебательно-вращательной задачи обычно учитываются методом возмущений, а корреляция электронов при решении электронной задачи — вариационным методом. В конечном счете должны быть учтены также поправки, возникающие из-за нарушения приближения Бориа — Оппенгеймера. Отметим, что для целей классификации молекулярных уровней энергии по тинам симметрии важен вид приближенных волновых функций, поскольку из свойств преобразования этих функций устанавливается тип симметрии уровня энергии.  [c.131]

Наконец, косвенным методом изучения свойств приграничных зон зерен, обогащенных при развитии отпускной хрупкости атомами примесей, можно считать выбор в качестве объекта исследования аморфных металлических сплавов. Этот метод основан на отмеченной в работах [217, 268] аналогии между структурой и химическим составом аморфных сплавов на основе железа, которые в качестве аморфк заторов содержат 10—20 % металлоидных элементов, в частности фосфора, и границ зерен (в кристаллических сплавах железа), обогащенных теми же элементами примерно до таких же концентраций и имеющих структуру и свойства, описываемые так же как и структура аморфных сплавов в терминах полиэдров Бернала [176]. Так, в предположении, что аморфный сплав 682 8 является макроскопической моделью границ зерен, обогащенных фосфором, в кристаллическом сплаве Ре — Р, была проверена и подтверждена [217] гипотеза о влиянии зернограничной сегрегации фосфора (обусловленной, например, развитием отпускной хрупкости) на накопление атомарного водорода в местах выхода границ зерен на поверхность сплава, находящегося в водородсодержащей среде. По-видимому, этот метод может быть успешно применен и для решения других задач, связанных с исследованием свойств обогащенных границ зерен.  [c.29]

Экапериментальное определение контактных деформаций составляет весьма сложную задачу. Для ее решения прнм/енялись следующие косвенные методы  [c.162]

К данным задачам примыкает проблема косвенного метода определения положения управляемой системы в фазовом пространстве при отсутствии необходимой полной информации о ее начальном состоянии, а также должных сведений о положении системы отсчета, относительно которой определяется движение системы. При этом предполагается, что доступна измерению, например, лишь одна фазовая координата, по измеряемым приращениям которой должны восстанавливаться начальные значения остальных фазовых координат системы. Эта проблема также была исследована для общих случаев нестационарных нелинейных систем. И в случае проблемы управления и в случае проблемы наблюдения дело сводилось к решению систем нелинейных интегральных уравнений специального вида, для которых были предложены подходящие вычислительные алгоритмы. Общие результаты были применены для исследования конкретных задач, например задач об управлении гироскопическими устройствами, задач об управлении импульсными следящими системами и др. Описанные выше исследования были выполнены Я. Н. Ройтенбер-гом в серии работ (1958—1963), подытоженных в монографии Некоторые задачи управления движением (1963).  [c.201]

Основное внимание в монографии уделяется явлению рассеяния оптического излучения и решению соответствующих обратных задач применительно к дистанционному оптическому зондированию атмосферы. В ней обобщаются результаты исследований, по--лученные авторами и их сотрудниками в последние годы по методам интерпретации оптических измерений. Именно явление светорассеяния в первую очередь определяет то, что принято понимать под оптикой атмосферы [27]. С другой стороны, оно лежит в основе дистанционных методов исследования полей физических и оптических параметров атмосферы. В монографии значительное место отводится построению эффективных алгоритмов оперативной обработки и интерпретации оптической информации, которая может быть получена с использованием таких измерительных систем, как спектральные радиометры, многочастотные лидары, по-.ляризационные нефелометры, спектральные фoтoмeтpJ5I, установленные на космических платформах и т. п., а также измерительных комплексов, которые могут быть составлены из указанных оптических систем. Это, по мнению авторов, должно способствовать олее широкому использованию методов решения обратных задач светорассеяния в практике атмосферно-оптических исследований. Что же касается математических аспектов теории интерпретации косвенных измерений, которые необходимо сопутствуют любому исследованию по обратным задачам, то их изложение в основном дается в краткой форме и по возможности элементарно. Во многих случаях, где это оказывалось возможным, изложение основного материала сопровождалось численными примерами. В тех разделах, где речь идет о некорректных задачах, широко используется известная аналогия между линейным интегральным уравнением и линейной алгебраической системой. Поэтому для большей ясности в понимании и прочтении формульного материала интегральные операторы во многих местах можно заменять соответствующими матричными аналогами. В целом содержание монографии достаточно замкнуто и не требует, по мнению авторов, излишне частого обращения к дополнительной литературе. Вместе с тем авторы не гарантируют легкого чтения всех без исключения разделов монографии. В ряде мест естественно требуется определенная проработка и осмысление материала, особенно для той категории читателей, которая впервые знакомится с обратными задачами оптики атмосферы или собирается практически исполь- зовать ту или иную вычислительную схему интерпретации в своей работе.  [c.7]


Эго суммирование дает распределение потенциала на больших глубинах по типу свободного [уравнение (21)] или искусственно радиального падения согласно уравнению (22). Это обстоятельство не дает возможности построить с самого начала такую зависимость сопряженной функции, которая дала бы соответствующие физические вариации распределению потейциала для всех типов и проблем фильтрации, встречающихся на практике. Однако приведенные выше примеры должны служить по крайней мере указателями природы косвенных методов нахождения решений проблем течения, так же как и возможностей установления и ограничения их применимости з.  [c.275]

Все известные методы векторной оптимизации непосредственно или косвенно сводят решаемые задачи к задачам скалярной оптимизации. Иначе говоря, частные критерии Fi(X), i=l, п, тем или иным способом объединяются в составной критерий F(X) =ф( 1(Х),. .., f (X)), который затем максимизируется (или минимизируется). Если составной критерий получается в результате проникновения в физическую суть функционирования системы и вскрытия объективно существующей взаимозависимости между частными критериями и составным критерием, то оптимальное решение является объективным. Однако отыскание подобной взаимозависимости чрезвычайно сложно, а может быть, и не всегда возможно. Поэтому на практике составной критерий обычно образуют путем формального объединения частных критериев, что неизбежно ведет к субъективности получаемого оптимального решения. Составной критерий иногда называют обобщенным или интегральным критерием.  [c.16]

Этот метод высотной съемки целесообразно применять для труднодоступных и недоступных путей, совмещая его с одновременным определением ширины колеи и непрямолинейности крановых рельсов различными косвенными способами. Для тригонометрического нивелирования могут быть использованы обычные теодолиты или электронные тахеометры. Как правило, съемку производят с пола цеха с конечных пунктов базиса методом пространственной засечки, визируя на точки, обозначенные марками (рис.43, а). По измеренным углам наклона и, и вычисленным из решения засечек горизонтальным расстояниям 5) достаточно определить услов1ше высоты Я,, по которым можно найти продольные А,.у Яд, - Яду = = Яд- Яду = и поперечные  [c.93]

Введение. Мы привели дифференциальные уравнения движения к особенно удобному каноническому виду. Однако наша конечная цель будет достигнута только тогда, когда мы сможем решить эти уравнения. Поскольку нам неизвестен метод непосрественного интегрирования этих уравнений, то приходится идти косвенными путями. Одним из таких путей является метод преобразований координат. Мы пытаемся отыскать такую систему координат в фазовом пространстве, в которой входящая в канонические уравнения функция Гамильтона имела бы настолько простой вид, чтобы уравнения движения могли быть непосредственно проинтегрированы. Естественно, что с этой точки зрения желательно исследовать всю группу преобразований координат, связанных с каноническими уравнениями. Изучение этих канонических преобразований оказывает ценную помощь при интегрировании уравнений механики. Теория канонических преобразований в основном связана с именем Якоби. Хотя он, возможно, и не обладал воображением, присущим Гамильтону, и его усилия были в основном направлены на решение задачи интегрирования уравнений, однако открытие канонических преобразований явилось все же огромным достижением. Получившаяся в результате теория интегрирования сыграла важную рель в развитии современной атомной физики. В далеко идущих исследованиях Гамильтона проблема интегрирования являлась второстепенной задачей.  [c.225]

Большая экономическая устойчивость оптимальных решений подтверждает высокую эффективность метода комплексной оптимизации параметров и профиля теплоэнергетических установок. О надежности получаемых результатов в задачах оптимизации можно судить по соотношению двух величин эффекта оптимизации и возможной погрешности решения задачи. При решении задач в условиях детерминированного задания исходных данных иногда высказывалось опасение, не превышает ли не учитываемая в явном виде погрешность задания исходных данных эффекта оптимизации, хотя косвенная оценка этой погрешности могла быть определена [19]. Оптимизация теплоэнергетических установок в условиях неопределенности и анализ устойчивости полученных решений показали несостоятельность подобных опасений. Анализ ряда решев-  [c.191]

Применения М.-К. м. В нейтронной физике осн. задачами являются моделирование прохождения потока нейтронов в среде, расчёт коэф. размножения нейтронов в ядерном, реакторе, расчёт защиты реактора и др. Используют как прямое, так и косвенное моделирование. В первом случае в объёме реактора моделируют набор нек-рого числа нейтронов с заданными скоростями (первое поколение). Для каждого нейтрона прослеживают его судьбу (поглощение, вылет из реактора, деление). Образовавшиеся в результате деления нейтроны — это второе поколение, судьбу к-рых прослеживают аналогично. После моделирования достаточно большого числа поколений можно оценить критичность режима реактора. Метод удобен тем, что позволяет учитывать любую геом. форму реактора, наличие неоднородных примесей и пр. Однако время расчётов может быть существенно больше, чем при косвенном моделировании, когда движение нейтронов описывают интегральным ур-нием переноса. Для решения ур-ния составляют цепь Маркова. Характеристики поведения системы (в т. ч. и коэф. размножения) являются функционалами от состояний этой цепи и могут быть оценены стандартными методами.  [c.212]


Смотреть страницы где упоминается термин Косвенный метод решения : [c.549]    [c.286]    [c.130]    [c.193]    [c.157]    [c.67]    [c.115]    [c.189]    [c.16]    [c.69]    [c.808]    [c.11]    [c.95]   
Введение в теорию упругости для инженеров и физиков (1948) -- [ c.410 ]



ПОИСК



Косвенные методы

Решения метод



© 2025 Mash-xxl.info Реклама на сайте