Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбулентность гидродинамическая

Логарифмический профиль скоростей, характерный для развитого турбулентного гидродинамического по-  [c.168]

Именно благодаря наличию /.-масштаба, много большего Я-мас-штаба, собственно говоря, и возможны упорядоченные (турбулентные) гидродинамические движения, несмотря на то что практически всегда  [c.57]

Перейдем к описанию математических моделей распределенных динамических систем. Разнообразие их столь велико, что едва ли можно говорить о сколько-нибудь обозримом наборе основных типовых моделей. Все же некоторые из них стали предметом пристального внимания и позволили существенно продвинуться в вопросах исследования волновых и диффузионных явлений, в изучении ламинарных и турбулентных гидродинамических и конвективных течений жидкостей и газов.  [c.27]


Нагрузки такого типа встречаются в задачах о воздействии на конструкцию дальнего акустического поля или турбулентных гидродинамических пульсаций струи [43, 46, 49], о движении в статистически неоднородной среде, о движении нагрузки по мосту [4] и т. п.  [c.534]

СМАЗКА В ТУРБУЛЕНТНОМ ГИДРОДИНАМИЧЕСКОМ  [c.51]

Толщины бд и бтр соответственно ламинарных и турбулентных гидродинамических пограничных слоев при обтекании поверхности обычно определяют из зависимостей  [c.17]

Первая задача в упрощенной постановке, когда ионная компонента предполагалась "вмороженной" в гидродинамический однородный поток, была решена в [1]. Однако электрический пограничный слой в реальных условиях развивается внутри ламинарного или турбулентного гидродинамического пограничного слоя и эти эффекты могут оказывать значительное влияние на локальные и интегральные газодинамические характеристики.  [c.103]

По достижении пузырями пара верхнего уровня масла они прорываются в атмосферу масло же, температура которого ниже, чем в нижних слоях, движется между сетками вниз к нагревательной камере. Таким образом, за счет конвективных токов и движения паромасляной эмульсии в печи создаются большие скорости движения масла, достигающие 1,0 м/сек. Благодаря этому вблизи поверхности нагрева создается турбулентный гидродинамический режим.  [c.463]

Экспериментальные данные по гидродинамическому сопротивлению упаковок шаров в цилиндрических каналах из работы В. А. Сулина и др. [34] были обработаны по предложенной методике (см. рис. 3.4) для коридорной (Л = 1,1- 1,76), винтовой (jV= 1,89- 1,96) и кольцевой (iV = 2,044-2,8) упаковок. Для винтовой и кольцевой упаковок результаты обработки удовлетворительно согласуются с расчетами по зависимости (3.21). Для искусственно создаваемой коридорной упаковки,, характеризуемой свободным течением части газа по стенкам канала и, следовательно, меньшей турбулентностью, можна рекомендовать зависимость  [c.66]

Определена автомодельная область турбулентного течения газового теплоносителя по числу Re, в которой коэффициент гидродинамического сопротивления для стабильной структуры шаровой укладки остается постоянным проведена численная оценка степени турбулентности газового потока при течении его через шаровые твэлы.  [c.106]

Течение в гидродинамическом пограничном слое может быть как турбулентным 1, так и ламинарным 2 (рис. 26-2). Характер течения и толщина в нем (5 , и 5т) определяются в основном величиной критерия Re.  [c.404]

В условиях турбулентного движения жидкости гидродинамические характеристики жидкой и газовой фаз существенно зависят от концентрации пузырьков газа (т. е. от газосодержания). В случае большого газосодержания пузырьки оказывают сильное влияние друг на друга вследствие коалесценции и дробления, а также из-за изменений условий движения жидкости в окрестности каждого пузырька. Вопросам коалесценции и дробления пузырьков газа, движущихся в жидкости, посвящена четвертая глава. В данном разделе рассмотрим задачу об определении характеристик хаотического движения обеих фаз при условии малого газосодержания. В этом случае будем пренебрегать влиянием пузырьков газа друг на друга и на турбулентные характеристики жидкости, т. е. будем рассматривать задачу о движении одиночного пузырька газа.  [c.83]


В гл. 1 изложены физико-химические и гидродинамические основы химии, нефтехимии и химические технологии. В ней на основе анализа общего нелинейного параболического уравнения предложены условия возникновения самоорганизации и турбулентности, проведена проверка этой закономерности с известными результатами экспериментальных исследований разработаны методы решения уравнений переноса количества движения, вещества и энергией для сложного тепломассообмена в системах с различной реологией, с учетом входного участка.  [c.8]

С ростом скорости истечения холодной струи наблюдается смена гидродинамических режимов ламинарная струя переходит в турбулентную.  [c.70]

Уравнение (12.40) выражает собой гидродинамическую аналогию между передачей импульса и количества теплоты в турбулентном потоке жидкости ее следствием является подобие полей скорости и температуры. Из предыдущего ясно, что эта аналогия является только приближенной.  [c.462]

Такая замена турбулентного движения квазиустановившимся фиктивно параллельным движением со скоростями частиц м, а также усредненными местными гидродинамическими давлениями р  [c.77]

Переход ламинарного режима в турбулентный кратко описан в п. 6.6 для течения в круглых трубах. Он наблюдается и при течениях в каналах разной формы, конфузорах, диффузорах, в пограничном слое при обтекании тел, в свободных струях. Хотя переходные явления для каждого класса потоков имеют некоторую специфику, но в основе любого из них лежит потеря устойчивости ламинарного течения, которая наступает при достижении определенных значений гидродинамических параметров.  [c.359]

M Tiiyio толщину турбулентного гидродинамического пограничного слоя можно вычислить но формуле [27]  [c.63]

Необходимо отметить, что и в случае турбулентного гидродинамического пограничного слоя неиосредствеино у стенки имеется очень тонкий слой жидкости, движение в котором имеет ламинарный характер. Этот слой называют вязким, или ламинарным, подслоем 3.  [c.404]

Эксперименты подтвердили, что амплитуды пульсаций Аро снижаются при увеличении числа Mi (рис. 6.5, а) и уменьшении числа Rei (рис. 6.5,6, в). Следовательно, основные критерии Mi, Rei влияют на изменение интенсивности конденсационной турбулентности так же, как и гидродинамической. Эти результаты подтверждают тесную взаимосвязь физически различных механизмов турбулентности. Гидродинамическая турбулентность играет решающую роль в возникновении конденсационной турбулентности (см. 3.2), стимулирует нестационарный процесс фазовых переходов. В основе этих сложных явлений лежит флуктуационный механизм, который необходимо рассматривать на молекулярном уровне. Вместе с тем следует подчеркнуть и принципиальные различия двух физических процессов гидродинамическая турбулентность сохраняет систему гомогенной, а конденсационная турбулентность возникает при фазовых переходах. Переход через состояние насыщения сопровождается пульсационньш процессом, природа которого, как отмечалось выше, связана с появлением и испарением неустойчивых зародышей жидкой фазы и поведением мелких капель.  [c.201]

Функциональные характеристики подшипника. В этот класс параметров входят соображения о механическом, гидродинамическом и тепловом подобии, позволяющие правильно использовать экспериментальные данные и даже установить условия работы (ламинарный или турбулентный гидродинамический режим течения смазки) и охлаждения (излучение, конвекция). Режим смазки и рабочая температура также являются основными характеристиками. В эту же категорию входят и местные деформации поверхностей, изменяющие форму смазочной пленки и наклон поверхностей, в частности относительный эксцентрицитет, который определяет также взаимное положение шип--Екладыш у круглых цилиндрических подшипников и который, в свою очередь, обусловливается внешними данными. Динамическое поведение жидкой несущей пленки, ее колебания и устойчивость являются элементами, делающими иногда невозможной нормальную работу некоторых пар трения, которые пока что были изучены односторонне. Знание граничных условий для смазочной пленки совершенно необходимо для расчета и затем для предписания правильных условий эксплуатации.  [c.34]


Винтовой поток обладает дополнительной подъемной силой, возникаюпцей при внутренней циркуляции, которая в основном проявляется в средней части потока (см. рис. 6). Во внешней зоне Б поток имеет наибольшую турбулентность, гидродинамическое давление при циркуляционном течении направлено в сторону дна желоба. Как видно, наличие внутренних циркуляционных течений в винтовом потоке суш ественно влияет на характер его турбулентности. Экспериментально доказано, что винтовой поток обладает меньшей турбулентностью, чем прямолинейный [25, 26, 83, 148.  [c.12]

Уравнения диффузионного электрического пограничного слоя на плоской пластине. Рассмотрим обтекание плоской пластины потоком квазинейтральной плазмы с концентрацией о ионов и электронов. Предполагается, что параметр электрогидро-динамического взаимодействия мал, несущая среда несжимаемая, ее температура Т постоянна. На пластине развиваются ламинарный или турбулентный гидродинамический пограничный слой и диффузионный электрический пограничный слой, толщина которого, как правило, меньше толщины гидродинамического слоя [1].  [c.103]

Резкое местное сужение и дальнейшее расширение проход-лого сечения отдельной струи вызывает отрыв ее от поверхности твэла. Возникновение турбулентных пульсаций и, по мере увеличения скоростей, появление отрывного течения струек приводят к значительно болынему гидродинамическому сопротивлению при течении охладителя через шаровые твэлы, по сравнению с теченлем теплоносителя в трубах при одинаковом  [c.39]

По представлениям 3. Ф. Чуханова Л. 316, 317], основанным на анализе процессов в слое с точки зрения внешней задачи, влияние соседних частиц и их точек соприкосновения проявляется в ранней турбулизации газовой фазы. По-видимому, эта турбулизация охватывает часть свободно омываемой поверхности твердых частиц, но не затрагивает газовую прослойку, непосредственно примыкающую к местам контакта и образующую застойную зону. По данным [Л. 7] коэффициент массо-передачи в широком диапазоне чисел Рейнольдса очень неравномерен по поверхности шариков продуваемого неподвижного слоя. Он резко уменьшается в точках контакта частиц н увеличивается в свободно обдуваемых местах. Аналогичный результат был получен Дентоном [Л. 351] при Re = 5 000 ч-50 ООО. В движущемся слое при прочих равных условиях можно ожидать уменьшения застойных зон на поверхности частиц. Исходя из предположения, что теплообмен в слое является типично внешней задачей, 3. Ф. Чуханов [Л. 316] на основе гидродинамической теории теплообмена показал, что для турбулентного режима  [c.318]

В первой главе при описании течений в газожидкостных системах было дано определение режима снарядного течения (см. рис. I, б). Напомним, что этот режим течения характеризуется периодическим прохождением вдоль оси трубы больших, сравнн.мых по размеру с диаметром трубы, пузырей газа. Будем предполагать, что пространство между газовыми пузырями, заполненное жидкостью, не содержит дисперсных газовых включений. Будем также считать, что возмущенно жидкости, вызванное прохождением данного пузыря газа, не влияет на скорость всплывания остальных пузырей, и их движение можно считать независимым. Таким образом, рассмотрим движение одного большого газового пузыря в условиях ламинарного и турбулентного профилей скорости жидкости [71]. Основным гидродинамическим  [c.209]

Из фиг. 4.28 видно, что основным процессом при течении по трубам систем газ — твердые частицы является взаимодействие между электростатическими и гидродинамическими эффектами. Соответствующим параметром взаимодействия является турбулентное число электровязкости Еу, т. е. отношение электростатической силы к турбулентной силе. Среднее измеренное значение отношения заряда к массе обычно имеет порядок 10 к/кг. Если нельзя полностью пренебречь зарядом частиц, то невозможно обеспечить стационарное, полностью развитое течение смеси в трубе. Соответствующий параметр Еу для ламинарного течения имеет вид ррИл (д/т) (гл. 10).  [c.197]

Коагуляция в градиентных потоках и из-за турбулентности жидкости широко исследована в работе [481]. Фукс [243] подробно изучал броуновское движение, накопление частиц и пыли в фильтрах, а также накоп.ление при ударе о коллекторную поверхность частиц, движущихся по индивидуальным траекто-Р1ТЯМ. В гл. 8 рассматривается гидродинамическая сепарация, а в гл. 10 — электростатическая сепарация.  [c.266]

Динамические структуры могут возникать в различных средах. Из гидродинамики хорошо известно, что при определенной скорости движения жидкости ламинарное течение сменяется турбулентным. До недавнего времени этот переход отождествляли с переходом к хаосу. В действительности же обнаружено, что в точке перехода путем самоорганизации диссипативных сфуктур происходит упорядочение, при котором часть энергии системы переходит в макроскопически организованное вихревое движение. Переход от ламинарного течения к турбулентности является примером реализации гидродинамической  [c.62]

Исчерпывающей теории возникновения турбулентности в различных типах гидродинамических течений в настоящее время еще не существует. Был выдвинут, однако, ряд возможных сценариев процесса хаотизации движения, основанных главным образом на компьютерном исследовании модельных систем дифференциальных уравнений, и частично подтвержденных реальными гидродинамическими экспериментами. Дальнейшее изложение в этом и следующем параграфах имеет своей целью лишь дать представление об этих идеях, не входя в обсуждение соответствующих компьютерных и эксперимеитальпых результатов. Отметим лишь, что экспериментальные данные относятся к гидродинамическим движениям в ограниченных объемах имеппо такие движения мы и будем иметь в виду ниже ).  [c.162]


Монография посвящена математическому моделированию тепломассообмена в сложных 1 ермогидрогазодинамических процессах в многокомпонентных струйных и пленочных течениях, описываемых нелинейными уравнениями переноса количества движения, вещества и энергии. Многокомпонентные струйные течения и тепломассообмен в них исследованы в различных режимах эжекционных, кавитационных, пульсационных, вихревых, свободно истекающих. Моделированием общею нелинейного параболического уравнения установлена закономерность возникновения самоорганизации, маломодового хаоса, многомодовой турбулентности. Приведены методы решения сложных нелинейных уравнений переноса в различных гидродинамических режимах.  [c.2]

Как следует из рис. 1.12, наблюдается расслоение кривых, пре,дставляющих зависимость амплитуды волны от величины числа Рейнольдса. Это связано с тем, что для течений с поверхностью раздела существуют два характерных числа, ответственных за смену гидродинамических режимов (переход от ламинарного режима течения пленки к турбулентному) числа Ке и у = стр" (), ) .  [c.20]

Таким образом, коэффициенты массоотдачи (теплоотдачи) в процессах совместного тепломассообмена (1.4.13), (1.4.14) выражаются произведением. Первый сомножитель ответственен за процессы, происходящие в отсутствие взаимного влияния (Р(д/,=о), 0С(д ,=( ) диффузионных или тепловых процессов. Он различен и зависит от гидродинамических и диффузионных условий протекания процесса, а также от геометрической поверхности (Р(д/,=о), ( (АьтУ ДРУгой сомножитель (1.4.15), (1.4.16) -общий для всех рассмотренных случаев [1, 55-571 и отражает влияние переноса энергии на перенос массы и наоборот. Заметим, что обобщенная зависимость типа (1.4.13) или (1.4.14) получена для различных режимов массообмена (теплообмена), на различных контактных поверхностях, (пленочное течение на гладкой поверхности, в том числе в условиях волнообразования, при ламинарном и турбулентном режимах, течение по стенке с регулярной шероховатостью и т.д.), а также при массообмене в многокомпонентных системах. Отметим, что в многокомпонентньЕХ системах зависимости типа/,,/) носят матричный характер.  [c.35]

В случае же турбулентных потоков в глaдкoii и переходной области сопротивления и в случае ламинарных потоков для гидродинамического подобия требуется моделирование с соблЮ -дением  [c.334]

В шестой главе интегральные параметры пристенного турбулентного движения в трубах описаны при помощи гидродинамических функций. При этом показывается, что параметры турбулентного движения, выраженные через гидродинамические функции, являются унив >саль-ными, т.е. являются общими для турбулентного движения во всевозможных трубах (гладких, шероховатых и т.п.). В конце главы дана общая методика расчетов турбулентного движения в трубах при помощи гидродинамических функций.  [c.8]

Консервативность некоторых основных характеристик пристенной турбулентности, энергетическая классификация характерных масштабов в турбулентном потоке и анализ имеющихся экспериментальных данных позволяют дать формулировку проблемы собственно пристенной турбулентности в виде автономной задачи Л. Працдгля, приближенное решение которой удается построить аналитическими средствами линейной теории гидродинамической устойчивости /67/.  [c.35]

В конце XIX и начале XX века существенный вклад в развитие гидравлики внесли русские ученые и инженеры Н. П. Петров (1836—1920) разработал гидродинамическую теорию смазки и теоретически обосновал гипотезу Ньютона Н. Е. Жуковский (1849— 1921) создал теорию гидравлического удара, теорию крыла и исследовал многие другие вопросы механики жидкости, он же явился основателем известного всему миру Центрального аэрогидродина-мического института (ЦАРИ), носящего его имя Д. И. Менделеев (1834—1907) опубликовал в 1880 г. работу О сопротивлении жидкостей и о воздухоплавании , в которой были высказаны важные положения о механизме сопротивления движению тела в жидкости и даны основные представления о пограничном слое. Теория пограничного слоя, являющаяся одной из основополагающей при изучении турбулентных потоков в трубах и обтекании тела жидкостью, в XX веке получила большое развитие в трудах многих ученых (Л. Прандтль, Л. Г. Лойцянский).  [c.5]


Смотреть страницы где упоминается термин Турбулентность гидродинамическая : [c.89]    [c.525]    [c.75]    [c.79]    [c.57]    [c.58]    [c.238]    [c.81]    [c.12]    [c.213]    [c.333]    [c.335]    [c.2]   
Регулярная и стохастическая динамика (0) -- [ c.474 ]

Введение в теорию колебаний и волн (1999) -- [ c.493 ]



ПОИСК



Гидродинамическая неустойчивость и возникновение турбулентности

Гидродинамическая теория локальной структуры развитой турбулентности

Гидродинамические уравнения для турбулентных течений реагирующих газовых смесей

Гидродинамическое сопротивление пластины, обтекаемой турбулентным пограничным слоем

Да гидродинамическое

Математические методы описания турбулентности, средние значения и корреляционные функции Методы осреднения. Поля гидродинамических характеристик n как случайные поля

Пограничный слой гидродинамический турбулентный

Смазка в турбулентном гидродинамическом режиме

Стационарное гидродинамически стабилизированное турбулентное течение в круглой трубе жидкости с постоянными свойствами

Тепловые и гидродинамические процессы в турбулентных колеблющихся потоках



© 2025 Mash-xxl.info Реклама на сайте