Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние переходное — Исследование

Результаты расчетов 94—95 Состояние переходное — Исследование 105—106  [c.457]

На наш взгляд, постановка вопроса таким образом недостаточно корректна, так как на значения величины переходного сопротивления определенного участка трубопровода будут накладываться значения сопротивления (проводимостей) дефектов, которые могут значительно повлиять на интегральную оценку состояния. Из опыта исследования коррозионных повреждений известно, что коррозионное повреждение имеет неравномерное распределение вдоль трассы и, как правило, носит сосредоточенный характер, поэтому общая площадь повреждений, по мнению разных авторов, может колебаться от 0,01 до несколько десятков процентов в зависимости от времени эксплуатации и природных условий. Поэтому при исследовании трубопроводов, которые эксплуатируются уже десятки лет, на наш взгляд, более информативным является определение (оценка) не переходного сопротивления отдельного участка, а процент повреждения изоляционного покрытия при определенных параметрах повреждений для данного трубопровода, который определяется или задается, исходя из имеющихся данных. Вопрос нахождения переходного сопротивления исследуемого в данном случае участка может быть решен путем измерения его на более коротком отрезке на данном участке или с  [c.272]


Системы автоматического регулирования принято оценивать по их статическим и динамическим характеристикам, которые находятся различными путями, но которые являются основой для выбора и построения системы. Поведение всякой САР, ее элементов и звеньев характеризуется зависимостями между выходными и входными величинами в стационарном состоянии и при переходных режимах. Эти зависимости составляются на основе законов сохранения энергии и материи в виде дифференциальных уравнений. Из последних можно получить передаточные функции для исследования свойств системы, ее элементов и звеньев.  [c.414]

Исследовательские испытания на износ включают обычно металлографические исследования тонких поверхностных слоев для оценки структурных превращений под влиянием сил трения и тепла Б зоне контакта. При этом применяются специальные приемы, например метод косого среза, для выявления переходных зон поверхностного слоя. Исследуется также микротвердость структурных составляющих, механические характеристики материала, его теплофизические свойства, геометрия поверхностного слоя (шероховатость, волнистость), его напряженное состояние и другие характеристики.  [c.488]

Изложены результаты исследования термодинамических свойств неорганических материалов — энергии Гиббса, энтальпии и энтропии образования соединении ванадия, хрома и марганца с р-элементами и закономерности их изменения в связи с положением компонентов в периодической системе элементов. Обобщены данные экспериментальных исследований и закономерности фазовых равновесий и строения диаграмм состояния в рядах систем редкоземельных металлов с германием титана и циркония в бинарных и тройных системах с тугоплавкими платиновыми металлами, тройных систем переходных металлов, в которых образуются фазы Лавеса, и тройных систем переходных металлов, содержащих тугоплавкие карбиды. Приводятся примеры использования полученных результатов при разработке новых материалов.  [c.247]

Одним из частных случаев ДАС являются последовательные машины, характеризующиеся тем, что они обладают конечным числом дискретных состояний, изменяющихся в дискретные моменты времени. Эти последовательные машины можно представить в виде обычных импульсных систем со специального вида нелинейностью, осуществляющей операцию сравнения по модулю. К нелинейным импульсным системам относится также широкий класс импульсных экстремальных систем. На основе дискретного преобразования Лапласа получены общие уравнения таких систем, которые положены в основу исследования переходных и установившихся режимов импульсных экстремальных систем с независимым поиском.  [c.271]


В настоящем параграфе рассматривались только статические, т. е. равновесные, характеристики пароперегревателя. В действительности парогенератор испытывает изменения нагрузок и режимов, заданные суточным графиком кроме того, в нем происходят периодические возмущения, вызванные колебаниями в подаче топлива, его свойствах и т. д. Таким образом, переходные режимы, строго говоря, являются постоянным состоянием парогенератора, а статические — исключением. Набор и снижение нагрузки сопровождаются отклонением от статических состояний. При этом температуры отдельных конструктивных узлов могут превышать величины, допустимые по расчету. Поэтому полноценные испытания должны включать исследования динамических характеристик пароперегревателя при наиболее частых в эксплуатации возмущениях изменениях нагрузки, переключениях горелок, расшлаковках и т. д.  [c.187]

Для сварных соединений перлитных сталей с хромистыми использование как перлитных, так и хромистых электродов неизбежно приводит к появлению в слоях шва, прилегающих к отличному по составу основному металлу, в исходном состоянии после сварки мартенситной структуры. Как показало исследование механических свойств переходных составов шва [42 ], наилучшие показатели достигаются для швов с содержанием хрома в пределах 1—5% (возможные составы при использовании перлитных электродов). Поэтому для сварки перлитных сталей с хромистыми используются в основном электроды перлитного класса.  [c.45]

Для контроля правильности полученных результатов при исследовании следящей системы в разомкнутом состоянии был применен метод единичного скачка (толчка) для этих же систем в замкнутом состоянии. С этой целью был использован откидной фиксатор, удерживающий золотник в нейтральном положении относительно его корпуса. В момент освобождения фиксатора предварительно сжатая пружина сообщала быстрое перемещение золотнику. При этом удавалось воспроизвести на фотопленке характеристику переходного процесса, а по ней определить время переходного процесса, его затухание и величину перерегулирования. Исследования велись с максимально возможной компенсацией зазоров в передаче от гидродвигателя к каретке.  [c.141]

При исследовании перехода системы из одного равновесного состояния в другое входное воздействие подается в виде ступенчатого сигнала. При этом x(t) = О при < О и x t) = а при 0. Подобное воздействие при x(t)= 1 ( ) называют также единичным. Поведение элемента или системы при единичном воздействии описывается переходной функцией У (s). Переходная функция может быть получена из передаточной функции при  [c.59]

С открытием лазеров как источников коротких импульсов излучения в оптическом диапазоне электромагнитных волн появилась возможность наблюдения фотонного эха [67], являющегося оптическим аналогом спинового эха, а также свободного распада электронной поляризации [68] и других эффектов [69-71], обусловленных сложением фаз, т. е. когерентностью атомного ансамбля. Как мы увидим ниже, эволюция во времени недиагональных элементов матрицы плотности примесного центра определяет свободное затухание поляризации, различные типы фотонного эха и некоторые другие нелинейные явления. Эти эффекты получили название переходных. Их можно наблюдать лишь после возбуждения образца достаточно короткими световыми импульсами. Среди переходных эффектов наибольший интерес в настоящее время вызывает фотонное эхо, превратившееся в главный инструмент для исследования фазовой и энергетической релаксации электронных состояний примесных центров в твердых растворах. Достижениям теории в области описания фотонного эха и посвящена в основном данная глава.  [c.195]

В рассмотренных примерах длительность импульсов и ищс течением времени стремится к нулю, а их энергия — к бесконечности. Это влечет за собой неограниченное возрастание градиентов деформации и напряжения, что нереально. Учет же в исходной модели нелинейности, потерь и дисперсионных свойств реальной системы приведет к установлению конечной амплитуды и длительности импульсов. При линейной же идеализации полученные результаты достаточно хорошо отражают начальный этап переходных процессов и правильно предсказывают форму возбуждаемых колебаний в режимах неустойчивости. Это указывает на эффективность метода итераций при исследовании динамических процессов в различных устройствах, в которых рабочий элемент можно считать одномерной системой с изменяющейся во времени длиной. Кроме того, он позволяет выявить характерное время формирования импульсов из гладких начальных возмущений в критических режимах (таких, как параметрическая неустойчивость или резонанс) и оценить допустимое время нахождения системы в этих опасных состояниях без существенного нарушения их нормальной эксплуатации.  [c.166]


Данная глава посвящена исследованию напряженно-деформированного состояния в окрестности кругового цилиндрического препятствия в случае, когда действующая нагрузка (падающая волна) произвольным образом изменяется во времени. При наличии переходных процессов решение дифракционных задач существенно усложняется, так как не удается отделить временную переменную традиционным путем и приходится использовать интегральные преобразования. В последнем параграфе третьей главы изложен один из эффективных способов решения нестационарных задач. Здесь приведены наиболее существенные количественные результаты.  [c.262]

Для исследования вязкохрупких свойств материалов и их переходного состояния на протяжении многих лет было испытано множество образцов с различной формой надрезов и при различных способах нагружения. Эти образцы можно разделить на две категории. Образцы первой категории имеют относительно малые размеры и легко поддаются испытаниям. К ним относятся образцы Шарпи, Изода, образцы с надрезом для растяжения и для ударных испытаний (NDT). Они удобны для разработки сплавов и контроля качества. На образцах второй категории отрабатываются специальные характеристики материала, имеющие важное значение при проектировании. Их форма сложнее, размеры больше. Они менее удобны для испытаний. Образцы обеих категорий помогли выработать практическую основу для проектирования турбогенераторных установок.  [c.104]

Методу получения интерферограмм объектов на фоне полос бесконечной ширины присущи следующие два недостатка. Во-первых, его точность и пространственное разрешение зависят от величины деформаций волнового фронта. Во-вторых, из полученных этим методом интерферограмм непосредственно нельзя определить характер кривизны фронта измерительной волны. Например, изображенные на рис. 4.1, а фронты 1 и 2 дадут одинаковые интерференционные картины. При отсутствии априорных знаний о распределении приращений оптического пути по сечению исследуемого объекта в какой-то момент времени его характер можно определить, наблюдая в натуральном времени за развитием интерференционной картины, начиная от исходного недеформированного состояния. Однако это увеличивает трудоемкость экспериментов и не гарантирует от ошибок. Применительно к задачам определения термооптических искажений активных элементов лазеров особенно внимательно следует относиться к их исследованиям в переходных режимах работы, когда знак деформации может изменяться во времени (см. п. 1.1), или при знакопеременных деформациях вдоль поперечного сечения (см. п. 1.4).  [c.176]

Другие системы. Некоторые теллуриды и селениды исследовались также при стехиометрическом составе, однако полученные результаты недостаточно надежны (изучение концентрационной зависимости свойств существенно важнее, так как при этом можно избежать проблемы измерения свойств при точном стехиометрическом составе, поскольку данные для этого состава можно получить интерполяцией). Температурные коэффициенты у этих соединений обычно отрицательные в жидком состоянии и удельное сопротивление после плавления уменьшается, но проводимость в жидком состоянии достаточно высока. Такие же результаты получены для силицидов переходных металлов, у которых удельное сопротивление в жидком состоянии примерно равно 3-10 мком-см. Для некоторых сплавов имеются сообщения о скачкообразном изменении температурного коэффициента удельного сопротивления аь при температурах, находящихся вблизи точки плавления [70, 376, 377]. Ясно, что необходимо продолжить исследования, поскольку эти наблюдения говорят о возможности изменений в дискретной структуре жидких сплавов, выраженных, возможно, в форме фазовых изменений . Кажется, никто сильно не возражает против возможности нестабильности одной жидкой структуры по отношению к другой при некоторой критической температуре, хотя при высоких температурах (и, следовательно, высоких амплитудах атомных колебаний) структуры должны быть очень стабильными. Эти явления, возможно, связаны с изменением а К) из-за температуры, так как эта функция тоже влияет на температур-  [c.134]

Часто каталитические свойства металла или сплава зависят от их способности хемосорбировать определенные компоненты среды. Поэтому неудивительно, что переходные металлы обычно являются хорошими катализаторами и что электронные конфигурации в сплавах, благоприятствующие каталитической активности и пассивации, сходны между собой. Например, если палладий, содержащий 0,6 d-электронных вакансий на атом в металлическом состоянии, катодно насыщен водородом, он теряет свою каталитическую активность для ор/по-па/>а-водородной конверсии [59] d-уровень заполнен электронами растворенного водорода, и металл не может больше хемосорбировать водород. По каталитической эффективности Pd—Au-сплавы аналогичны палладию, пока не достигнут критический состав 60 ат. % Аи. При этом и большем содержании золота сплав становится слабым катализатором. Золото, будучи непереходным металлом, снабжает электронами незаполненный уровень палладия магнитные измерения подтверждают, что d-уровень заполнен при критической концентрации золота. Результаты исследований каталитического влияния медно-никелевых сплавов различного состава на реакцию 2ННа представлены на рис. 5.17. При 60 ат. % Си и  [c.98]

Стали типа 15Х5М относятся к числу термически стабильных. Однако при длительном воздействии высокой температуры в сварных разнородных соединениях могут образовываться переходные прослойки, обусловленные диффузионно м перераспределением в них диффузионно-подвижных Э1 с,ментов. Исследования, проведенные Н.М. Королевым во ВНИИнефтемаше, показали, что интенсификацию диффузионных процессов вызывают циклические термические напряжения, обусловленные различием температурных коэффици-ешов линейного расширения аустенитного шва и основного металла. Помимо термических напряжений действуют также напряжения, возникающие вследствие наличия закаленных участков в околошовных зонах. Мартенситная пересыщенная структура закалки всегда обладает более высокой свободной энергией, чем равновесные фазы с таким же номинальным составом, т.е. околошовные зоны термического влияния закаливающейся стали характеризуются более структурнонапряженным состоянием. Как известно, напряженное состояние металла значительно влияет на скорость диффузионных процессов и их коррозионную стойкость.  [c.155]


Изучение состояния преграды в области внедрения сводится к определению давления среды на поверхность внедряющегося тела и характеристик напряженно-деформированного состояния среды в пограничном слое. Исследование проводится в цилиндрических координатах г, 9, 2 при следующих предположениях а) материал преграды идеально пластический с характеристикой о., д-, б) внедряющееся тело абсолютно жесткое, причем геометрическая форма при аэродинамическом и переходном внедрении известна, при кратерном внедрении форма тела сферическая в) сопротивление преграды внедрению можно представить в виде совокупности двух составляющих собственного сопротивления Одод и динамического сопротивления Один-  [c.162]

Результаты исследований напряжений в модельных и натурных статорах показывают, что в литых и сварно-литых высоконапорных спиральных камерах с короткими, относительно широкими и достаточно массивными колоннами пояса статоров деформируются мало, а в статорах средненапорных радиальноосевых турбин деформации поясов в зоне сопряжения с оболочкой значительно уменьшаются в забетонированном состоянии. Напряжения в переходном сечении от колонны к статс ру в незабетонированном состоянии в 2,0—2,5 раза превышают эти же напряжения при незабетонированном статоре. Это подтверждается испытаниями, проведенными на моделях спиральных камер красноярских турбин [4]. Получить подтверждение этих результатов расчетом полностью не удается, хотя существует много различных методов.  [c.77]

Исследование твердости образцов, закаленных по описанному режиму, показало (в соответствии с отметками У и 3 на рис. 8,6), что глубина закаленного слоя равна 4 мм с переходным слоем 2,5 мм т. е. исходная твердость образца в сердцевине сохранена, начиная с 6,5 мм от поверхности. Выбором закалочной жидкости (вода техническая умягченная, вода с добавками органических полимеров и т. п., нодовоздушная смесь, масло) и способа ее подачи (душ, поток, сокойное состояние) можно в широких пределах регулировать скорость охлаждения поверхности. Тем самым можно изменить скорость охлаждения для предотвращения трещин в шлицах, па.зах, отверстиях и выточках. Режим охлаждения имеет особенно важное значение при закалке легированных сталей. Закалка в масло не всегда удобна и небезопасна в пожарном отношении. Ярославским моторным заводом успешно введена в практику закалка водным раствором полиакриламида ТУ6-01-1040—76 [3]. Известно также применение различных патентованных средств, таких, как аква-пласт (ГДР) османил (ФРГ).  [c.14]

Основные результаты, полученные при исследовании указанных свойств В. Д. Садовским, Е. Н. Соколковым и другими исследователями, представлены в табл. 6. Там же указаны технологические режимы ВТМО и для сравнения приведены свойства исследованных сталей в неупрочненном состоянии (после закалки по стандартному режиму). ВТМО, особенно с подсту-живанием после начального нагрева до 950—900°, чтобы предотвратить развитие рекристаллизации, может привести к увеличению более чем в 2 раза ударной вязкости легированной стали [77, 92], а в некоторых случаях (сталь 20ХНЗ) — повысить ее почти в 10 раз [90]. При этом степень обжатия упрочняемого металла на первой стадии ВТМО не превышает 20— 30%. Изменение характера разрушения упрочненных сталей, повышение их вязкости и снижение чувствительности к обратимой отпускной хрупкости связываются [77, 91] с локализацией деформации по границам аустенитного зерна исходного нагрева и с искажением кристаллической решетки межзеренных переходных зон, сохраняемых после закалки, что изменяет условия выпадения и коагуляции фаз, способствующих развитию отпускной хрупкости, а также ослабляющих связь между соседними зернами [16, 13].  [c.56]

Данное сообщение относится к серии работ [1—3], посвященных изучению высокотемпературных превращений в органосиликатных модельных композициях с продуктом предварительной термообработки хризотилового асбеста (ППТХА 700 °С, 5 ч) как силикатной составляющей материала в исходном состоянии. Выбор диоксидов титана, циркония и гафния в качестве оксидных компонентов сделан, исходя из двух соображений. С одной стороны, первые два применяются при изготовлении промышленных и опытных марок органосиликатных материалов (OGM), а вся триада образована переходными металлами, входящими в побочную подгруппу IV группы Периодической системы элементов. С другой стороны, гафний непосредственно следует за лантаноидами, и поэтому сопоставительное исследование композиций, содержащих НЮа и оксиды редких земель, может представить интерес для выяснения влияния заполнения 4/-орбитапей на свойства OGM.  [c.206]

Простота применения и точность метода Фурье была отмечена и другими авторами, изучавшими распространения волн в монолитных полимерных материалах. Например, Кнаусс [60] проанализировал нестационарные колебания аморфных полимеров в вязкоупругой переходной зоне из стеклообразного в каучукоподобное состояние. Мао и Радер [65] использовали этот метод для исследования распространения импульсов напряжений в стержнях из полиметилметакрилата, обладающего малым тангенсом угла потерь. Однако пока в литературе не встречаются результаты исследования методом Фурье влияния микроструктуры на стационарные волновые процессы в композитах. Для изучения этого вопроса можно было бы прямо применить описанные в предшествующем пункте приближенные методы по-видимому, в них можно было бы учесть различные представления вязкоупругих характеристик компонентов композиционных материалов. Хотя при использовании численного решения график функции изменения импульса напряжений от времени может иметь большую кривизну, вязкоупругое затухание обычно устраняет этот недостаток, за исключением окрестности точки приложения нагрузки. Применение так называемого метода быстрого преобразования Фурье [79] так же могло бы существенно упростить исследование.  [c.182]

Поведение элементов конструкций ВВЭР под действием температурных и силовых воздействий может бьпь описано, как показано в гл. 3, несвязанной краевой задачей термоупругости или пластичности. При этом анализу напряженных состояний предшествует исследование нестационарных температурных полей, обусловлею1ых переходными эксплуатационными или аварийными режимами работы АЭС. Расчет температурных полей проводится отдельно для каждого элемента конструкции АЭУ в соответствии с историей теплового нагружения (см. рис. 3.14).  [c.170]

Динамика проточной камеры перзиенного объзиа характеризуется тремя неизвестными величинами (кроме времени) давлением, температурой газа в камере и ее переменным объемом. Эти величины при исследовании систем пневматического привода принято находить из совместного решения трех дифференциальных уравнений энергетического баланса камеры, состояния газа и движения поршня [5, 61. Для пневматических приборов изменением температуры газа при обычно малых деформациях чувствительного элемента (камеры) прибора, как правило, можно пренебречь. При этом исследуемый переходный процесс может быть достаточно точно описан двумя последними ив перечисленных выше уравнений. Уравнение состояния газа запишем в виде  [c.90]

При пуске ТА, так же как и при работе на частичных нагрузках, важным моментом является обеспечение допустимых скоростей перехода с одного уровня мощности на другой. Ограничения допустимых скоростей изменения температур теплоносителей в переходных режимах теплообменного оборудования часто становятся определяющими для времени проведения режимов всей АЭС. В конечном итоге время переходных процессов влияет на термонапряженное состояние конструкции ТА и определяет их надежную работу. Допустимое время переходных процессов обычно определяется после тщательного исследования температурного и прочностного состояния узлов и деталей конструкции при различных скоростях проведения режимов. Сложность конструкций и условий работы теплообменного оборудования в составе АЭС не всегда позволяет достаточно точно определить прочностные характеристики конструкции в том или ином переходном режиме расчетным путем, в связи с чем возникает необходимость в экспериментальных исследованиях. Данные по переходным режимам могут быть получены также при пусконаладочных работах на АЭС (по замерам температуры и напряжений в наиболее напряженных узлах). Так, при пусконаладочных работах на реакторе БН-350 были уточнены требования по режиму пуска и вывода на мощность ПТО [12]. В частности, выяснилось, что разогрев ПТО из холодного состояния необходимо выполнять со скоростью изменения температуры греющего теплоносителя около 5°С/ч ступенями (по 20 °С) и выдержкой на каждой ступени в течение 5— 10 ч, а переход с одного уровня мощности на другой осуществляется ступенями по 10% с выдержкой на каждом уровне мощности. Несколько больщие скорости изменения мощности достигнуты в установке БН-600, где они составляют 30—40°С/ч вследст-30  [c.30]


Ильченко О. Т. Исследование теплового состояния паровых турбин в пусковых и других переходных режимах. Автореф. докт. дис. Харьков, 1973. 38 с.  [c.237]

Литературные данные о коэффициентах переноса в газах при переходном вакууме очень ограничены и носят эмпирический характер. Поэтому были проведены теоретические исследования вопроса, в результате которых удалось получить обобщенные уравнения для коэ(Й>и-циентов переноса в газе (паре), жидкости и твердом теле. Оказалось, что эти уравнения не только объясняют особенности теплопереноса в топках, но и могут быть использованы для решения ряда актуальных задач теплофизики, газодинамики, приборостроения и вакуумной техники. В частности, на основе обобщенных уравнений построен критериальный метод расчета газодинамического сопротивления и теплообмена тел, обтекаемых дозвуковым и сверхзвуковым потоком разреженного газа, осу-щестблен расчет вакуумно-порошковой теплоизоляции и теплоэлектрических вакуумметров. Кроме того, на основе обобщенных уравнений проведен расчет непрерывного изменения коэ( ициентов переноса при изменении состояния вещества от газа в условиях глубокого вакуума до твердого тела, включая фазовые переходы (при. оценке переноса в жидкостях и твердых телах использована модель сжатых газов).  [c.4]

Оптические свойства П. Соотношения между амплитудой, фазой и поляризацией падающей, отражённой и преломлённой на П. световых волн определяются Френеля формулами. У П. образуются связанные состояния фотонов с поверхностными оптич. фононами, пла.э-монами и др. дипольно-активными квазичастицами, наз. поверхностными поляритонами. Анализ их характеристик лежит в основе одного из перспективных оптич. методов исследования П. Интенсивность комбинационного рассеяния света на молекулах, адсорбированных на металлах, в ряде случаев значительно выше (в 10 —10 раз), чем на тех же молекулах в объёмной фазе (гигантское комбинационное рассеяние). Это обусловлено усилением эл.-магн. поля геом. неоднородностями П., а также эфф. передачей энергии от поверхностных электронных возбуждений колебательным модам адсорбиров. молекул. При пересечении П. эаряш. частицами наблюдается эл.-магн. переходное излучение.  [c.654]

Переходная температура зависит от размера действительного зерна, микроструктуры, зональной ликвации углерода, серы, фосфора и ряда других факторов [122]. Особенно опасны ликвационные шнуры серы. Чем крупнее истинное зерно, чем сильнее ликвация серы, тем выше критическая температура перехода из вязкого состояния в хрупкое. Критическая температура перехода для каждой стали, при прочих равных условиях, повышается при переходе от периферии крупной поковки (ротора, вала) к центру так, например, критическая температура перехода от вязкого состояния в хрупкое для крупных заготовок из стали 35ХНЗМФА повышается, в центре заготовки на 30° С, у дисков со ступицей 600 мм и ободом 200 мм переходная температура у ступицы равна 38° С, а у обода 0°С, хотя исследования не обнаруживают разницы в микроструктуре обода и ступицы. Как правило, увеличение поперечных размеров детали, изготовленной из широко применяемых ныне сталей, отрицательно сказывается на уровне переходной температуры хрупкости (резко повышает ее).  [c.13]

При исследовании образования продольных транскристаллит-ных трещин в обогреваемых гибах труб, выполненных из перлитной стали, переходной зоны прямоточного котла было установлено [4], что трещины появляются в результате действия переменных температурных и компенсационных напряжений при неустойчивом фазовом состоянии пароводяной смеси и колебании температуры при пульсации потока. На рис. 9, б показан характер трещин, обнаруженных в нижней части гибов из стали 20 переходной зоны около нейтральной образующей после 15—-18 тыс. ч работы котла.  [c.17]

Характерным признаком электронной структуры аморфных сплавов типа металл — металл является расщепление rf-зоны, степень которого возрастает с увеличением числа rf-электронов. Результаты исследования аморфного сплава ueoZr o методом УФС указывают на то, что электронные состояния в нем и, следовательно, структура ближнего порядка близки к таковой в интерметаллиде Сиз2гз. Важные результаты получены при изучении комптоновского рассеяния. Так, оказалось, что представления о переходе части валентных электронов металлоида в 3d-30Hy атомов переходных металлов не оправдываются для сплавов системы Fe—В (В>15 /о).  [c.19]

Следующая группа переходных элементов—от натрия (2 = 39) до палладия z = 46) — находится в пятом периоде при незаполненном 4tf-ypoBHe электроны появляются на 5s-ypoB-не, В третьей группе переходных элементов — шестой период, от лантана (z = 57) до золота г = 79) — уровень 6s опускается ниже Ы. При этом наблюдается новая аномалия — внутри указанной группы переходных элементов располагается другая переходная группа—от церия (2=58) до иттербия г —70). Заполнение 5йГ-уровня этих элементов приостанавливается и начинает заполняться уровень 4f. Спектроскопическое исследование мягких рентгеновских лучей показало, что ns, пр и (п—1)й -уровни у этих элементов расширяются в перекрывающиеся полосы и, следовательно, электроны находятся в смешанных состояниях. С актиния z = 89) начинается новая переходная группа — уровень 7s ниже 6d. Здесь также имеется и внутренняя переходная группа, включающая элементы от тория (Z = 90) до Колумбия (z = 98) в этих элементах приостанавли-  [c.14]

Попутно решаются задачи конструкторско-технологического характера изучение термопрочности деталей, подбор оптимальных режимов охлаждения, оценка влияния теплофпзических характеристик материалов на распределение температур и напрял ений, а также исследование влияния на малоцикловую прочность концентрации напряжений, напряженного состояния, интенсивности переходных режимов и т. д., [75, 85, 100, 104].  [c.156]

В результате анализа особенностей термомеханического нагружения корпуса паровой турбины на стационарном и переходных периодах работы в эксплуатации, в том числе и на режимах ускоренных пусков и остановов, а также на базе предварительных исследований напряженно-деформированного состояния модели натурной детали с применением малобазных тензодатчиков (по выявлению наиболее напряженных зон), разработана схема размещения тензорезисторов и термопар на корпусе цилиндра высокого давления турбины (рис. 3.34). Использовали тензодатчики типа ТТБ и хромсль-алюмелевые термопары. В каждой точке, указанной на схеме (рис. 3.34), рядом с тензодатчиками (рабочим и компенсационным) монтировали, как правило, две термопары.  [c.172]

Группа работ [429,732—738] посвящена исследованию электронной структуры металлических кластеров методом Ха, позволяющим рассчитать диаграммы энергетических уровней раздельно для электронов с противоположными направлениями спинов, что, безусловно, представляет интерес при рассмотрении магнитных свойств кластеров. Кроме того, этот метод в сочетании с концепцией Слэтера о переходном состоянии описывает возбужденные электронные состояния и зарядовые распределения многоатомной системы, включая эффекты релаксации орбиталей, которые пренебрегаются при использовании теоремы Купменса.  [c.243]

В модели жесткого индентора, скользящего по поверхности упругопластичного полупространства, можно говорить о создании области сжимающих напряжений впереди индентора и зоны растягивающих — позади. Зарождение пластического течения связано с достижением критического значения максимальных сдвигающих напряжений. Еще в первых исследованиях напряженно-деформированного состояния подшипников качения было показано, что область максимальных сдвигающих напряжений в общем случае находится на некотором расстоянии от контактной поверхности. Аналогичный вывод справедлив для трения скольжения [89]. В известной задаче Герца при отсутствии трения на контактной поверхности глубина действия максимальных сдвигающих напряжений определяется соотнощением hxOJR. С увеличением коэффициента трения область максимальных сдвигающих напряжений приближается к контактной поверхности и выходит на нее при ц 0,2. Именно в этой области происходит наиболее интенсивная генерация дефектов и, в частности, развитие процессов отслаивания в пластичных металлах. В малопластичных высокопрочных материалах наиболее опасной оказывается область максимальных растягиваюнщх напряжений. Пределы прочности на растяжение и сжатие твердых сплавов, быстрорежущих сталей, керамических материалов, ряда тугоплавких соединений переходных металлов отличаются в несколько раз (табл. 1.1). Кроме того, напряжения растяжения облегчают проникновение в устье зарождающихся трещин атомов и молекул окружающей среды, препятствуя их последующему захлопьгванию и интенсифицируя разрушение материала.  [c.12]



Смотреть страницы где упоминается термин Состояние переходное — Исследование : [c.150]    [c.485]    [c.281]    [c.317]    [c.162]    [c.23]    [c.77]    [c.295]    [c.82]    [c.210]    [c.103]    [c.274]   
Разрушение Том5 Расчет конструкций на хрупкую прочность (1977) -- [ c.105 , c.106 ]



ПОИСК



1---переходные

Переходное состояние



© 2025 Mash-xxl.info Реклама на сайте