Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Высокотемпературное (а—-яу) -превращение

Следовательно, сплавы этой группы заканчивают высокотемпературные превращения образованием аустенита.  [c.66]

В композициях с тальком в результате высокотемпературных превращений образовывались три новые фазы метасиликат магния, ортосиликат магния и кремнезем.  [c.16]

ВЫСОКОТЕМПЕРАТУРНЫЕ ПРЕВРАЩЕНИЯ В ОРГАНОСИЛИКАТНЫХ ПОКРЫТИЯХ,  [c.206]

Таким образом, при электроимпульсном измельчении минералы, через которые проходит траектория канала разряда, подвергаются действию высоких температур и давлений и могут претерпевать различные высокотемпературные превращения. Это может быть причиной их воздействия на технологические свойства продукта и может существенно сказаться на технологическом процессе.  [c.208]


Высокотемпературные превращения минералов  [c.25]

Механизм и кинетика высокотемпературных превращений  [c.28]

Высокотемпературные превращения в ванне  [c.78]

Суи ествует высокотемпературная плазма. В недрах Солнца сжатая плазма имеет температуру свыше 10 ООО ООО К. Прн этой температуре атомные ядра сталкиваются с такой силон, что соединяются между собой. Происходят термоядерные реакции, приводящие к превращению водорода в гелий и выделению громадного количества энергии. Именно эта энергия, излучаемая Солнцем, н была до сего времени источником жизни.  [c.290]

К третьей группе относятся процессы нагрева металла выше температуры превращения с последующим быстрым охлаждением. Этот вид термообработки приводит к фиксации переохлажденного (или промежуточного) неустойчивого состояния и является закалкой. Закалку, фиксирующую при обычных температурах высокотемпературное состояние твердого раствора, называют истинной.  [c.111]

К четвертой группе относятся процессы нагрева закаленных сплавов ниже температуры превращения с последующими выдержкой и охлаждением для получения устойчивого состояния. Этот вид термообработки основан на процессах распада структур после закалки и является отпуском. Отпуск, протекающий в период выдержки при обычных температурах, называют старением. Закалку с высокотемпературным отпуском называют улучшением.  [c.111]

Следует иметь в виду, что по приведенным выше выражениям можно лишь ориентировочно определять температурные и кинетические параметры процесса превращения аусте-нита. Это связано с тем, что они не учитывают особенностей конкретной плавки стали заданного марочного состава, а вместе с этим и степени завершенности высокотемпературных процессов в аустените при сварочном нагреве. В зависимости от качества шихты, способа выплавки, качества раскисления, содержания неконтролируемых примесей, а также исходного структурного состояния стали эти параметры могут заметно изменяться. Недостаточно полная гомогенизация при сварочном нагреве, особенно связанная с замедленным растворением карбидов, приводит к повышению Т . и Т .к и увеличению вследствие уменьшения содержания углерода и легирующих элементов в аустените. Включения оксидов, нитридов, сульфидов увеличивают 41, укрупнение аустенитного зерна приводит к ее снижению. Более надежно в настоящее время определение упомянутых выше параметров экспериментальным способом путем построения и обработки диаграмм АРА.  [c.527]

Рис. 6.8.9. Распределение глубины превращения 4 для высокотемпературного режима зажигания в различные моменты времени 1 — т=200 Рис. 6.8.9. Распределение глубины превращения 4 для высокотемпературного режима зажигания в различные моменты времени 1 — т=200

СРЕДНЕТЕМПЕРАТУРНАЯ ( ТЕПЛАЯ ) ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ. Верхняя граница этой области — температура начала рекристаллизации. До этих температур основной механизм пластической деформации — внутризеренное скольжение. Характерные признаки для высокотемпературных механизмов деформации — диффузионные механизмы, межзеренное проскальзывание и т. д. — появляются обычно выше температуры начала рекристаллизации на 100—200°С (для стали). Увеличение скорости деформации смещает границу высокотемпературных механизмов в область более высоких температур, например для сталей обнаруживаются явные признаки высокотемпературных механизмов деформации при 500—600° С и 8=10 -f-10 с , в то время как при е=10 - 10 2 с эта граница смещается до 1000° С. Высокотемпературная деформация молибдена начинается с 1000° С при е=10- -н10- с-, а при е= = 10 с эта температура повышается до 1200° С. Особенно заметно повышение пластичности в диапазоне температур теплой деформации для металлов с о. ц. к. решеткой повышение скорости деформации приводит к ее снижению. Могут быть отклонения от этого правила для сплавов с г. п. у. и о. ц. к. решетками, что связано с наличием фазовых превращений.  [c.512]

Кроме рассмотренных ранее факторов, на структуру и свойства сплавов, испытывающих полиморфные превращения и подвергнутых ВТМО, существенное влияние оказывает наследование дефектов, созданных при горячей деформации высокотемпературной фазы (например, аустенита) низкотемпературной фазой (мартенсит-ной).  [c.545]

Рассмотрим результаты экспериментальных исследований фазовых переходов второго рода. На рис. 3.29, 3.30 представлены экспериментальные данные теплоемкости Ср некоторых ферромагнетиков (Со, Fe) Б области точки Кюри. Для того чтобы зафиксировать значение теплоемкости в непосредственной близости к точке перехода внутри узкой флуктуационной области, необходимо проводить измерения с очень малым температурным шагом. Во многих случаях это условие очень трудно выполнить. Поэтому результаты измерений являются достоверными только на некотором удалении (доли градуса) от точки перехода. При анализе экспериментальных данных обращают на себя внимание два обстоятельства. Во-первых, скачки теплоемкости не выражены резко, поэтому изменение Ср имеет квазинепрерывный характер при прохождении точки фазового превращения. Во-вторых, обнаруживается сходство кривых, выражающих температурную зависимость Ср при фазовых переходах второго и первого рода (во всяком случае для области перехода от низкотемпературной к высокотемпературной фазе.) Это сходство особенно наглядно проявляется, если рассматривать не самую величину теплоемкости, а ее прирост в области фазового пс-ре.хода. В полулогарифмических координатах In Т Аср, [/Т экспериментально определенные точки в области фазовых переходов как второго, так и первого рода при Т Т образуют прямую линию. Причем тангенс угла наклона этой прямой практически равен —Elk, где Е — энергия образования вакансий. Таким образом, в реальном кристалле  [c.256]

В учебном пособии рассматривается упрощенная диаграмма Fe- без высокотемпературного участка перитектического превращения (рис. 29).  [c.43]

Высокотемпературная хрупкость объясняется полиморфным превращением белого тетрагонального олова в хрупкое ромбическое при 161 °С [1]. Однако такого превращения нет хрупкость вызвана примесями, содержащимися в этом олове.  [c.57]

Пластичность никеля при 20 С хорошо известна и не вызывает сомнений, тогда как данные о высокотемпературной пластичности у различных авторов (А. А. Пресняков и др) отличаются. Красноломкость никеля при 900—1000 °С объясняется развитием полиморфных превращений, связанных с процессами упорядочения изотопов с атомной массой 58. 60, 61, 62. 64 [1].  [c.154]

Так же, как и высокотемпературная термомеханическая обработка (ВТМО) сталей (см. гл. III), данный способ упрочнения основывается на сохранении в материале такого структурного состояния, которое возникло при пластической деформации в области высоких температур. Однако, в отличие от ВТМО, данный способ не связан с обязательным фазовым превращением (например, мартенситным в случае закаливающихся сталей) и может быть осуществлен на материалах, не претерпевающих фазового перехода при охлаждении (аустенитные стали, некоторые жаропрочные сплавы, чистые металлы и др.). Применяемое в этом случае для сохранения полученного структурного состояния быстрое охлаждение от высоких температур (закалка) предназначается для предотвращения развития рекристаллизации в наклепанном материале через зарождение и рост новых зерен [70], а не для фиксации полученной дислокационной структуры в новой фазе.  [c.44]


Вопрос износостойкости металлорежущего инструмента — один из основных в области металлообработки. Исследованию закономерностей его изнашивания, физике процессов, определяющих интенсивность износа, влиянию на износ различных факторов и в первую очередь режимов резания, выбору рациональной геометрии инструмента посвящена обширная литература [110]. В зоне резания протекают разнообразные процессы, такие как пластическая деформация поверхностного и срезаемого слоя, возникновение высокотемпературных зон, адгезионные процессы (образование нароста), фазовые превращения и др.  [c.316]

Загрязнение и коррозию поверхностей нагрева не всегда определяет высокое содержание минерального вещества в топливе, определяющую роль часто играет именно его химико-минералоги- -ческий состав. Физико-химические свойства золы и шлака как определяющий фактор в процессах загрязнения и высокотемпературной коррозии поверхностей нагрева формируются в ходе превращений минеральной части топлива при горении. Следователь-, но, химико-минералогический состав минерального вещества топлива как исходного является основой процессов, происходящих с ним в топочном процессе.  [c.5]

Основные характеристики кинетики высокотемпературной коррозии сталей в условиях сжигания эстонских сланцев получены при изучении этих процессов под влиянием летучей золы. Для установления характеристик коррозионной стойкости сталей под влиянием сланцевой золы с учетом особенностей ее превращения в продуктах сгорания топлива в Таллинском политехническом институте разработана соответствующая методика [110, 128].  [c.134]

Изучение высокотемпературных превращений в композициях полиорганосилоксан—хризотиловый асбест (тальк) в сравнении с превращениями асбеста и талька позволило установить, что кремнеземистый продукт термодеструкции полимера принимает участие в происходящих твердофазовых реакциях, не изменяя качественно состава новых фаз, но влияя на относительное их содержание повышает количество стеклофазы, и оказывает стимулирующее воздействие на кристаллизацию новой фазы главным образом в тех случаях, когда зародыши таковой уже присутствовали в композиции. В композиции полиорганосилоксан— каолин продукт термодеструкции полиорганосилоксана также оказывает стимулирующее влияние на кристаллизацию основной фазы — мулита.  [c.16]

Данное сообщение относится к серии работ [1—3], посвященных изучению высокотемпературных превращений в органосиликатных модельных композициях с продуктом предварительной термообработки хризотилового асбеста (ППТХА 700 °С, 5 ч) как силикатной составляющей материала в исходном состоянии. Выбор диоксидов титана, циркония и гафния в качестве оксидных компонентов сделан, исходя из двух соображений. С одной стороны, первые два применяются при изготовлении промышленных и опытных марок органосиликатных материалов (OGM), а вся триада образована переходными металлами, входящими в побочную подгруппу IV группы Периодической системы элементов. С другой стороны, гафний непосредственно следует за лантаноидами, и поэтому сопоставительное исследование композиций, содержащих НЮа и оксиды редких земель, может представить интерес для выяснения влияния заполнения 4/-орбитапей на свойства OGM.  [c.206]

Эмиссионная электронная микроскопия в режиме термоэмиссии позволяет изучать высокотемпературные превращения в структуре массивных образцов, что невозможно сделать с помощью просвечивающего микроскопа (Прим. ред.).  [c.19]

Свободная энергия а-железа (Fea) меньше свободной энергии 7-железа (Fey) при температурах ниже 911% и выше 1392°С. В интервале 911 — 1392°С меньшей свободной энергией обладает гранецентрированная упаковка атомов железа. Вот почему при нагреве при 91 ГС происходит а—>-7-превращение, а при 1392°С 7 а-1превращение2. Высокотемпературная модификация а-железа (иногда называемая 6-железом) не представляет собой новой аллотропической формы.  [c.162]

Наличие у бериллия полиморфного превращения, обнаруженного недавно (Вср имеет кубическую решетку, температура а р-превращ еиия I250° J, позволяет надеяться иа возможность использования термической обработки (фазовой перекристаллизации) для улучшения свойств. Высокотемпературная Р фаза пластична, но переохладить ее до комнатион температуры не удается ни легированием, ни быстрым охлаждением.  [c.601]

Высокий отпуск ( низкий отжиг- ). После горячей механической обработки сталь чаще имеет мелкое зерно и удовлетворительную микроструктуру, поэтому не требуется фазовой перекристаллизации (отжига). Но вследствие ускоренного охлаждения после прокатки или другой горячей обработки легированные стали имеют неравновесную структуру сорбит, троостит, бейпит или мартенсит и, как следствие этого, высокую твердость. Для снижения твердости на металлургических заводах сортовой прокат нодвергакгг высокому отпуску при 650—680°С (несколько ниже точки Л,). При нагреве до указанных температур происходят процессы распада маргеисита и (или) бейнита, коагуляция карбидов в троостите и в итоге снижается твердость. Углеродистые стали подвергают высокому отпуску в тех случаях, когда они предназначаются для обработки ре , апием, холодной высадки или волочения. После высокотемпературного отпуска доэвтектоидная сталь лучше обрабатывается резанием, чем после полного отжига, когда структура — обособленные участки феррита и перлита. Структурно свободный феррит налипает на кромку инструмента, ухудшает качество поверхности изделия, снижает теплоотдачу, и поэтому снижает скорость резания и стойкость п г-струмента. Для высоколегированных сталей, у которых практически не отмечается перлитного превращения (см. рис. 118, в), высокий отпуск является единственной термической обработкой, позволяющей понизить их твердость.  [c.198]

Кристаллизация сплава IX (менее 0,1% С) происходит без перитек-тической реакции в интервале /—2 и заканчивается образованием б-феррита, т. е. твердого раствора С в высокотемпературной модификации Fes. В интервале 2—3 происходит охлаждение б-феррита. На участке 3—4 феррит превращается в аустенит, состав которого изменяется по участку 3 —4 (линии NJ). Кривая охлаждения характеризуется двумя перегибами при кристаллизации и при б->Л превращении (двухфазное равновесие).  [c.65]


В этих примерах возможность применения равновесных моделей основана на больших скоростях химических процессов и процессов переноса массы и энергии в газах при высоких температурах. Это же справедливо и для многих других областей высокотемпературной химии, где наблюдаются быстрые релаксационные процессы. Но границы использования термодинамических моделей существенно шире, так как для установления равновесия важны не абсолютные значения скоростей релаксации, а лишь их отношения к скоростям изменения свойств в наблюдаемом процессе (см. (4.5)). Геохимические превращения, например, происходят при сравнительно низких температурах, и в них участвуют твердые тела, поэтому массообмен значительно более медленный, чем в газах или, скажем, в ме-1аллургических расплавах. Однако время существования геологических систем исчисляется миллионами лет, поэтому при описании их эволюции также можно рассчитывать на пригодность термодинамического приближения. По данным об элементном составе породы термодинамика позволяет предсказать ее наибо-  [c.167]

Проанализированы и обобщены результаты исбледований физических свойств структурно-неустойчивых сверхпроводящих соединений. Изложены особенности нестабильных решеток высокотемпературных сверхпроводящих соединений, их низкотемпературного превращения и связанного с ним изменения критических параметров сверхпроводимости, атомного упорядочения. Рассмотрены вопросы легирования, отклонения от стехиометрического состава и воздействия радиации на неустойчивость решетки и на сверхпроводящие свойства различных соединений.  [c.48]

При ТМО сталей наблюдается весьма сложное взаимодействие процессов пластической деформации и фазового превращения. Известно, что при пластической деформации в области стабильного аустенита (выше точки Асз) зерна аустенита дробятся на более мелкие и процесс блокообразования протекает более интенсивно. Последующая закалка, при которой температура стали быстро снижается ниже температуры рекристаллизации (чем предотвращается развитие собирательной рекристаллизации), позволяет сохранить блочную структуру деформированного аустенита до начала мартенситного превращения, которое протекает в пределах блочной структуры аустенита. Чем мельче будут получаемые при высокотемпературной деформации блоки в аустените, тем более дисперсной окажется структура мартенсита. Это и понятно, так как в тонкой структуре аустенита с нарушенным строением кристаллической решетки в областях границ блоков имеется большое число центров, энергетически выгодных для образования зародышей кристаллов мартенсита, а это предопределяет развитие тонких мартенситных пластинок. Превращение аустенита в мартенсит сопровождается дальнейшим измельчением областей когерентного рассеивания внутри кристаллов мартенсита до 10 — 10- см [19].  [c.15]


Смотреть страницы где упоминается термин Высокотемпературное (а—-яу) -превращение : [c.523]    [c.224]    [c.105]    [c.29]    [c.77]    [c.29]    [c.4]    [c.224]    [c.328]    [c.534]    [c.239]    [c.48]    [c.9]    [c.245]    [c.483]   
Смотреть главы в:

Магнитотвердые материалы  -> Высокотемпературное (а—-яу) -превращение



ПОИСК



Высокотемпературная ТЦО

Превращение



© 2025 Mash-xxl.info Реклама на сайте