Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Релаксации эффекты

При статической нагрузке концентрация напряжений зависит главным образом от пластичности материала и для пластичных материалов относительно невелика.. При повышении напряжений материал в зоне ослабления приходит в состояние текучести образуется пластический шарнир, способствующий передаче усилий на смежные, Менее напряженные, участки и вызывающий релаксацию напряжений. У высокопластичных материалов условиях статической нагрузки кз близок к 1, т. е. концентрации напряжений не происходит. У хрупких материалов выравнивающий эффект локальной пластической деформации отсутствует и коэффициент концентрации к > I.  [c.299]


Некоторые особенности эффекта Керра в жидкости. Следует остановиться на особенности эффекта Керра в жидкостях. При включении внешнего электрического поля искусственная анизотропия жидкости не исчезает мгновенно. Требуется определенное время, так называемое время релаксации, зависящее от структуры данной жидкосги, для того, чтобы анизотропная жидкость снова перешла б изотропное состояние, т. е. повернутые диполи под  [c.291]

Отметим, что мгновенные процессы нагружения или деформирования трудно осуществимы на практике н в реальных опытах для нагружения образца до заданного уровня (или е ) затрачивается некоторое время Опыт показывает [14], что кривые ползучести в этом случае не будут совпадать ни при каких t с кривыми ползучести при том же с, достигнутом за другое время. Исключение составляет лишь случай ограниченной ползучести. Такой же эффект наблюдается и для процессов релаксации. Из приведенных выше экспериментальных кривых видно, что при одном и том же уровне напряжений ст, достигнутых за различное время, кривые установившейся ползучести идут параллельно друг другу вплоть до разрушения образца. То же относится и к процессам релаксации.  [c.227]

Исходя из наследственной теории вязкоупругости, опишем наблюдаемые процессы эффекта необратимости в одноосном случае и рассмотрим, как из наблюдаемых в опыте кривых ползучести получить кривые ползучести при ступенчатых нагружениях. Напомним, что в дальнейшем понадобятся функции П (/) = е (/)/а, для которых По = / , и функции модуля релаксации R(t) = = o t)lBi,, такие, что R 0) = E, где f —модуль упругости.  [c.229]

Можно пренебречь временными эффектами — ползучестью, релаксацией такие процессы и теории пластического деформирования называются склерономными.  [c.264]

Явления, приводящие к отступлению от закона Ома в сильных электрических полях, можно разделить на две группы. К первой относятся явления, изменяющие время релаксации, а следовательно, подвижность носителей. Это разогрев электронного газа и эффект Ганна. Вторая группа явлений, в которую входят ударная ионизация и эффект Зинера, вызывает изменение концентрации носителей.  [c.256]

Она может немного отличаться от подвижности, определяемой по удельной проводимости, так как время релаксации т входит в теории эффекта Холла и проводимости несколько различным образом.  [c.261]

СОМ и Пауэллом [132] свидетельствуют о том, что при 160° К в кристалле имеет место полиморфное превращение в недавних экспериментах Б лини (неопубликованная работа) есть указания на то, что ниже этой температуры симметрия является более низкой, чем кубическая. Исследования еще не закончены, но вполне возможно, что правильная интерпретация данных по парамагнитному резонансу приведет к более высокому значению параметра расщепления. Отличие от значения, полученного из экспериментов по размагничиванию и релаксации, которое, возможно, еще останется, должно быть отнесено за счет небольшого эффекта обменного взаимодействия (по-видимому, анизотропного обменного взаимодействия), поскольку в противном случае должно появиться заметное Н (см. и. 32), что не было обнаружено экснериментально.  [c.473]


При наличии столкновений уравнение (3.62) дополняется членом, описывающим эффект столкновений в виде силы трения, пропорциональной разности волновых векторов начального и конечного состояний и обратно пропорциональной времени релаксации X (приближение времени релаксации). В этом случае  [c.89]

Здесь рассматриваются также задачи и вопросы, связанные с учетом неравновесности физико-химических превращений на скачках уплотнения и определением эффектов релаксации.  [c.99]

Другой сопровождающий выбивание эффект состоит в том, что-смещающийся атом перед остановкой (когда сечение взаимодействия-с другими атомами резко возрастает) может передать свою энергию сразу большому числу атомов, В результате большое количество атомов покидает свои места в решетке. Это явление называется пиком смещения. Возникновение пика смещения с последующей его-релаксацией приводит к сильному перемешиванию атомов. В ре-зультате уничтожаются многие точечные дефекты, но возникают более сложные дефекты, например, дислокационные петли.  [c.653]

Эффект рассеяния может быть различным для различных процессов переноса, в частности для электропроводности и теплопроводности. Это связано с тем, что, например, электрон-фононное рассеяние, не сопровождающееся изменением импульса и заряда, не оказывает влияния на значение электросопротивления. Однако электрон-фононное рассеяние оказывает влияние на теплопроводность, так как вызывает изменение энергии. Фонон-фононное рассеяние с сохранением импульса не влияет на теплопроводность, так как при этом энергия не меняется. Таким образом, времена релаксации для процессов электропроводности и теплопроводности в общем случае имеют разное значение.  [c.457]

Следует отметить, что при заданной напряженности электрического поля активная мощность, выделяющаяся в диэлектрике, пропорциональна произведению шб" и монотонно растет с увеличением частоты. Поэтому нет оснований рекомендовать частоту релаксации в качестве оптимальной частоты для нагрева диэлектриков. Нагрев протекает тем интенсивнее, чем выше частота, и верхний предел частоты ограничен только эффектом возникновения стоячих волн (см. 9-1).  [c.150]

Теория магнитострикционных напряжений. Если ферромагнитный материал намагничивать при высокой температуре в процессе отжига, то напряжения, возникающие при магнитострикционной деформации, будут сниматься в результате пластического течения вещества или процесса релаксации. Намагничивание эффективно только для сплавов, точка Кюри которых выше 450—500° С охлаждение в магнитном поле нужно производить медленно. Однако эта теория не применима к монокристаллам, в которых нет противодействий изменению его внешней формы. По этой теории термомагнитная обработка должна быть эффективна для всех материалов, включая чистые металлы, у которых Xs O. Эта теория предсказывает максимальный эффект для материалов с наибольшей магнитострикцией kg. В то же время, наибольший эффект при термомагнитной обработке получен у сплава железа с 6,5% Si, когда Xg = 0.  [c.155]

Результаты и методы теории упругости не всегда достаточны для оценки прочности конструкций и для разрешения многих важных практических вопросов. На практике часто требуется уметь учитывать механические и тепловые свойства твердых тел, связанные с нелинейной упругостью, электродинамическими эффектами и с термодинамической необратимостью процессов деформирования, требуется рассматривать пластичность, ползучесть и релаксацию, усталость и т. д. Для учета и описания подобных явлений необходимо вводить другие теоретические модели сплошных сред.  [c.410]

Так же как и для рассмотренного выше случая обратимых тепловых эффектов, это влияние факторов окружающей среды и старения можно учесть при помощи переходных проводимостей в общем случае и функций ползучести и релаксации в частности, а также при помощи модификации выражения обусловленной напряжением деформации при тепловом расширении или сжатии. Например, осевая деформация при одноосном напряженном состоянии в общем случае дается уравнением (38), если функция определяется на образцах с учетом всех факторов.  [c.129]


Поведение ЖК в структурах фП — ЖК полностью о еделя-ется параметрами приложенного электрического поля. Поэтому здесь справедливы выводы, которые получены из рассмотрения в 2.4 электрооптических эффектов в 1чК- Для используемого типа ЖК время включения оптического отклика монотонно у.мень-шается с увеличением скачка управляющего напряжения (а следовательно, II интенсивности возбуждающего излучения), а также имеет минимум в зависимости от напряжения В то же время скорость релаксации эффектов в ЖК пракгически не зависит от интенсивности (скачка напряжения). Она растет с уменьшением толщины слоя ЖК и увеличением  [c.159]

Коэффициент 2/з выражает уменьшение роли неодинаковых спинов в релаксации (эффект /2). Из (VII 1.156) видно, что график зависимости /(а) = = 1/т]Г1 должен быть прямой линией, пересекаюп1 ей ось ординат в точке /(0) = R i T )w Как видно из фиг. 45, зависимость ИцТ действительно представляется прямой линией, которую можно экстраполировать до значения а = О и найти К = 0,056+0,010. Ошибки эксперимента и неопределенности в предположениях, сделанных при получении (VIII.156), к сожалению, слишком велики, чтобы можно было говорить об убедительном объяснении эффекта /2.  [c.306]

Магниторезистивный эффект — увеличение сопротивления металлического образца, помещаемого в магнитное поле,— описывается довольно сложной теорией. Магниторезистивный эффект будет наблюдаться в том случае [1], когда поверхность Ферми несферична, и особенно когда она содержит вклады электронов и дырок или электронов из двух зон. Если существуют два типа носителей, имеющие различный заряд, массу или время релаксации, то магнитное поле будет влиять на них по-разному. Соответственно будет изменяться и полная проводимость, представляющая собой векторную сумму двух компонентов. Этот механизм приводит к появлению поперечного магниторезисторного эффекта, который примерно пропорционален квадрату напряженности магнитного поля Я, а в сильных полях приходит к насыщению. Особый случай представляет металл, у которого различные типы носителей имеют одинаковое время релаксации. Тогда изменение сопротивления Ар под действием магнитного поля можно записать в виде  [c.250]

Источник света (конденсированная искра) и конденсатор питаются од ювремеино от одного источника. При определенном для данного источника света значении напряжения между электродами происходит разрядка конденсатора. В зависимости от расположения зеркал и 5., можно выбрать такой путь света от источника U до образца между обкладками конденсатора, при котором исчезает эффект Керра. Это означает, что время распространения света на этом пути равно времени релаксации. Опыты показывают, что длина этого пути равна 400 см, т. е. т 10 с. При таком процессе не учитывалось время пробоя газа. Более точное вычисление с учетом времени пробоя газа дает т 10" с. Это позволяет использовать ячейку Керза в качестве оптического затвора.  [c.291]

Наиболее, важной особенностью эффекта Керра, обусловившей широкое его применение, является весьма малая инерционность. Это свойство ячейки Керра проверялось в остроумных опытах (схема опытов изображена на рис. 3.11), а в последующем детально исследовалось в большом количеспве экспериментов. Источник света (конденсированная искра) и конденсатор Керра получают напряжение от одного источника тока. Как только произошел пробой газа между электродами (искра) и возник связанный с этим пробоем импульс света, начинает постепенно исчезать эффект Керра, что вызвано релаксацией дипольных моментов. молекул. Системой зеркал можно удлинить путь от источника света до ячейки Керра. Опыты показали, что, пока свет проходит расстояние 400 см, все следы двойного лучепреломления успевают исчезнуть. Отсюда была найдена инерционность процесса, характеризуемая средним временем х 10 с. В последующих прецизионных опытах было учтено время пробоя газа и была установлена еще меньшая инерционность эффекта (г Г 10 с). Таким образом, открылась возможность создания практически безынерционного оптического затвора и тем самым были заложены основы физики очень быстрых процессов ( нано-секундная техника 1 не = 10 с).. За последнее время эта техника приобрела особое значение в связи с возможностью получения очень больших мощностей светового потока в лазерах. Действительно, если возбудить в твердотельном лазере импульс света с энергией 10 Дж и продолжительностью 10" с, то мощность такого импульса составит 10 кВт. Если же с помощью какого-либо быстродействующего устройства (например, ячейки Керра) заставить высветиться эту систему за время порядка 10 с, то мощность импульса составит уже 1 ГВт. Такие гигантские импульс обладают некоторыми совершенно новыми физическими свойствами. Использование подобных сверхмощных световых потоков играет большую роль в области бурно развивающейся нелинейной оптики, а также при решении различных технических задач.  [c.123]

V и gradit Е зависят от функции (к) интегралы (13.13) и (13.14) изменят(5Я даже, если оставить постоянным, и, во-вторых, изменится время релаксации. Мы не будем касаться первого. эффекта, так как он одинаков для элек-тро- и теплопроводности и равен нулю в соотношениях (15.2)—(15.4), а остановимся лишь на изменении -с. Если время релаксации определяется вертикальным движением (как в случае теплового сопротивления при низких температурах), то i зависит только от локальных свойств поверхности Ферми и сравнительно нечувствительно к ее форме. Если же время релаксации определяется горизонтальной многоступенчатой диффузией (как в случае электрического сопротивления р, при низких температурах), то оно будет сильно зависеть от формы поверхности Ферми.  [c.270]


В принципе теплопроводность можно рассчитать на основе (18.5) точно так же, как она получалась из соотношения (13.7) в п. 13. Практически проводимость была получена из соотношения (18.4) только в случае сферической симметрии, когда однозонная структура не дает изменения электрического и теплового сопротивлений, а приводит только к эффекту Холла. В обшем случае можно показать, что гальвано-магнитный эффект равен нулю, если все состояния на поверхности Ферми имеют одинаковое время релаксации. Следовательно, нужно использовать более сложную зонную модель. Единственным случаем, для которого был получен гальвано-магнитный эффект, является случай двух перекрывающихся зон, каждая из которых сферически симметр гана.  [c.277]

Третья релаксация. В 1948 г. де-Вриер и Гортер [77] открыли новое релаксационное явление. Оно было обнаружено в некоторых хромовых квасцах в магнитных полях, меньших 600 эрстед при частотах порядка 10 сеж причем постоянная релаксации не зависела от температуры. При высоких температурах этот эффект перекрывается спин-решеточной релаксацией, рассмотренной в п. 12, но в области температур жидкого водорода и гелия.оба явления разделены, так как область решеточной релаксации смещается в сторону меньших частот. Возможно, что существует связь между упомянутой третьей релаксацией и некоторыми аномалиями р.  [c.404]

При более высоких температурах, где но наблюдается эффектов релаксации и гистерезиса, у" практически равно нулю. В этой области температур удается произвести около двадцати отсчетов в минуту. При болеи низких температурах, когда одинаково существенны как у , так и у ", мост балансируется относительно обеих компонент, которые являются функциями температуры, а следовательно (в продолжение периода отогрева), п функциями времени. В этом случае балансирование моста требует неко-  [c.456]

Введение. Самым поразительным в магнитном поведении солей, используемых для адиабатического размагничивания, является наличие максимума воснриимчивости. Ниже этого максимума расположена область температур, в которой наблюдаются унче упоминавшиеся эффекты релаксации и гистерезиса. Явления в этой области температур очень сходны с явлениями ферромагнетизма и антиферромагнетизма ири более высоких температурах. При температурах выше максимума восприимчивости такие явления не встречаются и соль ведет себя как парамагнетик.  [c.460]

В области существования гистерезисных явлений у" отлично от нуля, что может быть частично связано с самими гистерезпсными эффектами. Тот факт, что у" не является величиной, не зависящей от частоты, как это должно было бы быть в случае чисто гистерезисных потерь, доказывает существенную роль релаксации. Однако вне области гистерезисных явлений релаксационные эффекты быстро уменьшаются. Это следует как из малости величины у", так и из отсутствия двойных отклонений при баллистических измерениях (см. п. 24). В области температур, близких к максимуму восприимчивости, теплоемкость всех парамагнитных солей обнаруживает быстрый рост.  [c.517]

Хотя поведение как у, так и у" свидетельствует о наличии релаксационных эффектов, однако оказалось невозможным описать все эти явления введениелг только одного времени релаксацип. Время релаксации, определенное из баллистических измерений, имеет порядок 10 сек, тогда как из измерений на постоянном токе вытекает, что эти времена меньше 10 сек.  [c.528]

Время скоростной мсжфазной релаксацни. Как бз дет показано ниже, в волновых, вибрационных и других динамических процессах в газовзвесях определяющими обычно являются двухскоростные эффекты из-за отпосительпого движения фаз, характеризуемого их силовым взаимодействием. Для оценки роли этих эффектов и возможности использования для расчетов только что описанных предельных схем имеет смысл ввести характерное время выравнивания (релаксации) скоростей фаз, исходя из уравнения движения частицы в однородном потоке несущей фазы,  [c.99]

В процессах ударноволнового нагружения (во всяком случае, на начальном этане) при давлениях порядка 1 — 10 ГПа играют роль кинетические, или релаксационные эффекты перехода упругих деформаций в пластические, которые иногда называют эффектами запаздывания текучести. Процессы перехода упругих деформаций в пластические и обратно, вообще говоря, могут рассматриваться как фазовые переходы 2-го рода, когда в точке равновесия фаз (в данном случае в точке Гюгоиио па ударной адиабате) меняется сжимаемость или модуль сопротивления сдвигу, но пе величины внутренней энергии и плотности, как в случае фазовых переходов 1-го рода. Модели, учитывающие релаксацию во времени упругих деформации в пластические (в отличие от упругопластических схем типа (1.10.19)), должны включать дополнительные независимые параметры и дифференциальное уравнение кинетики релаксации упругих деформаций. Это  [c.148]

Микроструктурная оценка 8, d и N в опытах дает значения е = 1 4%, несравненно более низкие, чем общая пластическая деформация до разрущения. Таким образом, вклад деформации двойникованием в общий уровень пластичности поликристалла оказывается небольшим, несмотря на то, что, кроме концентрации напряжений в местах нагромождения дислокации на различных препятствиях (например, в местах пересечения полос скольжения), благоприятствующих процессу двойникования, в поликристалле создается дополнительная концентрация напряжений, облегчающая двойникование тем больше, чем больше величина зерна. Снижение температуры и повышение скорости деформации приводят к уменьшению эстафетного скольжения, затрудняя релаксацию напряжений и, следовательно, способствуя развитию двойникования. Как показывают расчеты и эксперимент, вклад двойникования при деформации монокристалла существенно ниже, чем предсказываемый по формулам (85) и (149). Подобно тому, как уменьшение величины зерна приводит к снижению концентрации напряжений и, как следствие этого, не достигаются значительные по величине напряжения старта двойникового источника Од= д.у/6 ( д,у=1,4-10-2 мДж/см2 — энергия дефекта упаковки для железа и ад—2000 МПа), можно утверждать, что в результате раздробления исходного зерна поликристалла на фрагменты , ограниченные каркасом из двойниковых пластин, возникает (В. И. Трефилов с сотр.) своеобразный эффект само-  [c.245]

Работа современных конструкций и сооружений, имеющих трещинообразные дефекты, часто протекает в условиях многократного статического и циклического нагружения и вибрационных нагрузок. При рассмотрении такого рода явлений важно выяснить влияние чисто инерционного эффекта па распространение трещин. Если внешняя нагрузка приложена не на берегах разреза, то ее воздействие на трещину передается пенолностью из-за релаксации напряжений и осуществляется с некоторым запаздыванием по времени. Поэтому при рассмотрении, например, задач об установившихся колебаниях для тел, содержащих трещины, будем задавать нагрузку пеносредственно па берегах разреза.  [c.426]

Дипольно-релаксационная ориентационная) поляризация определяется поворотом и ориентацией диполей в направлении поля и свя-зана с тепловым движением частиц. Дипольные молекулы, находящиеся в хаотическом тепловом движении, ориентируются в направлении действующего внешнего электрического поля, создавая эффект поляризации диэлектрика. При снятии внешнего электрического поля поляризация нарушается беспорядочным тепловым движением молекул. Диполи приобретают самое разнообразное положение в пространстве, и эффект полярного их расположения исчезает. Время установления и нарушения поляризации определяется временем релаксацит дипольных молекул.  [c.7]


Миллимикродеформацию можно исследовать с применением специально конструируемого нестандартного оборудования или с помощью метода ямок травления . Необходимо иметь в виду, что выбор метода измерения деформаций должен определяться уровнем измеряемой величины, так как при завышенной чувствительности метода на результат исследования микропластичности могут накладываться дополнительные эффекты, возникающие в области нелинейной упругости (релаксация, упругое последействие и др.).  [c.39]

Процесс пластического течения в кристалле осуществляется эстафетным механизмом в результате возникновения механического поля вихревой природы. Механическое поле в кристалле распространяется в виде волн смещений и поворотов. Поэтому в кристалле в любые, произвольно выбранные моменты времени могут существовать места разрядки, где полностью прошла релаксация напряжений от внешнего источника, и места с наиболее ярко протекающими процессами пластической деформации. Там, где сдвиг заторможен, и там, где активно реализуется деформация, возникает эффект взаимодействия зон с разным градиентом накопленных дефектов. Это приводит к возникновению мод вращения объемов материала и фрагментированию кристалла на малые объемы. Границы возникающих областей служат зонами заторможенного сдвига, где возникает наибольшая плотность дефектов. В этих областях происходит самоорганизованный процесс аккомодации энергии из условия сохранения сплошности. Эстафетное распространение деформации характеризуется тем, что любой сдвиг сопровождается эффектом поворота.  [c.143]

Выявленная последовательность сигналов АЭ отражает известную последовательность процессов деформации и разрушения материала, которые реализуются в вершине распространяющейся усталостной трещины [91, 143, 144]. Они связаны с формированием скосов от пластической деформации у поверхности образца и созданием мезотун-нелей вдоль фронта трещины с последующим разрушением перемычек между ними (см. рис. 3.19). Развитие скосов от пластической деформации происходит преимущественно путем сдвиговой деформации, и раскрытие части фронта трещины в области у поверхности образца определяется модами III + I. Это наиболее простой способ поглощения и релаксации энергии деформации и разрушения. Этот процесс наиболее активен в момент раскрытия и закрытия берегов трещины, поэтому на этих этапах восходящей и нисходящей ветвей нагрузки сигналы от ротаций объемом материала незаметны. Разрушение перемычек между мезотуннелями при регулярном одноосном нагружении также связано р модами III+I, что, в свою рчередь, соответствует локализованным процессам деформации ц разрушения, р которых ротационные эффекты едва заметны.  [c.173]

Приближение к указанной критической частоте со нагружения по мере ее возрастания сопровождается противоположными процессами по своему влиянию на рост трещин. С возрастанием частоты материал не успевает в полной мере релакси-ровать поступающую энергию к кончику трещины за счет процессов пластической деформации в связи с приближением к скорости движения дислокаций и избыток поступающей энергии будет релак-сирован за счет создания свободной поверхности квазихрупко. Движение трещины в момент ее скачкообразного подрастания в цикле нагружения не будет заторможено за счет пластической релаксации, и поэтому ее скорость будет близка к скорости распространения статической, хрупкой трещины при монотонном растяжении материала. Следует ожидать влияние на скорость роста трещины охрупчивания материала из-за резкого снижения возможности пластической релаксации поступающей энергии по мере нарастания частоты нафуже-ния в две стадии. Первоначально возрастание частоты нагружения приводит к снижению размера зоны пластической деформации при прочих равных условиях, что и объясняет основной эффект ее влияния на снижение скорости роста трещины [1]. Результаты выполненных испытаний жаропрочного сплава In 718 на образцах толщиной И мм при нафе-ве до температуры 923 К и асимметрии цикла 0,1 приведены на рис. 7.1. Чередование частот приложения нафузки приводит к тому, что взаимное влияние условий роста трещины при плоской деформации и плосконапряженном состоянии снижает скорость роста трещины при низкой частоте нафуже-ния по сравнению с монотонным процессом неизменно низкочастотного нафужения.  [c.341]


Смотреть страницы где упоминается термин Релаксации эффекты : [c.23]    [c.306]    [c.8]    [c.291]    [c.28]    [c.89]    [c.310]    [c.407]    [c.441]    [c.441]    [c.516]    [c.816]    [c.320]    [c.376]   
Линейные и нелинейные волны (0) -- [ c.152 , c.345 ]



ПОИСК



Время релаксации анизотропии и время инерции эффекта Керра Новый метод определения релаксации анизотропии

Релаксация

Сопоставление времени релаксации анизотропии, найденного из рассеяния света и из инерции эффекта Керра

Эффекты релаксации в газах

Эффекты релаксации в ударных волнах



© 2025 Mash-xxl.info Реклама на сайте