Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Образование соединений ванадия

ОБРАЗОВАНИЕ СОЕДИНЕНИЙ ВАНАДИЯ  [c.35]

Изложены результаты исследования термодинамических свойств неорганических материалов — энергии Гиббса, энтальпии и энтропии образования соединении ванадия, хрома и марганца с р-элементами и закономерности их изменения в связи с положением компонентов в периодической системе элементов. Обобщены данные экспериментальных исследований и закономерности фазовых равновесий и строения диаграмм состояния в рядах систем редкоземельных металлов с германием титана и циркония в бинарных и тройных системах с тугоплавкими платиновыми металлами, тройных систем переходных металлов, в которых образуются фазы Лавеса, и тройных систем переходных металлов, содержащих тугоплавкие карбиды. Приводятся примеры использования полученных результатов при разработке новых материалов.  [c.247]


ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ ОБРАЗОВАНИЯ СОЕДИНЕНИЙ ВАНАДИЯ И ЩЕЛОЧНЫХ МЕТАЛЛОВ  [c.39]

Также необходимо отметить, что коррозионное воздействие компонентов отложений золы на металл связано с их фазовым состоянием. При сжигании твердых топлив наиболее коррозионно-активными компонентами в продуктах сгорания являются щелочные хлориды и сульфаты. Что касается серы, то содержащиеся в продуктах сгорания ее оксиды на высокотемпературную коррозию поверхностей нагрева непосредственно мало влияют. Воздействие SO2 и SO3 на коррозию сталей происходит преимущественно за счет процессов образования коррозионно-активных щелочных соединений (в основном, комплексных — и пиросульфатов). На коррозию поверхностей нагрева мазутных котлов наибольшим образом влияют комплексные соединения ванадия и щелочных металлов, а также сульфаты.  [c.67]

Кроме того, особенности состава золы жидкого топлива (большое относительное содержание соединений ванадия) способствуют образованию SO3 за счет катализирующего действия этих веществ.  [c.19]

Взаимодействия РЗМ с другими металлами имеют различный характер в зависимости от места, занимаемого в периодической системе элементов. При этом может иметь место несмешиваемость РЗМ с другими веществами в жидком состоянии (например, с ванадием, ниобием, танталом), образование соединений и значительных по протяженности твердых растворов.  [c.150]

Обогреваемые трубы пароперегревателей подвергаются газовой коррозии не только с внутренней, но и с внешней стороны. Окисление внешних поверхностей труб пароперегревателей происходит под действием окислов серы, соединений ванадия (для котлов, работающих на сернистых мазутах), кислорода, которые содержатся в топочных газах. На выходе из пароперегревателя средняя температура перегретого пара у большинства современных котлов составляет 540—585 °С. Из-за неравномерности распределения тепловых нагрузок температура пара в отдельных змеевиках может повышаться до 600—620 °С, а температура стенки — до 625—640 °С. В таких условиях наблюдается усиление газовой коррозии труб пароперегревателей из легированных сталей перлитного класса одновременно как с внутренней, так и с внешней стороны. Когда толщина окисной пленки возрастает, в ней увеличиваются внутренние напряжения, что в сочетании с термическими приводит к механическому разрушению окисной пленки. Отделившиеся от стенки твердые частицы окалины или уносятся потоком перегретого пара, или постепенно забивают трубу, а оголенная поверхность металла снова окисляется с образованием новой пленки.  [c.54]


Толстые окисные пленки препятствуют образованию соединения, разделяя взаимодействующие металлы. Например, при напылении ванадия на полированный образец из никеля прочное соединение возникает ул<е при 20°С. Однако если такой образец предварительно выдержать в течение 1—3 мин на воздухе при 400—500° С, а затем охладить до 20° С, то при последующем напылении привариванию частиц мешает толстая пленка N10. При напылении на медь толстая окисная пленка появляется после нагрева выше 100—150° С. Для обеспечения малой толщины окисных слоев напыление при повышенных температурах (выше 100—200° С) производили в среде аргона. Принципиальные опыты по определению энергии активации процесса выполняли на серебре, от-  [c.143]

Подбирая соответствующие составы стали (легированная элементами, задерживающими разупрочнение кремнием, молибденом, ванадием и др.) и режимы сварки, можно уменьшить глубину и ширину зоны разупрочнения, но ее образование неизбежно и это следует учитывать при оценке прочности сварных соединений.  [c.399]

Для точного определения карбидов ванадия рекомендовано много способов химического анализа. Карбид V можно рассматривать как насыщенное соединение. Он склонен к образованию дефектной решетки. Содержание углерода при одном и том же типе кристаллической решетки может изменяться от 11 до 19% вблизи стехио-метрического состава. Поэтому при химическом анализе карбидов в ванадиевых сталях находят всегда карбид который  [c.137]

Нагрев металлической подложки с целью повышения прочности связи покрытия должен проводиться с учетом возможности окисления металла. Например, при напылении ванадия на никель прочное соединение получается уже при комнатной температуре. Нагрев же никеля на воздухе до температуры 400—500 С в течение 1—3 мин приводит к образованию пленки закиси никеля, препятствующей образованию покрытия [53].  [c.169]

Вторым основным коррозионно-активным агентом золы мазутов является сульфат натрия. Его воздействие на металлы, как указывалось выше, приводит к ускоренной коррозии с образованием на поверхности металла слоя оксидов и сульфидов, вследствие чего коррозия этого вида получила название сульфидно-оксидной [81. Скорость сульфидно-оксидной коррозии существенно возрастает при повышении концентрации SO3. Имеются экспериментальные подтверждения того, что в смеси оксида ванадия(У) и сульфата натрия скорость коррозии значительно больше, чем в каждом из этих соединений в отдельности. Часто об агрессивности нефтяного топлива и его золовых отложений судят по отношению содержания в них ванадия и натрия. Опыты показали рост скорости коррозии сталей и никелевых сплавов в широком интервале увеличения отношения V/Na. Коррозионное воздействие среды достигает максимума при V/Na = 13/1, что отвечает  [c.228]

Трещины в тройниковых соединениях могли образоваться в процессе изготовления на заводе под влиянием остаточных напряжений и снижения температуры или продолжительности отпуска, приводящего к резкому охрупчиванию околошовной зоны вследствие выпадения мелкодисперсных карбидов ванадия в теле зерна. Образованию трещин способствовала высокая прочность и низкая деформационная способность металла труб, отливок и поковок, что привело к снижению сопротивляемости развитию трещин. В зоне появления трещин имелись концентраторы напряжений технологического и конструктивного происхождения.  [c.202]

Хотя в мазуте содержится в 100—300 раз меньше золы, чем в твердом топливе, поверхности нагрева мазутных котлов очень быстро заносятся из-за образования легкоплавких соединений. Большие осложнения вызывает наличие пятиокиси ванадия в золовых отложениях мазутов. Кроме образования расплавов с низкой температурой плавления, пятиокись ванадия ускоряет коррозию еще и потому, что она служит катализатором в реакции окисления железа. С этим явлением впервые столкнулись при сжигании мазутов в газовых турбинах, в которых температура проточной части выше температуры поверхностей иагрева котлов.  [c.323]


Другой особенностью сварных соединений разнородных сталей является возможность образования в зоне сплавления разнородных материалов переходных прослоек, вызванных диффузией углерода. Этот процесс реактивной диффузии, изученной достаточно подробно [43], [44], обусловлен разностью термодинамических активностей контактирующихся материалов, главным образом из-за разного содержания в них энергичных карбидообразующих элементов и прежде всего хрома, ванадия, ниобия и других.  [c.47]

Для конструкционных низколегированных сталей повышенной прочности и в первую очередь сталей, легированных ванадием, а также титаном и ниобием, слабым участком сварного соединения, в котором возможны хрупкие разрушения при комнатной температуре, может являться, кроме шва, околошовная зона. В этом участке, как будет показано ниже, возможно также образование трещин при термической обработке, что облегчает развитие хрупких разрушений при комнатной температуре. Характерно, что этот вид хрупкости в ряде случаев не устраняется про-  [c.86]

При увеличении содержания ванадия растут предел текучести (конструкционные стали) твердость (мелкодисперсные износостойкие карбиды) устойчивость против разупрочнения при отпуске свариваемость (высокопрочные строительные стали) способность к глубокой вытяжке (при образовании мелкозернистой структуры) устойчивость против старения (высокое сродство к углероду и азоту, которые связываются в прочные соединения) устойчивость против перегрева.  [c.46]

В процессе горения топлива возможно образование оксида ванадия. Зола с V2O5 попадает на поверхность стальных деталей и способствует повышению скорости окисления стали. Явление получило название ванадиевой коррозии. Причина ванадиевой коррозии заключается в легкоплавкости V2O5 и способности растворять железо и оксидные пленки на железе с образованием соединений ванадия  [c.58]

Механизм коррозии под действием ванадия и натрия привлекает большое внимание. Кислород, образующийся в расплаве Х/гО , предлагалось рассматривать в качестве коррозионно-активного агента. Предлагались различные механизмы для объяснения коррозионного воздействия на поверхность металла сульфата натрия. Классическим методом ингибирования коррозионной активности расплавов V2O5 и NajS04 является образование соединений ванадия с высокой температурой плавления, а также  [c.153]

Существует и теория, по которой соединения ванадия в процессе коррозии металла играют каталитическую роль при окислении диоксида серы в триоксид. Эта теория основывается на результатах исследований, которые показали возможность существования при наличии в среде SO2 жидких фаз системы V2O5—Na2S04 в интервале температур 470—650 °С. Из-за превращения SO2 в SO3 возникают условия образования пиросульфата натрия, который, как известно, является коррозионно-агрессивным соединением. С одновременным образованием Na2So07 протекает и следующая реакция  [c.86]

Окисел ванадия VOj имеет структуру рутила (TiOj) [8] и обладает сильной полосой поглощения [15] в области 300—600 нм, т. е. примерно там же, где и М0О3. Предполагается также, что соединения гомологичного ряда У 0зп-1 (4 > п > 8) также имеют структуру рутила [8]. Поэтому и для обнаружения образования окислов ванадия на границе раздела пленка — подложка целесообразно было выбрать область спектра 350—580 нм..  [c.20]

При сжигании жидких топлив коррозия и загрязнение поверхностен нагрева тесно связаны друг с другом. С одной стороны, образование главного коррозионного агента ЗОз из SOo в газах в значительной степени является результатом каталитического воздействия отложений (главным образом соединений ванадия), с другой — наличие 80з приводит и к разъеданиям новерхно-стей нагрева и образованию сульфатов, способствующих нарастанию отлощеиия, а также к изменению свойств прилипшей золы. Поэтому ряд приемов, применяемых для борьбы с этими явлениями, одновременно направлен на снижение коррозии и загрязнений. По этой причине и рассматривать эти процессы приходится совместно.  [c.107]

При проведении обширных исследовании образования соединений тория с титаном, ванадием, хромом, цирконием, ниобием, гафнием и ураном не наблюдалось. Твердые растворы в металлическом тории обнаружены в очень ограниченном количестве систем. Компактный торий обладает некоторой растворимостью ио отношению к углероду, гафнию и урану и значителыюй растворимостью по отношению к цирконию, церию и лаитану.  [c.811]

Никель и молибден практически не окисляются при дуговой сварке. Угар вольфрама относительно невелик в условиях сварки под флюсом и электрошлаковой сварки (переход его из проволоки в сварочную ванну составляет обычно 90— 95%). При сварке в СО а или в газовых смесях, а также при сварке открытой дугой угар вольфрама более высокий. Это, например, проявляется в образовании трудно удалимой окисной пленки на поверхности сварною шва в случае сварки в углекислом газе (см. гл. VI). Ванадий окисляется в еще большей степени, чем вольфрам. Если переход вольфрама в шов достигает 90—95%, усвоение ванадия сварочной ванной не превышает 80—85%. При сварке под низкокремнистым флюсом окисление ванадия сопровождается образованием соединений типа шпинелей (Ме О-МегОз), прочно сцепляющихся с поверхностью сварного шва (см. рис.Л24). Подобным образом ведет себя и ниобий, хотя окисляется он менее энергично, чем ванада й.  [c.76]

Ванадий. В сплавах железа с ванадием последним обогаше-ны внутрбккке слон, прилегаюшие к металлу, тогда, как в наружных слоях его обнаруживается мало [116, 446, 729] вследствие сравнительно большой свободной энергии образования окислов ванадия и малой скорости диффузии его ионов. Ванадий не способен улучшать сопротивление сталей окислению [446, 773]. Наоборот, как наблюдал Бандель [747], добавка ванадия в количестве 4,4% вызывала при 1100° С образование на поверхности сталей цветов побежалости. Фактически легкоплавкая пятиокись ванадия, как это показано несколько дальше, принадлежит к числу самых худших соединений, вызывающих катастрофическое окисление.  [c.332]


По характеру взаимодействия компонентов описанные системы разделяются на три связанных между собой группы. Первая группа — система с V, вторая — системы с N5 и Та и третья — системы с Мо, У и в меньшей степени с Сг. Первую и вторую группу характеризуют образование изоструктурных окислов иМеОв+х и иМезОю+а и монотонное уменьшение в ряду V—МЬ—Та стабилизирующего действия пятиокиси соответствующего металла на и +. Вторую и третью группу объединяют такие особенности, как существование бинарных разрезов двуокись урана — высший окисел металла и образование химических соединений, в которые входит и +. Общность первой и третьей групп проявляется в образовании соединений, в которые уран входит в шестивалентном состоянии, и, кроме того, в некоторых системах этой группы разрез иОг—МеОг носит небинарный характер и компоненты его участвуют в окислительно-восстановительных реакциях и четырехфазных равновесиях (перитектическое превращение в системе с вольфрамом и взаимная система в случае ванадия).  [c.289]

Сварка стальными электродами применяется ограниченно ввиду трудности получения сварного соединения без отбеливания и образования трещин. Такой способ сварки применяют для заварки дефектов отливок и ремонта чугунных деталей неответственного назначения. Лучщие результаты достигаются при использовании электродов марки ЦЧ-4 с карбидообразующими элементами в покрытии, в частности до 70 % ванадия. Ванадий, поступающий в шов, связывает углерод основного металла в мелкодисперсные карбиды ванадия, в результате чего структура шва получается ферритной с включением карбидов ванадия, которого в шве оказывается 9—10%. Углерод шва, таким образом, не влияет на образование цементита, так как почти целиком используется для образования карбида ванадия, и отбеливания не происходит. Возможна обработка режущим инструментом.  [c.244]

МПа. В соединении не обнаруживается интерметаллидных фаз даже после длительного нагрева при высокой температуре (1000 °С в течение 10 ч). Слой меди при сварке предотвращает образование карбидов ванадия, охрупчивающих соединения. В соединении ванадий - медь легкоплавкие соединения и интерметаллиды не образуются. Соединения, выролненные через комбинированные прокладки меди (толщина 0,01 мм) и ванадия (0,07 мм), дают предел прочности 489... 503 МПа при 450 °С, удельную вязкость 350 кДж/м , угол загиба 50... 60°.  [c.193]

Следует, однако, заметить, что определение поверхностной концентрации компонентов можно выполнить легко и довольно точно лишь для двух- и трехкомпонентных систем. Расчет адсорбции и поверхностной концентрации элементов для сложных многокомпонентных систем, какими являются стали, представляет значительную трудность. Это связано с тем, что наличие одного компонента в расплаве может заметно изменить капиллярную активность других компонентов. Например, известно, что наличие кислорода -в расплаве повышает поверщостную активность ванадия [120] и фосфора, присутствие углерода — активность серы [121] и марганца [122], а азота — углерода, кремния и никеля [25]. Эти изменения поверхностной активности компонентов связаны [123] с образованием соединений в поверхностном слое и бывают тем заметнее, чем сильнее различаются атомы по величине электроотрицательности. Величина поверхностного натяжения расплавов в этом случае зачастую не подчиняется аддитивному действию присутствующих примесей.  [c.83]

В некоторых газовых турбинах, где температура впуска была 650° С, продукт взаимодействия У2О8 и ЫааЗО был жидким и в результате наблюдалась сильная коррозия от воздействия частиц золы. Ниже температуры плавления или смягчения золы на сталях в этих условиях наблюдается небольшое повреждение. Это относится к сплавам на медной основе (как например, алюминиевая бронза с 9% алюминия), они хуже ведут себя при более низких температурах это заставляет предположить, что в эксплуатации могут возникать и другие явления. В исследованиях некоторых лабораторий было указано, что соединения ванадия могут иногда увеличивать окисление различных сплавов при температурах, которые слишком низки, чтобы вызвать образование жидкой фазы. Возможно, что присутствие ванадия в окалине повышает число дефектов в решетке в соответствии с правилом Хауффе (стр. 63) ванадий и молибден обычно будут влиять на валентность сильнее, чем главная составляющая окалины.  [c.79]

Эвтектическая смесь оксидов еще больше снижает температуру плавления. Если в нефти, содержащей ванадий, присутствуют соединения серы или натрия, то благодаря катализирующему влиянию V2O5 на реакцию окисления SO в SO3 образуется содержащая N82804 и различные оксиды окалина, температура плавления которой всего 500 °С. Положительное действие оказывает добавление в нефть кальциевых и магниевых мыл, порошкообразного доломита или магния — они повышают температуру плавления золы вследствие образования СаО (<пл = 2570 °С) или MgO ( пл =2800°С). Катастрофического окисления можно также избежать, работая при температурах ниже точки плавления оксидов. Сплавы, содержащие большое количество никеля, устойчивее вследствие высокой температуры плавления NiO (1990 °С).  [c.201]

Формирование всех свойств титановых сплавов определяется главным образом фазовым составом и структурой. Например, молибден, ванадий, ниобий, тантал, называемые изоморфными 3-сга6илизаторами, с0-фаэой титана образуют непрерывный ряд твердых растворов и во всем интервале концентраций фазовый состав сплавов (в отожженном состоянии) может быть представлен лишь двумя фазами <а и (3). Подавляющее большинство других элементов (а- и (3-стабилизаторов) образуют с титаном интерметаллические соединения (как правило, бертоллидного типа). При этом даже в области твердых растворов всегда могут быть созданы условия, при которых возможно образование предвыделений этих соединений, трудно выявляемых методами структурного анализа, но оказывающих исключительно сильное влияние на физические, электрохимические и механические свойства сплавов.  [c.12]

С помощью электрохимического способа отпечатков можно получить макроструктуру ряда металлов и сплавов, исключая вольфрам, ванадий и хром, которые пассивируются. Хруска [35] в качестве изолирующей подложки использует стеклянную пластину., На нее кладут металлическую пластину (катод), которая в данном электролите нейтральна, например алюминий при исследовании стального шлифа. На катод кладут фильтровальную бумагу, с помощью которой электролит (раствор соляной кислоты) подводят к образцу. Затем прижимают образец, который соединен с положительным полюсом батареи, поверхностью шлифа к бумаге и прикладывают подобранное напряжение (0,1—6 В). Возникает эффект электрохимического отпечатка, во время которого ионы электролита образуют с ионами испытываемого металла окрашиваемый осадок. А. Глазунов [36] для обнаружения никеля в железных сплавах рекомендует в качестве электролита спиртовый раствор диметилглиоксима и уксусной кислоты. Уже при содержании в сплаве 1% Ni отпечаток вследствие образования диметилглиоксима никеля четко окрашивается в красный цвет.  [c.39]

Повьниение коррозионной стойкости ванадия при легировании ниобием, танталом и другими, но не титаном, элементами, по-видимому, связано с образованием устойчивых окислов легирующих элементов. Вместо неустойчивого, рыхлого окисла VjOj при этом образуется, вероятно, более плотный окисел, представляющий собой твердый раствор на базе этого соединения — типа (V, Nb) 2 Os или (V, Та) 2 Oj.  [c.66]

Адгезия к окислам металлов и металлических пленок, осажденных на окисную подложку, во многом определяется образованием химических соединений [3], в частности окислов [5, 10, 12L При исследовании тонких пленок молибдена и ванадия, напыленных на подложки SiOj и AlaOg, необходимо обратить внимание на возможность обнаружения на межфазной границе пленка — подложка окислов молибдена и ванадия соответственно. Однако в то время как металл обладает максимально возможным коэффициентом поглощения К Ю —10 смг ) в очень широкой области спектра от жесткого ультрафиолета и до радиоволн включительно, окислы в широких спектральных участках обладают значительно меньшим коэффициентом поглощения [14]. Поэтому сравнительно небольшие по интенсивности полосы поглощения окислов практически невозможно обнаружить на фоне мощного поглощения чистого металла. Лишь в определенных участках спектра, в которых начинаются собственные поглощения, обусловленные междузонными переходами, величина поглощения окисла может в какой-то мере приближаться к коэффициенту поглощения металла. Для обнаружения окислов молибдена и ванадия по оптическому пропусканию тонких пленок, напыленных на окисные подложки, необходимо было выбрать такой спектральный интервал, в котором происходит резкое изменение величины коэффициента поглощения окисла молибдена или ванадия) от сравнительно небольших значений до значений, близких к их металлическому поглощению. Только в этом случае можно обнаружить характерные спектральные изменения пропускания, которые будут указывать на наличие того или иного окисла. Так как при высоких температурах, начиная с 800° С и выше, стабильны только  [c.19]


Этот экспериментальный факт, по-видимому, можно объяснить тем, что адгезия пленок молибдена к графиту больше, чем на окисных подложках и, следовательно, сплошность пленки должна наступить при меньшей общей толщине пленки. По-видимому, также нужно учитывать, что при взаимодействии молибдена с графитом образуется карбид молибдена, смачивающийся металлом гораздо лучше, чем окисные соединения молибдена. В системе С — Мо — Sn (Гоп = 900° С) критическая толщина равна, как и в системе С — Мо — Си (Топ = 1150° С), 200 А. Это можно объяснить тем, что уже при температуре 900° С взаимодействие пленки с подложкой настолько велико, что дальнейшее повышение температуры до 1150° С не очень сказывается на структуре пленки. Если взаимодействие пленки с подложкой сильное, то продукты реакции смачиваются хуже, чем металл пленки, критическая толщина сдвигается в сторону больших толщин.Так, в системе С — Fe — РЬ критическая толщина при температуре опыта 700° С составляет 1000 А, а в системе С — V — Sn (Топ = 900 " С) сч> 700 А. Эти данные соответствуют времени отжига пленок не больше 5 мин. При отжиге больше 5 мин получаются нестабильные результаты и критическая толщина сдвигается еще больше в сторону увеличения толщины пленки. Действительно, убыль свободной энергии AF при образовании карбидов молибдена Жо С и карбида железа Feg приблизительно одинакова и равна 0,75 ккал моль (700° С) а для карбидов ванадия она значительно больше — 26,1 ккал1моль (900° С), что находится в хорошем соответствии с полученными данными по смачиванию.  [c.25]

Проведенные исследования позволили разработать новую хро-моникельмарганцевую жаропрочную сталь аустенитного класса, содержащую небольшое количество никеля [28 ]. Химический состав стали следующий 0,3—0,45% С, доО,35 % Si, 10,0—12,5% Сг, 11,5 -13,5% №, 6—11% Мп, 3,2 -4,2% А1, 1,4—2,0% V. Высокая жаропрочность разработанной стали связана с образованием гетерогенной структуры С мелкодисперсным выделением двух упрочняющих фаз интерметаллического соединения NiAl.H карбидов ванадия. Присутствие этих фаз в стали установлено рентгеноструктурным фазовым анализом. Исследовали микроструктуру и прочностные свойства стали после различных режимов термической ебработки. Образцы были изготовлены -из проката трех опытных плавок стали (№ 1, 2, 3, табл. 47). Изучалось влияние температуры и времени выдержки при закалке и старении на твердость и длительную прочность стали.  [c.171]

Примеси щелочных и щелочноземельных металлов (К, Na, Са и др.) способствуют резкому повышению пористости алюминиевых отливок. Наличие кремния и магния также вызывает увеличение пористости алюминия, тогда как добавки меди, марганца, ниобия, никеля, железа, хрома, циркония и ванадия уменьшают ее. Это необходи. ю учитывать в технологии фасонного литья из алюминиевых сплавов. При обычиых условиях плавки алюминиевых сплавов сера и ее соединения уходят в шлак и практически не оказывают вредного влияния в смысле образования пористости или шлаковых включений в отливках.  [c.242]

Сварка используется для соединения элементов конструкций, имеющих самую различную толщину. При сварке тонких сечений материала мало, и если он имеет склонность к возникновению остаточных напряжений, то наблюдающиеся дефекты являются в основном дефектами сварки при сварке толстых сечений наиболее серьезными дефектами являются трещины которые непосредственно вызываются напряжением, возникающим при объемных изменениях, в частности, в зоне термического влияния. В предельном случае сварки за один проход соединение можно получить без использования присадочного металла. В последнее время максимальное сечение, которое могло быть сварено газовой сваркой, было значительно увеличено в результате разработки и внедрения электронно-лучевой сварки, которая позволяет получить локальную зону проплавления глубиной порядка нескольких сантиметров. При соответствующем материале и отсутствии газовыделения электронно-лучевая сварка является прогрессивным процессом, однако для ее осуществления необходимо либо иметь сварочную камеру, которую можно было бы вакууми-ровать, либо обеспечить вакуум в точке сварки. Хотя, в принципе желательно, чтобы сварное соединение обладало такими же свойствами, как основной металл, на практике это не всегда возможно, и поэтому во многих случаях используют сварку с присадочным металлом, который менее склонен к образованию трещин. Примерами применяемых при сварке присадочных металлов, которые отличаются по составу от основного металла, являются сталь с 2,25% Сг и 1% Мо для сварки 0,5% Сг, Мо, V сталей сталь с контролируемым содержанпем феррита для сварки аусте-нитных сталей и специальные электроды типа In o А для никелевых сплавов. Много попыток было сделано, чтобы разработать электроды для 0,5% Сг, Мо, V сталей, однако наплавленный металл этого состава имел очень низкую пластичность и, кроме того, приобретал высокое сопротивление деформации при выпадении карбида ванадия, повышающего склонность к образованию  [c.72]

В работе [X] приведена часть диаграммы состояния S-V, в которой имеет место эвтектическое превращение при 1312 °С между V и VS. Эту часть диаграммы состояния нельзя считать правильной, так как она не учитывает образование более богатых ванадием соединений V5S4 и V3S.  [c.221]

В работе Уманского [140] эти представления распространены на весь класс фаз внедрения. Имеет место аддитивность кристаллической структуры и физических свойств. Все металлы, образующие класс соединений, являются переходными, а неме таллы обладают близкими значениями потенциала ионизации 21,7-10 ( йс (13,54 эб) для водорода, 23-lQ- дж (14,47 эв) для азота, 18-10 дж (11,24 эв) для углерода. Тепловой эффект — экзотермический, причем он тем больше, чем менее заполнена с -подгруппа металлического атома. У карбидов и нитридов циркония и титана — элементов IV группы — эффект больше, чем у карбидов и нитридов тантала н ванадия — элементов V группы. Реакция образования карбидов молибдена и вольфрама МогС и W является эндотермической. При пропускании тока через-стальную проволоку при 1070 С скорость диффузии углерода в направлении тока (от анода к катоду) больше, что указывает на положительную ионизацию атомов углерода, подобно атому водорода в PdH.  [c.168]

Ванадий принадлежит к числу наиболее энергичных фер-ритообразователей. Он весьма ощутительно повышает стойкость сварных швов аустенитных сталей против образования горячих трещин. Следует подчеркнуть, что положительное действие ванадия объясняется не только увеличением количества S-фазы и повышением ее качественных показателей, но и измельчением первичной структуры швов, а также заметным обессериванием сварочной ванны. В отличие от кремния, алюминия, титана, ниобия, способных вызывать горячие трещины в высоконикелевых швах, ванадий во всех случаях действует положительно, повышая стойкость швов против горячих трещин. Это объясняется отсутствием эвтектических соединений в системах Fe—V, Ni—V, r—V. При повышенном содержании углерода в шве в принципе возможно образование комплексных эвтектик ледебуритного типа. Однако нам не удалось установить отрицательного действия ванадия при высоком содержании углерода, чего, к сожалению, нельзя сказать о таких карбидообразователях, как титан, ниобий, вольфрам и, по-видимому, цирконий.  [c.206]

Кислород может вызывать горячие трещины при сварке аустенитных сталей. Его действие на первичную структуру, как указывалось, связано с окислением ферритообразующих элементов (титана, алюминия, кремния, ванадия, хрома) и находится в противодействии измельчающему влиянию азота. Изменения структуры, обусловленные действием кислорода, приводят к снижению стойкости шва против трещин. Кислород, по-видимому, способен сегрегировать в межкристаллических прослойках и изменять их состав и свойства. Усиление вредного влияния серы, ниобия и других элементов при сварке под флюсами с высоким содержанием SiOj, возможно, связано с образованием соответствующих соединений с кислородом, снижающих температуру затвердевания межкристаллических прослоек. Опыты по введению в зону сварки ржавчины, окалины и газообразного кислорода свидетельствуют о его способности вызывать горячие трещины в швах.  [c.216]


Смотреть страницы где упоминается термин Образование соединений ванадия : [c.179]    [c.452]    [c.811]    [c.492]    [c.229]    [c.248]   
Смотреть главы в:

Коррозия и износ поверхностей нагрева котлов  -> Образование соединений ванадия



ПОИСК



Ванадий 273, 275, ЗСО

Ванадит

Образование соединений

Основные закономерности образования соединений ванадия и щелочных металлов



© 2025 Mash-xxl.info Реклама на сайте