Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия металлов электрохимическая

Природа агрессивной среды и протекающие при ее контакте с металлами реакции определяют характер процесса коррозии металлов электрохимический — в электролитах и химический — в сухих газах при высоких температурах или в жидких неэлектролитах.  [c.32]

По характеру протекания процесса разрушения (но не по его внешним признакам) различают два вида коррозии металлов — электрохимическую и химическую.  [c.4]


Возможность химических превращений должна учитываться как при оценке кинетики процессов коррозии, так и при выборе средств защиты от коррозии. Особенно это важно при решении вопросов защиты от коррозии металлов электрохимическими методами.  [c.25]

Электрохимическая коррозия является наиболее распространенным видом коррозии металлов. Электрохимическая коррозия представляет собой электрохимическую реакцию, состоящую из двух процессов — анодного и катодного. Поведение металлов, находящихся в электролите, зависит от значения их электродного потенциала. Если два разных металла находятся в электролите, то металл, имеющий более отрицательный электродный потенциал, (анод) отдает ионы в раствор и растворяется, а избыточные электроны перетекают в металл, имеющий более высокий электродный потенциал, (катод). Катод при этом не разрушается, а электроны из него удаляются во внешнюю среду. Чем ниже электродный потенциал металла, тем легче металл отдает ионы в раствор, тем ниже его коррозионная стойкость.  [c.210]

Коррозия является самопроизвольным процессом разрушения металлов в отличие от не называемого коррозией преднамеренного разрушения металлов при их растворении в кислотах (с целью получения солей), в гальванических элементах (с целью получения постоянного электрического тока), при анодном растворении в электролизерах (с целью последующего катодного осаждения металла из раствора) и т. п. Причина коррозии металлов — химическое или электрохимическое взаимодействие с окружающей средой — отграничивает коррозионные процессы от процессов радиоактивного распада металлов и от эрозии — механического разрушения металлов (при шлифовке металлов или износе трущихся деталей машин).  [c.8]

По механизму процесса различают химическую и электрохимическую коррозию металлов  [c.12]

Попадание в неэлектролиты воды значительно активирует действие примесей в неэлектролитах и вызывает, особенно в присутствии солей или кислот, интенсивное протекание электрохимической коррозии металлов (см. ч. И), т. е. изменяет механизм коррозионного процесса.  [c.142]

ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ МЕТАЛЛОВ  [c.148]

Мысль, о том, что механизм растворения (электрохимической коррозии) металлов принципиально отличается от механизма растворения солей, была впервые высказана М. В. Ломоносовым в 1750 г. на основании его исследований по растворению металлов в кислотах.  [c.148]


Электрохимическая коррозия металлов представляет собой самопроизвольное разрушение металлических материалов вследствие электрохимического взаимодействия их с окружающей электролитически проводящей средой, при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала металла.  [c.148]

Этот тип коррозии наиболее распространен. Он имеет место при взаимодействии металлов с жидкими электролитами (водой, водными растворами солей, кислот и щелочей, расплавленными солями и щелочами) и является гетерогенной электрохимической реакцией электролитов с металлами. Однако в принципе не исключена возможность и химической коррозии металлов в электролитах, при которой окисление металла и восстановление окислительного компонента (молекул или ионов) электролита происходят в одном акте, скорость которого не зависит от величины электродного потенциала металла, с образованием соединений и их последующим растворением.  [c.148]

Примерами электрохимической коррозии металлов являются ржавление различных металлических изделий и конструкций в атмосфере (металлических станков и оборудования заводов, стальных мостов, каркасов зданий, средств. транспорта и др.) коррозия наружной металлической обшивки судов в речной и морской воде ржавление стальных сооружений гидросооружений ржавление стальных трубопроводов в земле разрушение баков и аппаратов растворами кислот, солей и щелочей на химических и других заводах, коррозионные потери металла при кислотном травлении окалины коррозионные потери металлических деталей при нагревании их в расплавленных солях и щелочах и др.  [c.148]

Г лава 9 МЕХАНИЗМ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ МЕТАЛЛОВ  [c.180]

Первопричиной коррозии металлов, в том числе и электрохимической коррозии, является их термодинамическая неустойчивость. При взаимодействии с электролитами металлы самопроизвольно растворяются, переходя в более устойчивое окисленное (ионное) состояние. Большой теоретический и практический интерес представляет механизм этого саморастворения металлов, т. е. механизм коррозионного процесса, его основные закономерности, скорость протекания процесса и характер коррозионного разрушения.  [c.180]

Электрохимический механизм в виде протекающей с участием свободных электронов электрохимической реакции, при которой ионизация атомов металла [см. уравнение (271)] и восстановление окислительного компонента коррозионной среды [см. уравнение (326) ] проходят не в одном акте и их скорости зависят от величины электродного потенциала металла, имеет место в подавляющем большинстве случаев коррозии металлов в электролитах и является, таким образом преобладающим.  [c.181]

Возможность подразделения процесса растворения металлов в электролитах на два сопряженных процесса — анодный и катодный — облегчает в большинстве случаев его протекание по сравнению с химическим взаимодействием. При электрохимическом взаимодействии окислитель играет лишь роль деполяризатора, отнимающего валентные электроны металла и обеспечивающего переход металла в ионное состояние, но не вступает с ним при этом в химическое соединение [вторичные процессы и продукты коррозии при электрохимическом механизме коррозии металлов могут иметь место (см. с. 212), но они не обязательны].  [c.181]

ТЕРМОДИНАМИЧЕСКАЯ ВОЗМОЖНОСТЬ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ МЕТАЛЛОВ  [c.181]

Принципиальная возможность или невозможность самопроизвольного протекания процесса электрохимической коррозии металла, так же как и химической коррозии, определяется знаком изменения свободной энергии процесса. Возможно самопроизвольное протекание только коррозионных процессов, которое сопровождается убылью изобарно-изотермического потенциала, т. е. AGr < 0. При электрохимической коррозии металлов для расчетов более удобно пользоваться электрохимическими данными — электродными потенциалами. Термодинамически возможен процесс электрохимической коррозии, для которого соблюдается условие  [c.181]

Принципиальная возможность протекания процесса электрохимической коррозии металла определяется, таким образом, соотношением обратимого потенциала металла в данных условиях и обратимого потенциала катодного процесса в данных условиях.  [c.182]


ПРИ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ МЕТАЛЛОВ  [c.182]

Процесс катодной деполяризации электрохимической коррозии металлов может осуществляться  [c.182]

Наибольшее значение в большинстве конкретных случаев электрохимической коррозии металлов имеют катодные реакции (342) — кислородная деполяризация и (332) — водородная деполяризация (деполяризация водородными ионами).  [c.184]

В теории необратимых электродных потенциалов металлов А. Н. Фрумкина (см. с. 176), в которой сформулирован электрохимический механизм саморастворения (коррозии) металлов в электролитах, рассматривалось растворение металла с однородной (гомогенной) поверхностью, т. е. предполагалось, что скорость протекающих на поверхности электрохимических реакций одинакова на всех участках и что все точки поверхности обладают одним и тем же значением потенциала (т. е. что поверхность является строго эквипотенциальной). Автор этой теории считает, что такое допущение вполне законно для жидкого металла, например для поверхности ртути или амальгамного электрода, которая может служить образцом однород-. ной поверхности. Относительно  [c.185]

Согласно более ранней, имеющей почти полуторавековую историю, гетерогенной трактовке процессов электрохимической коррозии металлов (теории локальных элементов), участки анодной и катодной реакций пространственно разделены и для протекания коррозии необходим переток электронов в металле и ионов в электролите. Такое пространственное разделение анодной и катодной реакций энергетически более выгодно, так как они локализуются на тех участках, где их прохождение облегчено (энергия активации реакции меньше).  [c.186]

Современная теория электрохимической коррозии металлов не противопоставляет два пути (гомогенный и гетерогенный) проте--кания процесса, полагая, что соответствующие теоретические положения, основанные в обоих случаях на использовании электрохимической термодинамики и кинетики, дополняют друг друга, так как каждое из них имеет свои границы применения. В связи с этим попытки необъективной критики одной из этих теорий являются ненужными.  [c.188]

В большинстве случаев электрохимической коррозии металлов основными тормозящими явлениями, устанавливающими определенную конечную скорость ее, служат явления поляризации.  [c.192]

При электрохимической коррозии металлов наряду с первичными процессами возможно протекание вторичных процессов — взаимодействие первичных продуктов коррозии друг с другом или с электролитом и растворенными в нем га ми с образованием пленок вторичных трудно растворимых продуктов коррозии.  [c.213]

К орроэией металлов называют самопроизвольное разрушение металлических материалов вследствие химического или электрохимического взаимодействия их с окружающей средой. Под металлами здесь и в дальнейшем подразумеваются простые металлы и их сплавы, а также металлические изделия и конструкции. Средой, в которой происходит коррозия металлов, обычно бывают различные жидкости и газы.  [c.8]

А. Н. Фрумкин (1932 г ), Вагнер и Трауд (1938 г.). Я- В. Дурдин (1939 г.), А И. Шултин (1941) г.. Я- М. Колотыркин (1946 г.) и ряд других исследователей считают, что анодный и катодный процессы могут происходить на одном и том же участке металлической поверхности, чередуясь во времени. Этот гомогенный путь протекания электрохимической коррозии металлов вытекает из приведенной выше теории необратимых (стационарных) потенциалов металлов и может иметь преобладающее значение при растворении амальгам и особо чистых металлов.  [c.177]

Современная теория электрохимической коррозии металлов исходит из возможности протекания процесса как гомогенноэлектрохимическим, так и гетерогенно-электрохимическим путем  [c.184]

Причины возникновения электрохимической гет рогенности (неоднородности) поверхности раздела металл— Рис. 131. Схема пятиэлектрод- электролит при электрохимической "ескогГэТе е тГ° коррозии металлов приведены В таб-  [c.188]

Кинетику электродных процессов, в том числе и электродных процессов электрохимической коррозии металлов, принято изображать в виде поляризационных кривых, представляющих собой графическое изображение измеренной с помощью описанной в ч. III методики зависимости потенциалов электродов V от плотности тока i = I/S, т. е. V = f i). На рис. 136 приведены кривые анодной и катодной поляризации металла, характеризующие его поведение в качестве анода и катода коррозионного элемента. Степень наклона кривых характеризует большую (крутой ход) или малую (пологий ход) затруд-  [c.194]

Электродные процессы электрохимической коррозии металлов обязательно включают в себя, как всякий гетерогенный процесс, помимо электрохимической реакции, стадии массопереноса, осуществляемые диффузией или конвекцией отвод продукта анодного процесса (ионов металла) от места реакции — поверхности металла, перенос частиц деполяризатора катодного процесса к поверхности металла и отвод продуктов катодной деполяризацион-ной реакции от места реакции — поверхности металла в глубь раствора и т. п. Суммарная скорость гетерогенного процесса определяется торможениями его отдельных стадий. Если, однако, торможение одной из последовательных его стадий значительно больше других, то сумм.арная скорость процесса определяется в основном скоростью этой наиболее заторможенной стадии. В коррозионных процессах довольно часты случаи диффузионного или диффузионно-кинетического контроля, т. е. значительной заторможенности стадий массопереноса. В связи с этим диффузионная кинетика представляет теоретический и практический интерес.  [c.204]


Смотреть страницы где упоминается термин Коррозия металлов электрохимическая : [c.13]    [c.13]    [c.141]    [c.176]    [c.187]    [c.212]    [c.15]   
Теплоэнергетика и теплотехника Общие вопросы Книга1 (2000) -- [ c.344 ]



ПОИСК



Коррозия металлов

Металлы электрохимическая

Электрохимическая коррози

Электрохимическая коррозия

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте