Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозионный элемент

Рис. 130. Схема гальванических элементов а — обычный элемент б — модель коррозионного элемента в — коррозионный элемент А — анод К — катод е — электроны Рис. 130. Схема <a href="/info/6879">гальванических элементов</a> а — обычный элемент б — модель коррозионного элемента в — коррозионный элемент А — анод К — катод е — электроны

Аналитическую зависимость эффективного потенциала электрода от плотности тока V = / (г) можно получить только для простых случаев коррозии, в то время как поляризационные кривые (графическое изображение этой зависимости) можно получить опытным путем даже для наиболее сложных случаев коррозии, соответствующих практическим условиям работы коррозионных элементов.  [c.270]

Рис. 204. Схема измерения общего потенциала коррозионного элемента пленка -пора Рис. 204. <a href="/info/672388">Схема измерения</a> общего <a href="/info/589176">потенциала коррозионного</a> элемента пленка -пора
Выяснение ряда теоретических и практических вопросов коррозии часто проводят, исследуя работу модели коррозионного элемента. Распространению этого метода способствовали исследования Эванса, Г. В. Акимова и его школы. Модель микроэлемента представляет собой замкнутые металлическим проводником анод  [c.459]

Рис, 351. Схема установки для научения работы модели коррозионного элемента  [c.461]

Конкретная причина возникновения электрохимической гетерогенности и наиболее обычное распределение полюсов коррозионного элемента  [c.21]

ТИПЫ КОРРОЗИОННЫХ ЭЛЕМЕНТОВ  [c.28]

Все коррозионные элементы можно разделить на три группы  [c.28]

Примером коррозионных элементов второго типа может служить любая концентрационная цепь, в которой электроды из одного и того же металла погружены в растворы, содержащие одноименный электролит различных концентраций (С1>С2) Ме Ме А С ) Л1е Л (сг) Ме.  [c.28]

Особенно важен в практических условиях концентрационный кислородный элемент, т. е. элемент, в котором отдельные участки электролита отличаются между собой по концентрации растворенного в них кислорода. Причина образования коррозионного элемента неравномерной аэрации заключается в том, что потенциал кислородного электрода зависит от концентрации кислорода в растворе. С повышением концентрации кислорода потенциал кислородного электрода становится более положительным. Неравновесный электродный потенциал металлов также сильно  [c.28]

Типы коррозионных элементов  [c.29]

Возникновение коррозионных элементов происходит не только при контакте двух разнородных металлов, но и при воздействии раствора электролита на один и тот же металл, отличающийся на разных участках физической или химической неоднородностью. Весьма распространенными элементами этого типа являются также элементы, возникающие при взаимодействии электролитов с техническими металлами, при наличии в последних примесей, или с гетерогенными сплавами.  [c.30]


Причины возникновения электрохимической гетерогенности поверхности металла приведены в табл. 2. Наличие примесей и загрязнений в металлах, а также других неоднородностей обычно приводит к возникновению на границе металл — раствор многочисленных микроскопических коррозионных элементов, называемых микроэлементами. Э. д. с. таких элементов, даже небольшая, при хорошей электропроводности среды может привести к весьма значительной коррозии.  [c.30]

Измерение потенциалов электродов в условиях работы коррозионного элемента действительно показывает, что с увеличением плотности протекающего тока потенциал катода становится отрицательнее начального значения, а потенциал анода — положи-тельнее. Смещения потенциалов катода и анода обозначают через ЛЕк и АЕа и называют соответственно катодной и анодной поляризацией.  [c.31]

Уменьшение разности начальных значений потенциалов коррозионного элемента вследствие смещения потенциалов электродов при протекании тока, приводящее к уменьшению величины коррозионного тока и, следовательно, скорости коррозии, называется поляризацией.  [c.31]

Схема изменения разности потенциалов в коррозионном элементе прн его замыкании показана на рис. 12. На рис. 13 даны типичные кривые изменения потенциала анода и катода короткозамкнутого коррозионного элемента во времени.  [c.32]

Увеличение концентрации ионов металла в прианодной зоне электролита в 10 раз вызывает изменение потенциала на 59 мв для одновалентных или на 29 мв для двухвалентных металлов. Так как растворимость продуктов коррозии технических метал-.пов, особенно в нейтральных средах, невелика, то значительной концентрационной поляризации анода коррозионного элемента ожидать не приходится.  [c.34]

ГРАФИЧЕСКИЙ АНАЛИЗ РАБОТЫ КОРРОЗИОННОГО ЭЛЕМЕНТА  [c.52]

Только в случае коррозионных пар, имеющих достаточную большую протяженность (например, почвенная коррозия трубопроводов, коррозия под действием контакта в трубе и т. п.), приходится наряду с поляризационными характеристиками катода и анода учитывать также и омический фактор. Зная величину омического сопротивления коррозионных элементов, можно решать количественные вопросы о соотношении между торможением процесса коррозии омическим фактором и ранее рассмотренным анодным и катодным торможением, т. е. о соотношении между омическим, анодным и катодным контролем процесса.  [c.53]

Это уравнение показывает, что скорость электрохимической коррозии будет тем больше, чем больше начальная разность потенциалов (э. д. с.) коррозионного элемента, чем меньше сопротивление системы и чем меньше поляризуемости электродов.  [c.54]

Подземные металлические конструкции в грунте подвергаются прямому коррозионному воздействию грунта. Особенно сильное разрушение наблюдается в условиях совместного воздействия грунта и блуждающих токов. Наличие в грунте влаги способствует протеканию коррозии по электрохимическому механизму и возникновению коррозионных элементов.  [c.184]

Увеличение однородности грунта, непосредственно прилегающего к поверхности металлических конструкций, путем применения специальных засыпок предотвращает возникновение местных коррозионных элементов.  [c.196]

После замыкания коррозионного гальванического элемента (это можно себе представить мысленно) наблвдается уменьшение разности начальных значений потенциалов коррозионного элемента вследствие смещения потенциалов электродов(рис.14), Это приводит к уменьшение величины коррозионного тока и, следовательно, скорости коррозии.  [c.31]

Сточки зрения электрохимического механизма коррозии, термодинамическая возможность процесса может быть описана электродвижущей силой (э. д. с.) коррозионных элементов, суммарное действие которых и есть коррозионный процесс.  [c.30]

В водных растворах ртуть вначале ведет себя как ртутный электрод, но по мере катодной поляризации все ионы ртути осаждаются из раствора, прежде чем начинается разряд ионов Н+. Любая проводящая поверхность, на которой разряжаются ноны Н+, ведет себя как поляризованный водородный электрод, и это необходимо учитывать при анализе работы коррозионного элемента. — Примеч. авт.  [c.63]

Если в металле сварного соединения вследствие термомеханического цикла сварки возникли участки с различными уровнями внутренних или внешних напряжений, то они могут при контакте с электролитом создать гальванический коррозионный элемент и вызвать местные разрушения.  [c.294]


Коррозионный элемент составляют из двух металлов, например железо (или углеродистая сталь) - медь и (или) железо (углеродистая сталь) - цинк. В первом случае железо является анодом и подвергается активному растворению, а медь - катодом и электрохимически защищается. Во втором случае анодом является цинк, а железо - катодом.  [c.41]

Перед измерением электроды коррозионного элемента зачищают тонкой наждачной бумагой, обезжиривают ацетоном, промывают дистиллированной водой и высушивают фильтровальной бумагой. Затем с точностью до 0,1 мм измеряют геометрические размеры образцов и рассчитывают рабочую поверхность.  [c.41]

Метод измерения тока, возникающего между двумя электродами, применяют для моделирования коррозионных элементов при изучения контактных пар, щелевой коррозии, влияния аэрации и т. д.  [c.143]

При изменении малых токов, например когда исследуют работу коррозионного элемента, образованного металлом устья и вершиной щели или трещины, необходимы очень чувствительные приборы, которые имеют большое внутреннее сопротивление. Чтобы измерить коррозионные токи между этими участками поверхности металла, замыкают подобные электроды, а в цепь включают чувствительный потенциометр с малым сопротивлением. Для этой же цели можно использовать так называемую схему с нулевым сопротивлением (рис. 44). В этой же схеме падение напряжения в исследуемой гальванической паре от сопротивления прибора и дополнительного сопротивления компенсируется равным по величине, но противоположным по знаку напряжением от внешнего источника тока. Таким образом, в измерительной цепи не происходит потери напряжения от исследуемой пары (сопротивление схемы как бы равно нулю). Контроль за регулировкой схемы ведут по гальванометру.  [c.144]

Кинетику электродных процессов, в том числе и электродных процессов электрохимической коррозии металлов, принято изображать в виде поляризационных кривых, представляющих собой графическое изображение измеренной с помощью описанной в ч. III методики зависимости потенциалов электродов V от плотности тока i = I/S, т. е. V = f i). На рис. 136 приведены кривые анодной и катодной поляризации металла, характеризующие его поведение в качестве анода и катода коррозионного элемента. Степень наклона кривых характеризует большую (крутой ход) или малую (пологий ход) затруд-  [c.194]

Осноиной фактор возникновения неоднородности Конкретная причина возникновения электрохимической гетерогенности и наиболее обычное распределение полюсов коррозионного элемента Примеры некоторых практических случаев коррозии металлов, при которых данная неоднородность играет заметную роль в установлении общей скорости коррозионного процесса  [c.22]

Так как электродные потенциалы играют очень большую роль в коррозионных процессах, то весьма важно знать значения этих потенциалов, а отсюда и действигельную разность потенциалов между металлом и раствором электролита. Однако абсолютные значения потенциалов до сих пор не удалось определить. Нет достаточно надежных методов экспериментального измерения или теоретического вычисления абсолютных значений потенциалов, и вместо абсолютных электродных потенциалов измеряют относительные, пользуясь для этого так называемыми электродами сравнения. Этот принцип определения значений электродных потенциалов основан на том, что если определить э. д. с. коррозионных элементов, составленных последовательно из большинства технических металлов и какого-нибудь одного, одинакового во всех случаях электрода, потенциал которого условно принят за нуль, то измеренные э. д. с. указанных элементов позволят сравнить электрохимическое поведение различных металлов. В качестве основного электрода сравнения принят так называемый стандартный водородный электрод, представляющий собой электрод из черненой (платинированной) платины, погруженный в раствор кислоты с активностью ионов Н+, равной 1 г пон1л. Через раствор продувается водород под давлением 1,01.3-10 н м -. Пузырьки водорода адсорбируются на платине, образуя как бы водородную пластинку, которая, подобно металлу, обменивает с раствором положительные ионы. На рис. 10 показано, как составляется цепь из водородного электрода и другого электрода при измерении относительных электродных потенциалов.  [c.23]

Примером коррозионных элементов первого типа является упомянутый выше медноцинковый элемент Си Сн80412п80412п, в котором цинк растворяется, а на меди выделяются ее ионы из раствора.  [c.28]

При протекании коррозионшях процессов чаще всего образуются коррозионные элементы третьего тнна. Примерами элементов этого типа являются следующие Ре КаС11 N1 Ре N 28041 Си. Железо в обоих случаях является отрицательным электродом, а  [c.29]

Потенциалы электродов, через которые проходит электрический ток, отличаются от потенциалов электродов, не нагруженных током замыкание цепи в коррозионном элементе приводит к изменению величин начальных потенциалов электродов. При усл0 ии, что омическое сопротивление элемента R мало, значение коррозионного тока 1нач после замыкания пары быстро падает и через определенное время становится равным устойчивой величине /, которая во много раз меньше первоначальной.  [c.31]

Коррозионные трещины часто представляют собой узкие щели, заполненные продуктами коррозии, что, несомненно, затрудняет доступ кислорода к дну трещин по сравнению с поверхностью металла. В этих условиях, если процесс протекает с кислородной деполяризацией, усиливают свою работу концентрационные коррозионные элементы. Потенциал на дне концентраторов наиряжений по мере их роста смещается к более отрицате.льиым значениям, и вследствие высоких местных напряжений там может выделиться новая структурная составляющая, которая будет  [c.108]

По механизму защиты различают металлические покрытш( анодные и катодные. Металл анодных покрытий имеет электродный потенциал более отрицательный, чем потенциал защищаемого металла. В случае применения анодных покрытий ие обязательно, чтобы оно было сплошным. При действии растворов электролитов в возникающем коррозионном элементе основной металл — покрытие основной металл является катодом и поэтому при достаточно большой площади покрытия не разрушается, а защищается электрохимически за счет растворения металла покрытия. Примерами анодных покрытий являются покрытия железа цинком и кадмием. Анодные покрытия на железе, как иравило, обладают сравнительно низкой коррозионной стойко-  [c.318]


Вагнер и Трауд [1] осуществили важный эксперимент, подтверждающий электрохимический механизм коррозии. Они измеряли скорость коррозии разбавленной амальгамы цинка в подкисленном растворе хлорида кальция, а также катодную поляри зацию ртути в этом электролите. Обнаружилось, что плотность тока, соответствующая скорости коррозии, равна плотности тока, необходимой для поляризации ртути до коррозионного потенциала амальгамы цинка (рис. 4.10). Другими словами, атомы ртути в амальгаме, составляющие большую часть поверхности, действуют как катоды (водородные электроды) , а атомы цинка — как аноды коррозионных элементов . Амальгама анодно поля-  [c.63]

Морская атмосфера обладает повышенной коррозионной активностью вследствие наличия в воздухе морской соли в виде тонкой пьши и высокой относительной влажности. Электрохимический процесс в морской атмбсфере происходит иначе, чем в морской воде. В морской атмосфере доступ кислорода через тонкую пленку влаги облегчен и не лимитирует процесс. В данном случае скорость коррозии зависит от омического сопротивления влажной пленки, так как при малой толщине ее сопротивление внешней цепи между анодом и катодом коррозионного элемента может стать очень большим. Морская соль, содержащаяся в воздухе, растворяется в пленке влаги и быстро насьдцает ее, что значительно уменьшает омическое сопротивление пленки и увеличивает коррозионный ток. Коррозия в морской атмосфере у сталей, содержащих медь, меньше, чем у углеродистых.  [c.10]


Смотреть страницы где упоминается термин Коррозионный элемент : [c.19]    [c.53]    [c.169]    [c.186]    [c.27]    [c.24]    [c.69]    [c.12]    [c.167]   
Катодная защита от коррозии (1984) -- [ c.60 , c.143 , c.164 ]



ПОИСК



18 — Назначение 17, 18 — Обозначения легирующих элементов сортовая коррозионно- и жаростойка

Анализ работы коррозионных элементов

Влияние конструктивных особенностей элементов машин, аппаратов и сооружений на коррозионный процесс

Влияние коррозионно-активных примесей в двухфазных средах на повреждение элементов оборудования

Влияние легирующих элементов и примесей на коррозионное растрескивание металлов

Влияние легирующих элементов на коррозионное поведение меди

Влияние легирующих элементов на коррозионное поведение сталей

Гальванические коррозионные элементы

Гомогенные смешанные электроды 2.2.4.2. Гетерогенный смешанный электрод илн образование коррозионного элемента Замечания по распределению тока

Графический анализ работы коррозионного элемента

Закономерности работы коррозионных элементов, покрытых тонкими слоями электролитов

Исследование работающего коррозионного элемента

Коррозионная усталость при наличии контактирующих элеменВлияние природы контактирующих элементов

Коррозионные гальванические элементы и причины их возникновеСхема и особенности электрохимического коррозионного процесса

Коррозионный элемент условия возникновения

Местные коррозионные элементы

Методика расчета долговечности элементов конструкций с учетом коррозионного воздействия среды

Микрогальванические коррозионные элементы

Образование коррозионного элемента и местная коррозия

Определение влияния легирующих элементов на коррозионную стойкость сталей

Определение предельных нагрузок трубопроводов и их конструктивных элементов с коррозионными повреждениями

Определение скорости коррозии электрохимическими методами (испытание с защищенным анодом или катодом на моделях коррозионных элементов)

Основные типы и особенности коррозионных повреждений котельных элементов

Поведение простого коррозионного элемента в условиях внешней анодной и катодной поляризации. Разностный и защитный эффект

Поляризация и деполяризация электродов коррозионного гальванического элемента

Работа гальванического элемента и типы коррозионных гальванических элементов

Работа коррозионного гальванического элемента

Работа коррозионного гальванического элемента (явления поляризации и деполяризации)

Реальные поляризационные кривые для электродов коррозионного элемента

Сплавы титановые 2.530, 547 Коррозионная стойкость Легирующие элементы

Сплавы титановые 530, 547 Коррозионная стойкость 533Леггци ощие элементы

Стали коррозионно-стойкие сероводородостойкие конструкционные - Классификация 251 - Механические свойства после термообработки 252 - Предел выносливости 253 - Влияние примесей и легирующих элементов на свойства 254 - Влияние

Типы коррозионных элементов



© 2025 Mash-xxl.info Реклама на сайте