Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементы сосудов — Деформации

Нормативные методы расчета на прочность сосудов высокого давления, которые работают при температурах, не вызывающих ползучести материала, основаны на принципах оценки по предельным состояниям (вязкому разрушению, охвату всего сечения элемента сосуда пластической деформацией, возникновению макротрещин при циклическом нагружении). Толщины элементов рассчитывают по предельным нагрузкам, соответствующим предельным состояниям вязкому разрушению или пластической деформации по сечению элемента (ОСТ 26 104 87). При расчете по методу предельных нагрузок расчетное давление р принимают в щ или раз меньше значений р., или р (где р , Рв - давление, при котором вся стенка элемента соответственно переходит в пластическое состояние или разрушается tij, п - коэффициент запаса статической прочности соответственно по р-, или р ).  [c.779]


Трубчатая тяга свинчивается с подвижной траверсой машины, снабженной встроенной месдозой. Между верхней крышкой и сосудом Дьюара, а также около трубчатой тяги имеются кольцевые уплотнения. Предусмотрена возможность откачки воздуха из внут-ренного объема и сосуда Дьюара. Деформация оценивается с помощью пропорционального дифференциального преобразователя. Смещение, которое регистрируется этим прибором, представляет собой суммарную деформацию образца и элементов конструкции устройства для испытания.  [c.371]

Условие разрушения 414 Элементы сосудов — Деформации 392  [c.488]

НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ ПЛОСКИХ ЭЛЕМЕНТОВ СОСУДОВ И АППАРАТОВ  [c.47]

Результаты диагностирования механизмов повреждений и параметров технического состояния (ПТС) анализируют с целью установления текущего технического состояния, уровня и механизмов повреждения, значений ПТС и фактической нагруженности диагностируемого объекта, необходимых для прогнозирования развития этого состояния в соответствии с установленными закономерностями доминирующих механизмов повреждения до достижения ПТС значений, при которых объект переходит в предельное состояние. При этом исследуют фактическую нагруженность основных несущих элементов оборудования и влияние на его изнашивание эксплуатационных факторов остаточной деформации элементов сосуда в местах их повреждений, выпучен, вмятин характера и степени коррозионного, эрозионного и иного повреждения металла измерений толщин стенок.  [c.222]

Современные высоконагруженные конструкции (атомная и тепловая энергоустановки, летательные аппараты, турбомашины, сосуды давления и т. п.) обладают существенной спецификой конструктивных форм, технологии изготовления, условий эксплуатации, применяемых материалов. В то же время характерными для несущих элементов этих конструкций являются однократные и повторные местные пластические деформации, приводящие к накоплению малоцикловых повреждений.  [c.370]

На основе данных о малоцикловой прочности элементов конструкций (трубы магистральных газо- и нефтепроводов, компенсаторы и металлорукава) проведена оценка возможности использования запасов прочности и расчетных характеристик, регламентируемых существующими нормами расчета на прочность элементов реакторов, парогенераторов, сосудов и трубопроводов атомных электростанций. Показано, что для всех испытанных элементов конструкций нормативная кривая допускаемых циклических деформаций дает оценку, идущую в запас прочности. При этом для тонкостенных элементов конструкций (какими являются гибкие металлорукава и аналогичные по параметрам гофрированной оболочки компенсаторы) рекомендуемая нормами кривая является консервативной. Обоснована возможность повышения допускаемых циклических деформаций в такого типа конструкциях.  [c.276]


Анализ чувствительности материалов к концентрации напряжений при статическом нагружении, осуществлявшийся ранее непосредственно по экспериментальным данным на образцах с надрезами, благодаря исследованию перераспределения напряжений и деформаций в процессе нагружения проводят расчетными методами на основе силовых и деформационных критериев разрушения. При этом были значительно расширены расчетно-экспериментальные исследования напряжений и деформаций в упругих и неупругих состояниях зон концентрации элементов конструкций — сосудов давления, трубопроводов, дисков, резьбовых соединений.  [c.20]

Развитие в последние годы средств экспериментальных исследований позволяет проводить испытания с широким изменением условий нагружения не только на лабораторных образцах, но и на моделях и реальных элементах конструкций — сосудах давления, дисках, трубопроводах, сварных, резьбовых и других соединениях. Наряду с определением предельных нагрузок и чисел циклов существенное значение при этом имеет исследование кинетики номинальных и местных пластических деформаций, условий развития трещин и их переходов в неравновесное состояние. Такие испытания являются наиболее сложными и дорогостоящими, но они позволяют оценить правильность и точность разрабатываемых методов расчета, основанных на характеристиках механических свойств, которые устанавливают из опытов на лабораторных образцах.  [c.27]

Используется для сосудов, работающих при температуре до —196 °С. Определяется как напряжение, вызывающее остаточную деформацию 1 % при температуре испытания 20 °С. Сплав содержит по 0,15—0.60 % А1 и Т1. остальное, кроме указанных элементов, Fe.  [c.139]

Котел, пароперегреватель, экономайзер, сосуд, работающий под давлением, трубопровод пара или горячей воды и их элементы считают выдержавшими гидравлическое испытание, если не обнаружено признаков разрыва течи, слезок и потения в сварных соединениях и на основном металле остаточных деформаций.  [c.612]

Применительно к наиболее ответственным конструкциям (атомные и химические реакторы, сосуды для транспортировки токсичных газов и жидкостей под давлением) выполнение пп. 1—5 осуществляется для стадии образования макротрещин. При этом указанные выше запасы по нагрузкам ид, деформациям 1 и долговечности гея определяются по уравнениям типа (1.3) кривых малоциклового или длительного циклического разрушения, получаемых по критерию образования макротрещин. Однако опыт эксплуатации и испытаний большого числа элементов конструкций при малоцикловом нагружении показывает, что долговечность на стадии развития трещин сопоставима или в 2—5 раз превышает долговечность на стадии образования трещин. Это позволяет за счет уточнения расчетов прочности и ресурса по первой и второй стадии повреждения увеличить срок безопасной эксплуатации конструкций.  [c.20]

Приведенные на рис. 7.13 кривые описывают кинетику изменения коэффициентов концентрации и Ка в процессе увеличения уровня номинальных напряжений в сечении испытанных сосудов и плоских образцов. Кривые 1 ж 2 построены с использованием формулы (7.2) при п = О, а кривые 1 и 2 — при п = 0,5. На этом же рисунке точками показаны экспериментальные значения Ке, полученные при испытании указанных конструктивных элементов. Коэффициенты концентрации напряжений с увеличением нагрузки снижаются до уровня, близкого к единице (кривые 3, 4). В целом приведенные выше данные позволяют сделать вывод, что определение коэффициентов концентрации напряжений и деформаций при однократном нагружении в упругопластической стадии деформирования может быть выполнено по формулам (7.2) и (7.3).  [c.146]

Как показано в гл. 2—10, современные высоко нагруженные конструкции (атомная и тепловая энергоустановки, летательные аппараты, турбомашины, сосуды давления, инженерные сварные конструкции, узлы разъемных соединений) обладают существенной спецификой конструктивных форм, технологии изготовления, условий эксплуатации, применяемых материалов. В то же время характерными для несущих элементов этих конструкций являются однократные и повторные местные пластические деформации, приводящие к накоплению малоцикловых повреждений (в диапазоне числа циклов экстремальных механических и тепловых нагрузок от 10 до 5-10 ).  [c.213]


Модели нагружения. Эти модели содержат схематизацию внешних нагрузок по координатам, времени, а также по воздействию внешних полей и сред. Силовые нагрузки, действующие на конструкции, можно разделить на три группы 1) объемные или массовые силы 2) поверхностные силы 3) сосредоточенные силы. Объемные нагрузки действуют на каждую частицу внутри тела. К таким нагрузкам относятся собственный вес конструкции, силы инерции, силы магнитного притяжения и т.п. Поверхностные нагрузки распределены по значительным участкам и являются результатом взаимодействия различных конструктивных элементов одного с другим или с другими физическими объектами (например, давление жидкости или газа на стенки сосуда, давление ветра на оболочку градирни и т.п.). Если силы действуют на небольшую поверхность конструкции, то их можно рассматривать как сосредоточенные нагрузки, условно приложенные в одной точке. По характеру действия нагрузки можно разделить на статические и динамические. Статическая нагрузка возрастает от нуля до своего номинального значения и остается постоянной во время эксплуатации конструкции. Переменное, или динамическое, нагружение — нагружение, изменяющееся во времени. Часто встречающимся видом переменного нагружения являются циклические нагрузки, характеризующиеся периодическим изменением значения и/или знака. Модели нагружения должны учитывать воздействие полей и сред. Наиболее существенным является воздействие температурного поля. Изменение температуры элементов конструкций вызывает температурные деформации. Если они не удовлетворяют уравнениям совместности деформаций, то в элементах конструкций возникают температурные напряжения, значения которых часто оказываются соизмеримы со значениями напряжений, возникающих от воздействия внешних сил. Кроме того, изменение температуры влияет на механические характеристики конструкционных материалов. В некоторых случаях приходится учитывать влияние нейтронного облучения, электромагнитного поля, воздействие коррозионных сред.  [c.401]

Условия задачи. Цилиндрическая труба (сосуд), испытывающая внутреннее давление, является важным элементом многих машин и сооружений естественно, что вопросу о расчете пластической деформации трубы посвящено большое число теоретических и экспериментальных исследований. Строгий анализ пластических деформаций трубы представляет значительные трудности и реализуется численными способами или методом последовательных приближений. Однако можно получить простое приближенное решение, если воспользоваться некоторыми упрощениями, подтверждаемыми результатами численного интегрирования.  [c.114]

В химической промышленности широко применяются многослойные сосуды высокого давления. Под действием внутреннего давления многослойная цилиндрическая стенка из-за контактных сближений поверхностей отдельных слоев деформируется не так, как однослойная. В зоне сопряжения многослойного цилиндра с днищем возникает повышенный уровень напряжений по сравнению с аналогичной зоной однослойного цилиндра. Ранее эта задача решалась авторами на основе совместности деформаций многослойного цилиндра с полусферическим или эллиптическим днищем [1, 2]. При этом силы трения, возникающие на границе контакта слоев, не учитывались. Ниже рассматривается методика расчета многослойного цилиндра, сопряженного с монолитным элементом днищем, фланцем илй горловиной, учитывающая влияние сил трения на возможность проскальзывания слоев многослойного цилиндра. Напряженно-деформированное состояние монолитного элемента в этом случае определяется с помощью метода конечных элементов (МКЭ). Это позволяет решать данную задачу сопряжения многослойного сосуда с монолитным элементом - днищем, фланцем или горловиной - любой встречающейся на практике формы.  [c.59]

Разрушения срезом и отрывом могут распространяться неустойчиво и поддерживаться исключительно за счет энергии деформации в стенке трубы при номинальном напряжении ниже предела текучести материала. Определяющими факторами распространения трещины при напряжении ниже предела текучести является энергия системы нагружения. Жесткие системы нагружения, например, в лабораторных машинах при испытании на растяжение и некоторых конструкциях судов или мостов рассеивают энергию деформации в нагружаемом элементе быстро, в результате чего усилие, вызывающее разрушение, резко уменьшается. В пневматически нагружающих системах энергия деформации в стенке сосуда поддерживается более продолжительно, и усилие, вызывающее разрушение, долго сохраняется.  [c.206]

Принцип действия образцовых переносных динамометров 3-го разряда так же, как и образцовых динамометров 1-го разряда, основан на измерении упругой деформации стального рабочего элемента, являющегося главной частью динамометра. Рабочий элемент имеет форму круглого или эллиптического кольца с круглым или прямоугольным сечением, тонкостенного сосуда, колонки, трубы, симметрично замкнутой петли, скобы и т. п. Такая конфигурация рабочего элемента динамометра позволяет заменить его чистое растяжение или сжатие сложным изгибом, деформацией балочки равного со-  [c.30]

Общее распределение напряжений. На рис. 31 для сосуда 3 приведены кривые равных уровней кольцевых напряжений и интенсивностей напряжений, вычисленные по методу упругопластических конечных элементов для области вне действительной зоны контакта (и, следовательно, совпадающие с расчетами по упругой модели материала )). На рис. 31 представлены два характерных вида нагружения — затяг шпилек и последующее нагружение внутренним давлением. Сравнение с экспериментальными данными не проводится, так как согласие расчета и экспериментов для напряжений не может быть лучше, чем для перемещений, определенных непосредственно по измеренным в опыте деформациям и уже сравнивавшихся выше с результатами вычислений. Поэтому имеет смысл обсуждать только различие в расчетах напряжений по методу конечных элементов и модели жесткого кольца, но, очевидно, это различие должно иметь такой же общий характер, как и различие в перемещениях.  [c.48]


Если Ati превышает заданное допустимое значение (т. е. Д 1 > [Aif]i), то при эксплуатации элемент конструкции находится в вязком состоянии. В этом случае (при отсутствии макродефектов типа трещин) предельные нагрузки превышают расчетные, определяемые по пределам текучести и прочности, и оценку сопротивления разрушению проводят по предельным нагрузкам и деформациям в соответствии с уравнениями (259) и (260). Вязкие разрушения пластических металлов при низких уровнях номинальных напряжений (на уровне предела текучести и ниже) могут произойти при размерах дефектов, превышающих сотни миллиметров (что для большого числа сосудов давления соответствует потере плотности). При появлении в конструкциях таких дефектов их эксплуатация становится затруднительной или невозможной без проведения соответствующих мероприятий изменения режимов работы, проведения ремонтных работ, замены поврежденных элементов и т. д. Обеспечение температурного запаса [Л<]  [c.73]

Выбор места расположения металлического резьбового элемента (фитинга) осуществляют с учетом различия в упругих свойствах соединяемых материалов. Так как модуль упругости ПМ на один-два порядка меньше, чем для сталей, фитинги в трубах, сосудах и аппаратах, работающих под внутренним давлением, приходится располагать над полимерной деталью (рис. 5.143, а). Под действием внутреннего давления стенки полимерной детали, деформируясь, плотно прилегают к фитингу. Расположение полимерной детали над фитингом снижает надежность соединения, так как при определенном давлении неизбежно происходит его расслоение. Для компенсации деформаций, возникающих при изменениях температуры эксплуатации, и предотвращения отслоения фитинга от ПМ используют дополнительную клеевую прослойку.  [c.304]

Остановимся еще на деформации сосуда. Рассмотрим сначала определение относительных удлинений ребер элемента 1—2—3—4 тонкостенного сосуда (рис. 41, а) деформацию вдоль ребра 1—3 обозначим через е, = е , вдоль ребра 1—2 через Ё2 = причем имеем в виду, что Оз = а . При-  [c.77]

Изложенные в первых шести главах книги концепции предельных состояний и расчета на прочность в упругопластической и температурно-временной постановке под длительным статическим и малоцикловым нагружением, а так же в усталостном и вероятностном аспекте под многоцикловым нагружением иллюстрируются в последующих четырех главах Примерами расчетов конкретных конструктивных элементов. В соответствии с этим рассматриваются расчеты элементов сосудов и компенсаторов тепловых перемещений с упруго-пластическим перераспределением деформаций и усилий расчез ы циклической и статической несущей способности резьбовых соединений в связи с эффектами усталости и пластических деформаций расчет валов и осей как деталей, работающих, в основном, на усталость при существенном влиянии факторов формы и технологии изготовления, расчет которых основывается на вероятностном подходе для оценки надежности расчет на прочность сварных соединений, опирающийся на систематизированные экспериментальные данные о влиянии технологических и конструктивных факторов на статическую и цикличе-ческую прочность.  [c.9]

Тепловые поля часто являются периодическими. Поэтому для исследователей представляет интерес описание поведения элементов конструкций при повторном действии теплового потока и давления. Мы обсудим только задачи приспособляе-мостп, не затрагивая вопросов термической усталости. Наличие тепловых полей и механических сил, как это имеет место в случае газовых турбин, топливных элементов, сосудов давления и т, д., делает неприменимой классическую теорию предельного равновесия. В данном случае нельзя считать, что нагрузки возрастают пропорционально одному параметру. Кроме того, раздельное воздействие температуры или, нагрузки может вообще не вызвать пластического движения, но изменения температуры при постоянной нагрузке могут вызвать увеличение пластической деформации. Отсюда очевидно значение анализа термомеханической приспособляемости.  [c.96]

При исследовании деформаций больших фланцев сосудов высокого давления в качестве основных расчетных элементов при составлении расчетной схемы фланца используют оболочку, жесткое кольцо балку. При нагружении таких сосудов типичной является ситуация, когда на узкие грани фланцев, сжимающие прокладку, действует со стороны прокладки момент сил реакции, довольно большой по сравнению с моментом от со-единительньцс шпилек, и поэтому требуется точно знать распр еделение сил реакции по радиусу. Расчетная схема, использующая оболочечйый элемент, позволяет приближенно учесть этот факт. Но есть еще однО обстоятельство, которое не учитывается при использовании указанного набора базисных элементов ), — это пластическая деформация прокладки. Из-за нее расчеты, основанные на линейно-упругой модели материала, могут стать неэффективными с другой стороны, применение базисного элемента в виде жесткого кольца может внести неточность в описание общего упругого поведения колец фланцев. Настоящая глава посвящена выяснению этих вопросов. С этой целью в ней проанализировано поведение узких фланцев двух разновидностей, типичных для фланцев реакторов с водой под давлением (ВВЭР), при помощи метода конечных элементов (упругих и упругопластических). Результаты расчетов сравниваются с вычислениями по расчетной схеме, использующей упомянутые выше базисные элементы, и с экспериментальными результатами. Экспериментальные данные о локальных деформациях прокладки получены с помощью специального оптического устройства, луч которого пропускался через канал для определе ния утечки во фланце силового корпуса ВВЭР. Для определения поворотов фланцев применялись тензодатчики, расположенные на силовых корпусах ВВЭР кроме того, датчики были наклеены и на шпильках.  [c.9]

Температурные датчики измеряют температуру воды, масла или газов и при достижении предельных значений включают линии исполнительного тока. На рис. 77 показан температурный датчик манометрического типа. При увеличении температуры в замкнутом объеме манометрического сосуда, помещенного в среду, температуру которой необходимо измерить, возрастает давление наров легко испаряющейся жидкости. Под действием этого давления деформируется упругий элемент системы — сильфои, деформация которого передается па механизм включателя тока.  [c.141]

Разрушения металла сосудов, котлов и резервуаров, изготовленных из обычных углеродистых сталей, чаще всего наблюдаются в виде отдельных разъедин, свищей и других подобных дефектов. Причиной таких разрушений обычно являются отдельные дефекты металла, например, скопление неметаллических включений, местная ликвация вредных примесей или легирующих элементов механические повреждения поверхности— вмятины, следы ударов молотком, надсечки зубилом и др. элементы, подвергавшиеся значительным деформациям в холодном состоянии в процессе изготовления изделия участки, где по характеру и условиям работы конструкции концентрируются напряжения.  [c.101]

Механические испытания в указанных направлениях были осуществлены с широким использованием средств измерения местных упругих и упругопластических деформаций (малобазной тензометрии, муара, сетки, оптически активных покрытий, голографии, интерферометрии) автоматизированных установок с управлением от ЭВМ и от программных регуляторов, имеющих электрогидравлический, электромеханический и электродинамический приводы систем измерения процессов повреждения и развития трещин (оптической микроскопии, метода электропотенциалов и электросопротивлений, датчиков последовательного разрыва, датчиков накопления повреждений, акустической эмиссии, анализа жесткости объекта нагружения) комбинированных (расчетно-эксперименталь-ных) методов и средств изучения напряженно-деформированных состояний и прочности для обоснования программ испытаний и анализа их результатов систем для проведения стендовых испытаний моделей и реальных конструкций, включающих указанные выше средства измерения и регистрации деформаций, накопленных повреждений и длин трещин (сосудов давления, трубопроводов, дисков и лопаток турбин, валов, элементов энергетических и транспортных установок, сварных конструкций).  [c.19]


Система экспериментов на лабораторных образцах в середине 60-х годов была дополнена важными опытами при малоцикловом нагружении на моделях сосудов давления (с толщинами стенок до 70—120 мм), трубопроводах (с толщинами стенок до 20 -ь 30 мм), сварных пластинах с отверстиями и патрубками, болтах и шпильках (диаметром до 75-150 мм). Анализ полученных данных (в том числе с учетом рассеяния результатов испытаний) позволил обосновать запасы по местным упругопластическим деформациям и долговечности. Нормированные расчеты прочности атомных ВВЭР с учетом их циклического нагружения в эксплуатации осуществляются [5, 6] с введением запасов по местным условным упругим напряжениям и n v - по числу циклов до образования трещин (по долговечности). В зависимости от рассчитьтаемого элемента, объема исходной информации эти запасы находятся в пределах 1,25 -г 2 и 3 20 соответственно. В дальнейшем по мере накопления данных о прочности при изотермическом и неизотермическом нагружении с программируемыми циклами нагрузок, деформаций и температур для расчетов было предложено использовать условия линейного суммирования циклических повреждений (для различных режимов эксплуатационного повреждения).  [c.41]

Сравнение расчетов с экспериментами. В работе [31] для определения деформаций и напряжений во фланцевом соединении сосудов без нажимных колец использовались также два расчетных метода. Приближенный метод осуществлялся путем разбиения фланцевого соединения на базисные элементы - кольца, оболочки, балки. Поперечные силы и моменты в местах их соединений определялись из уравнений равновесия и совместности деформаций. Второй подход использует метод конечных элементов, для чего применялась программа MAR для ЭВМ /5Л/-370. Наличие в программе специальных люфтовых элементов позволяет моделировать нелинейную контактную задачу, связанную с локальным смыканием и (или) раскрытием зазора между поверхностями фланцев и проклад-  [c.153]

Корпуса энергетического оборудования и сосуды под давлением, работающие при статическом и повторноч татическом режимах нагружения, представляют собой крупногабаритные конструкции, в которых по условию прочности и надежности не допускается развитие в большом объеме материала пластических деформаций. Нормы расчета на прочность поэтому предусматривают в качестве основы расчетных методов оценку прочности, в частности, по такому предельному состоянию, как пластическая деформация по всему сечению детали. Это выражается в назначении допускаемого коэффициента запаса прочности по пределу текучести щ = 1,5, который учитывается при выборе основных размеров элементов по общим мембранным напряжениям. Например, в цилиндрической оболочке  [c.204]

Вместе с тем для реальных элементов сложных пространственных трубных систем, например паропроводов или поверхностей нагрева котлов, указанный случай не является предельным по деформациям. В результате тепловых деформаций сопряженных с рассматриваемым элементом деталей трубной системы в нем могут возникнуть такие условия нагружения, при которых, с одной стороны, механическая циклическая деформация будет превышать по величине стесненную термическую, а, с другой стороны, наибольшая деформация растяжения будет иметь место при максимальной температуре термического цикла. Подобные условия нагружения могут возникать также в локальных пластически деформированных зонах сосудов давления и других деталей с конструктивными концентраторами напряжений при циклическом изменении температуры окружающей эти зоны упругодеформи-рованной мембранной части конструкции.  [c.19]

В натурной тензометрии квазистатнческих и повторно-статических деформаций для однократного или нескольких циклов нагружений используют средства и приемы, отработанные для измерения статических деформаций. Определяющим признаком при классификации тензорезисторов для измерений статических деформаций является прежде всего температура. Условно можно выделить следующие характерные диапазоны температур пониженные и умеренные (—60. .. 70°С), при которых работают химические аппараты, баллоны высокого давления, сосуды, Marn TpajrbHbie трубопроводы [15] повышенные (св. 250. .. 400 С), характерные для работы деталей водо-водяных атомных реакторов [25], элементов планера сверхзвукового самолета [92] высокие (св. 600. .. 1200° С), свойственные элементам тепловой энергетики при сверхкритических параметрах пара [33, 39], деталям горячего тракта судовых н авиационных [40] газотурбинных двигателей и др.  [c.166]

Если элементы конструкции не приходят в негодность вследствие уменьшения сечений от износа, коррозии, чрезмерной пластической деформации или ползучести, то продолжительность их эксплуатации в результате появления макроскопических трещин ограничивается либо частичным, либо полным разрушением. Для выбора материала, конструирования и расчета деталей, правильного назначения технологии обработки и изготовления детали необходимо знать физические закономерности процесса разрущения и природу образования трещин. Например, в сосудах, нагруженных внутренним давлением, несквозные трещины опасны только критические (т. е. саморазвиваю-щиеся), а сквозные опасны и докритические, если недопустима дегерметизация сосуда.  [c.114]

Металл котлов, сосудов и трубопроводов должен не только обеспечивать высокую эксплуатационную надежность, но и обладать высокими технологическими свойствами. При изготовлении, монтаже и ремонте металл элементов котлов, трубопроводов и сосудов подвергается различным технологическим операциям формоизменения п соедццгнпя. Поэтому металл должен иметь хорошую свариваемость, обеспечивать пластическую деформацию при ковке, штамповке, гибке, вальцовке и т. п.  [c.7]

На рис. 4—7 для некоторых видов элементов конструкций сосудов были приведены коэффициенты концентрации, позволяющие определять напряжения при действии пульсирующего внутреннего давления в предположении упругого деформирования., В зонах концентрации возможно образование областей пластичности. В работе [12] было проведено тензометриро-вание зон концентрации сосудов с патрубками, с плоским днищем и т. п. при пульсирующих давлениях, превосходящих до полутора раз давление, соответствующее номинальному. Сосуды изготавливались из углеродистой стали. Было отмечено, что при исходном нагружении деформации превосходили деформации предела текучести р 10—15 раз, однако после десяти циклов нагружения наступала стабилизация, и амплитудные значения деформаций возрастали прямо пропорцио-  [c.392]

Согласно ГОСТ 25859-83 [146], в нормах и методах расчета сосудов и стальных аппаратов на прочность при малоцикловых нагрузках к режиму малоциклового нагружения относятся нагрузки с размахом колебаний 15% для углеродистых и низколегированных сталей и 25% для аустенитных сталей от допускаемого значения, установленного при расчете на статическую прочность, при числе главных циклов нагружения сосуда от давления, стесненности температурных деформаций и др. от 10 до 5x10 за все время эксплуатации. Подобные критерии отнесения к циклическим нагрузкам применимы и к другим элементам конструкций.  [c.227]

Поскольку в районе прокладки использовалась усовершенствованная, более мелкая сетка конечных элементов, имв лаСь возможность учесть различные свойства материала колец фланцев и слоев прокладки. Эти свойства были перечислены в табл. 2. В случае пластической деформации предполагался справедливым закон изотропного упрочнения. Для программы MAR это означало задание наклонов на участках при кусочно-линейной аппроксимации кривой о е, по-лученной из одноосного эксперимента на растяжение. У фланцевого соединения сосуда 3 материал нанесенных сваркой слоев прокладки — нержавеющая ауСтенитная сталь AISI типа 304, а у сосуда 4 — нержавеющая сталь AISI типа 347. У обоих материалов неупругий участок кривой а е заменялся линейным, причем угол его наклона выбирался таким, чтобы наилучшим образом описывать ту час ь диаграммы а е, которой отвечают появляющиеся в прокладках пластические деформации.  [c.29]

Особенно снижают прочность и уменьшают ресурс машин и конструкций макродефекты типа трещин, создающие предельно высокую концентрацию местных напряжений и деформаций. Размеры этих трещин в соответствии о требованиями дефектоскопического контроля элементов на стадии изготовления авиационных конструкций, химических аппаратов, сосудов давления, атомных и тепловых энергоустановок, транспортных средств, технологического оборудования изменяются в достаточно широких пределах — 1—100 мм (по эквивалентной площади), Обследование этих машин и конструкций на различных стадиях эксплуатации показало, что реальные размеры дефектов типа трещин, не приводящие к потере несущей способности, могут в 10 —10 раз превышать указанные вьш1е, поэтому существовавшее длительное время представление о недопустимости эксплуатации  [c.10]


Несущую способность элементов конструкций (корпусов энергетических и химических аппаратов, трубопроводов, разъемных соединений, сосудов давления, насосов и т. д.) при циклическом нагружении определяют либо по предельным, соответствующим образованию трещин, местным дефорлмациям (напряжениям) для чисел циклов, равных эксплуатационным, либо ио предельным, также соответствующим образованию трещин, числам циклов для деформаций (напряжений) от эксплуатационных нагрузок. Предельные состояния по образованию трещин при циклическом нагружении могут создаваться в зонах концентрации напряжений — от силовых и температурных нагр,узок, вне зон концентрации — от действия местных температурных напряжений и напряжений компенсации в компенсирующих устройствах.  [c.121]

Рассматриваемые датчики для измер ения малых пульсаций давления могут работать с тензометрической аппаратурой, предназначенной для регистрации динамических деформаций. С этой аппаратурой чувствительность датчика пульсаций давления составляет 0,05 кгс/м (па 1 мм хода луча на осциллограмме). Датчики для измерения малых пульсаций давления были применены для исследований динамических нагрузок, воздействующих на элементы внутрикорпуспых устройств сосудов, работающих под  [c.24]

Корпуса энергетического оборудования и сосуды под давлением, работающие при статическом и повторно-статическом режимах на гружения, представляют собой крупногабаритные конструкции, в которых по условию прочности и надежности не допускается развития в большом объеме материала пластических деформаций [1]., Нормы расчета на-прочность [2] поэтому предусматривают в качестве основы расчетных методов оценку прочности, в частности, по т 1Кому предельному состоянию, как пластическая деформация по всему сечению детали. Это выражается в назначении допускаемого коэффициента запаса прочности по пределу текучести = 1,5, который учитывается при выборе основных размеров элементов по общим мембранным напряжениям. Например, в цилиндрической оболочке допускаемые расчетное давление р и давление гидроиспытаний соответственно в 1,73 и 1,38 раза меньше величины рт соответствующей началу текучести в гладкой части оболочки (по условию Мизеса).  [c.122]

При изучении течения крови в крупных сосудах основное внимание обращается на распространение пульсовой волны по стенке сосуда, на изменение профиля и скорости течения, а также скорости сдвига в окрестности мест ветвления и стеноза, т. е. сужения поперечного сечения сосуда, на связь между возвратным течением и образованием атеросклеротических отложений. Мало изученными до сих пор остаются вопросы движения крови по артериолам и капиллярам. Именно в артериолах происходит основное понижение давления и скорости течения. Поэтому важно определить зависимость их гидравлического сопротивления в стационарном и нестационарном режимах от состава и свойств крови и от сокращения гладкой мускулатуры стенок. Задача исследования течения крови в капиллярах сводится к анализу движения отдельных форменных элементов по сосуду, соизмеримому с их размерами. При этом необходимо учитывать как деформации самого форменного элемента крови, так и особенности течения плазмы в смазочном слое между частицами и стенкой. Здесь же возникает еще одна актуальная проблема, связанная с фильтрацией воды и растворимых веществ, а также газов через стенки капилляров в окружающие ткани и в обратном направлении в венозную систему.  [c.483]


Смотреть страницы где упоминается термин Элементы сосудов — Деформации : [c.317]    [c.16]    [c.163]    [c.270]    [c.19]    [c.342]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.392 ]



ПОИСК



Напряжения и деформации плоских элементов сосудов и аппаратов

Сосуды



© 2025 Mash-xxl.info Реклама на сайте