Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжа перемещения

Множители Лагранжа. Перемещения точек УИ связаны А соотношениями, которые получаются дифференцированием уравнений (1), а именно  [c.234]

Вектор R называется силой реакции связи при движении r t). Эквивалентное определение составляет принцип Даламбера—Лагранжа перемещение г( ) есть движение тогда и только тогда, когда для любого касательного к кривой вектора т в точке r(i)  [c.161]

Согласно принципу Лагранжа, из всех возможных приращений перемещений 6 Au уравнению  [c.22]


Уравнение (3.37) в сочетании со стандартными зависимостями, связывающими Ае с приращением вектора перемещений А , позволяет на основе принципа Лагранжа реализовать один из вариантов МКЭ — метод перемещений (см. раздел 1.1). При этом анализ НДС производится методом последовательного прослеживания истории нагружения, когда на каждом последующем этапе нагружения рещение находится с учетом полученного на предыдущем.  [c.171]

Модели для анализа напряжений и деформаций часто оказываются более удобными, если представлены в интегральной форме, вытекающей из вариационных принципов механики. Вариационный принцип Лагранжа (принцип потенциальной энергии) гласит, что потенциальная энергия системы получает стационарное значение на тех кинематически возможных перемещениях, отвечающих заданным граничным условиям, которые удовлетворяют условиям равновесия. Поэтому модель представляют в виде выражения потенциальной энергии П системы как разности энергии деформации Э и работы массовых и приложенных поверхностных сил А  [c.158]

Принцип возможных перемещений, или принцип Лагранжа, содержит необходимые и достаточные условия равновесия некоторых механических систем. Он формулируется следующим образом для равновесия механической системы, подчиненной идеальным, стационарным ы неосвобождающим связям, необходимо и достаточно, чтобы сумма -элементарных работ всех активных сил, приложенных к точкам системы, была равна нулю на любом возможном перемещении системы, если скорости точек системы в рассматриваемый момент времени равны нулю, т. е.  [c.387]

Задача 176. Решить с помощью уравнений Лагранжа задачу 143 (см. 124). Решение. Механизм имеет одну степень свободы (см. рис. 314) и его положение определяется координатой ф (перемещении элементарная работа бЛх будет иметь выражение, совпадающее с выражением dA в задаче 143, если только заменить в нем <1ф на бф. Следовательно,  [c.381]

Решение. Система имеет две степени свободы (независимы перемещение катка относительно тележки и перемещение самой тележки). В качестве обобщенных координат выберем координату х тележки и координату s центра масс С катка относительно тележки. Тогда уравнения Лагранжа для системы будут  [c.382]


Такие решения с применением систем уравнений Лагранжа второго рода являются приближенными не только из-за численных методов решения дифференциальных уравнений, но и потому, что трение в кинематических парах здесь можно оценить лишь весьма приближенно, а упругость звеньев и зазоры в кинематических парах не учитываются вообще. Поэтому при разработке опытных образцов ПР применяют экспериментальные методы динамического исследования ПР, позволяющие с помощью соответствующих датчиков и аппаратуры записать осциллограммы перемещений, скоростей и ускорений звеньев и опытным путем учесть как неточности теоретического расчета, так и влияние ранее неучтенных факторов.  [c.338]

Сопоставление двух указанных методов показывает преимущества использования уравнений Лагранжа. Вместо формального введения сил инерции материальных точек системы, приведения их к простейшему виду, вычисления работ сил инерции и пар сил инерции на возможных перемещениях точек системы мы при решении задачи  [c.502]

Это положение носит название принципа виртуальных (возможных) перемещений. Установленный И. Бернулли, он был окончательно сформулирован Лагранжем, вследствие чего условие (6) часто называют условием Лагранжа.  [c.284]

Корни принципа виртуальных Перемещений уходят в глубокую древность. Довольно общую формулировку принципа для сил тяжести дали Торичелли (1644 г.), Иван Бернулли (1717 г.) и др. Доказательство принципа Лагранжем (1796 г.) является лишь видоизменением доказательства, которое предложил в 1783 г. Лазар Карно. Одновременно с Лагранжем строгое доказательство опубликовал Фурье. Но большая заслуга Лагранжа заключается и в том, что он положил этот принцип в основу всей механики,  [c.260]

Чтобы определить реакции идеальных связей, можно воспользоваться методом неопределенных множителей Лагранжа. Умножим каждое уравнение системы, определяющей виртуальные перемещения IV, Г = на некоторый скалярный множитель ЛJ и  [c.338]

И. Бернулли, Лагранж). Конфигурация системы N материальных точек, на которые наложены идеальные двусторонние стационарные связи, допускающие в этой конфигурации тождественное равенство нулю скоростей всех точек системы, будет положением равновесия (определение 4.1.1) тогда и только тогда, когда в любой момент времени равна нулю сумма элементарных работ всех активных си.г Г,/, действующих на систему, на любом виртуальном перемещении = 1,.. ., Л точек их приложения  [c.343]

Воспользуемся методом неопределенных множителей Лагранжа. Умножим каждое уравнение системы для виртуальных перемещений на скалярный множитель, и все результаты вычтем из общего уравнения динамики, которое предполагаем выполненным для любого виртуального перемещения. Получим  [c.379]

Решающую роль здесь играет структура множества виртуальных перемещений и то, как изменяется функция Лагранжа по различным направлениям в пространстве лагранжевых координат. Дифференциалу циклической координаты отвечает направление виртуальных перемещений системы, в котором функция Лагранжа не изменяется. Наоборот, если в каждой точке конфигурационного пространства существует направление виртуальных перемещений, оставляющее постоянной функцию Лагранжа, то одну из лагранжевых координат следует выбирать так, чтобы ее дифференциал задавал именно это виртуальное перемещение системы.  [c.560]

Соотношение (81.21) или (81.21 ) составляет содержание принципа Лагранжа сумма элементарных работ активных сил, действующих на уравновешенную механическую систему, на виртуальных перемещениях (или скоростях) равна нулю, если связи идеальны.  [c.113]

Разложим лагранжев градиент перемещений dui/dxj на симметричную н асимметричную части  [c.75]

Вариационный принцип Лагранжа. В соответствии с гипотезой сплошности тело может рассматриваться как система материальных точек и к нему можно применить принцип возможных перемещений Лагранжа для равновесия системы материальных точек со стационарными неосвобождающими и идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на систему активных сил на любых возможных перемещениях системы была равна нулю.  [c.122]


Следовательно, принцип возможных перемещений Лагранжа для деформируемого тела может быть записан в виде  [c.122]

На основании принципа возможных перемещений Лагранжа имеем  [c.358]

Второй этап связан с исследованиями Ж. Лагранжа, автора Аналитической механики (1788 г.) . Ж. Лагранж положил в основу механики прин-нип возможных перемещении, объединив его с принципом Даламбера. Исходя из этого общего принципа, Ж. Лагранж построил систему основных теорем механики, пользуясь лишь аналитическими методами исследования.  [c.37]

Принцип возможных перемещений явился результатом обобщения старинных исследований действия простейших машин — рычагов, полиспастов, наклонной плоскости и т. д. Первые обобщающие заключения, приведшие позже к установлению принципа возможных перемещений, как отмечает Ж. Лагранж ),  [c.107]

Понятие об идеальных связях не было известно автору Аналитической механики — Ж. Лагранжу. Рассматривая вопрос об обосновании и доказательстве принципа возможных перемещений, Ж. Лагранж отмечает, что этот принцип, хотя и очень прост по своему выражению, но не очевиден, чтобы его можно принять как аксиоматическое утверждение без доказательства. Ж. Лагранж отмечает, что принцип возможных перемещений основывается на двух принципах, установленных раньше. Один из них — принцип действия рычага, исследованный еще Архимедом второй — аксиома о параллелограмме сил. Если вспомнить геометрическую статику (ч. III т. I), то становится ясным, что эти два принципа содержат два основных понятия статики — понятие о силе, как о векторе, и к тому же скользящем в случае действия силы на абсолютно твердое тело, и понятие о моменте силы. Ж- Лагранж указывает сначала, что принцип возможных перемещений объединяет эти два понятия статики (принципы рычага и параллелограмма сил). Далее он предлагает доказательство, основанное на замене сил, приложенных к материальным точкам системы, реакциями подвижных блоков сложного полиспаста. Это доказательство не было признано достаточным, и Фурье предложил более совершенное.  [c.108]

При рассмотрении основных теорем динамики системы применялась аксиома об освобождении от связей. Если применять эту аксиому, то доказательство основных теорем динамики на основании принципа Даламбера — Лагранжа сводится к специальному выбору возможных перемещений. Например, для доказательства теоремы о движении центра инерции и теоремы об изменении количества движения достаточно положить, что все возможные перемещения бг равны бгр, т. е. предположить, что система перемещается поступательно.  [c.120]

Принцип Даламбера — Лагранжа устанавливает некоторое свойство действительного движения, т. е. движения изображающей точки по основной траектории. Это свойство заключается в том, что при движении изображающей точки по основной траектории сумма работ активных сил и сил инерции, произведенная на возможных перемещениях точек системы, соответствующих переходу изображающей точки с основной траектории на траекторию сравнения, в случае наличия лишь идеальных связей, будет не положительной.  [c.185]

Заметим, что в большинстве практически важных задач Р можно задать лишь в виде функций пространственных координат, следовательно, при использовании переменных Лагранжа для решения таких задач в правой части условия (1.160) будут содержаться производные от вектора перемещений, заранее неизвестных вид этой зависимости можно конкретизировать, если задать форму начальной границы (в момент времени t = tn) So, очевидно, что динамическое граничное условие можно записать и через компоненты тензора Пиола — Кирхгоффа  [c.34]

Рассмотрим одну из возможных процедур численного решения краевых задач для тел, поведение которых описывается определяющим уравнением (5.115), известную под названием метода шагового интегрирования по времени. Для этого используем постановку задачи в перемещениях в форме принципа возможных перемещений (Лагранжа) t  [c.247]

Французский ученый Даламбер (1717—1783 гг.) ввел в механику новый метод решения задач динамики при помощи уравнений статики. Нельзя не упомянуть также имени французского ученого Лагранжа (1736—1813 гг.), проделавшего большую работу по математическому обоснованию законов механики и обогатившего механику принципом возможных перемещений. Выводы Лагранжа были уточнены и дополнены русским математиком и механиком академиком М. В. Остроградским (1801 — 1861 гг.). Им же разработана общая теория удара, решен ряд важнейших задач из области гидростатики, гидродинамики, теории упругости и др.  [c.6]

Перемещения, скорости и ускорения точек сплошной среды в переменных Лагранжа  [c.331]

Вытекающее из принципа Даламбера условие равновесия несвободной системы под действием потерянных сил Лагранж выразил в аналитической форме, использовав для этой цели принцип возможных перемещений.  [c.376]

Таким образом, согласно общему уравнению динамики, в любой момент движения сиетемы с идеальными связями сумма элементарных работ всех активных сил н сил инерции точек системы равна нулю на любом возможном перемещении системы, допускаемом связями. Общее уравнение динамики (24) час го называю г объединенным принципом Да-ламбера Лагранжа. Его можно назвать лакже общим уравнением механики. Оно в случае равновесия системы при обращении в нуль всех сил инер щи точек системы переходит в нринцин возможных перемещений старики, только пока без доказательства его достаточности для равновесия системы.  [c.400]

В XVIII в. начинается интенсивное развитие в механике аналитических методов, т. е. методов,- основанных на применении дифференциального и интегрального исчислений. Методы решения задач динамики точки и твердого тела путем составления и интегрирования соответствующих дифференциальных уравнений были разработаны великим математиком и механиком Л. Эйлером (1707—1783). Из других исследований в этой области наибольшее значение для развития механики имели труды выдающихся французских ученых Ж. Даламбера (1717—1783), предложившего свой известный принцип решения зйдач динамики, и Ж. Лагранжа (1736—1813), разработавшего общий аналитический метод решения задач динамики на основе принципа Даламбера и принципа возможных перемещений. В настоящее время аналитические методы решения задач являются в динамике основными.  [c.7]


Решение. Маятник имеет одну степень свободы и его Лоложение определяется углом ф (см. рис. 324). Следовательно, qi=сила тяжести Р и 6/li= (—Ра sin ф)бф, где а=ОС. Поэтому Qi = —Pa sin ф. Кинетическая энергия маятника T=Jo( l i или T=Joобобщенную скорость, а (о=ф). Уравнение Лагранжа, так как 91=Ф, имеет вид  [c.380]

На основании уравнения Даламбера —Лагранжа сумма работ всех этих сил при любом возможном перемещении системы равна нулю. Следовательно, пользуясь аналитическим выражением злементарной работы, имеем  [c.393]

Второй путь. Неинерциальный наблюдатель мог бы с самого начала добавить к исходным (приложенным) силам переносные и кориолисоры силы инерции. Относительные скорости, входящие в Еыражения для кориолисовых сил, рассматривались бы при этом как неизвестные функции. Далее такой наблюдатель мог бы рассуждать так Теперь, после добавления сил инерции, в моей системе отсчета верен второй закон Ньютона значит, в этой системе верны и уравнения Лагранжа, если в них входит кинетическая энергия видимого мной (т. е. относительного ) движения и если обобщенные силы подсчитываются, исходя из виртуальных перемещений в относительном движении . Поэтому такой наблюдатель мог бы сразу выписать уравнение Лагранжа в своей системе отсчета, подсчитывая кинетическую энергию через свои , т. е. относительные скорости. Но при подсчете обобщенных сил ему пришлось бы принять во внимание и работу сил инерции на виртуальных перемещениях в относительном движении.  [c.164]

Глава X. ПРИНЦИП Д ЛЛЛМБЕРА И ПРИНЦИП ВИРТУАЛЬНЫХ ПЕРЕМЕЩЕНИЙ. УРАВНЕНИЯ ЛАГРАНЖА В ОБОБЩЕННЫХ КООРДИНАТАХ  [c.245]

Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]

Равенство (72.13) составляет содержание принципа Лагранжа — Даламбера при движении механической системы в неинерци-альной системе координат в неинерциальной системе координат, если на механическую систему наложены удерживающие идеальные связи, то сумма элементарных работ всех сил инерции, активных сил, переносных сил инерции и сил инерции Кориолиса, действующих на механическую систему на любом виртуальном перемещении, равна нулю в каждый данный момент времени.  [c.107]

Таким образом, согласно общему уравнению динамики, в любой момент двиэ сения системы с идеальными связями сумма элементарных работ всех активных сил и сил инерции точек системы равна нулю на любом возможном перемещении системы, допускаемом связями. Общее уравнение динамики (24) часто называют объединенным принципом Даламбера —Лагранжа. Его можно на-  [c.386]

Уравнение (6.44) выражает собой так называемый принцип потенциальной энергии при заданных внешних силах и граничных условиях действительные перемещения ui таковы, что для любых возможных перемещений первая вариация полной потенциальной энергии равна нулю, т. е. полная потенциальная энергия П имеет стационарное значение. Можно показать (теорема Лагранжа—Дирихле), что в положении устойчивого равновесия полная потенциальная энергия системы имеет минимальное значение, т. е. вторая вариация д П>0.  [c.123]

ПРИНЦИП возможных ПЕРЕМЕЩЕНИЙ. УРАВНЕНИЯ ФЕРРЕРСА, УРАВНЕНИЯ ЛАГРАНЖА ПЕРВОГО И ВТОРОГО РОДА.  [c.107]

Прицип Даламбера — Лагранжа, рассмотренный в 46, принадлежит к дифференциальным вариационным принципам механики. Возможные перемещения бг точек материальной системы следует рассматривать в случае нестационарных связей  [c.184]

Теорема Лагранжа — Дирихле приводит в этом случае к следующему положению если центр масс системы тяжелых точек занимает наинизилее из возможных смежных положений, то это положение равновесия системы будет устойчивым. Торричелли (1608—1647) в исследованиях по статике твердых и жидких тел считал этот принцип основным и самоочевидным. Лагранж в Аналитической механике использовал принцип Торричелли для доказательства принципа возможных перемещений. Не останавливаясь на подробном изложении этого классического доказательства, приведем следующее простое рассуждение. Заменим приложенные к системе силы натяжениями переброщен-ных через идеальные блоки нитей, к концам которых привешены грузы, соответственно равные по величине приложенным к системам силам. Рассматривая полученную таким образом новую систему как эквивалентную предыдущей и принимая  [c.341]


Смотреть страницы где упоминается термин Лагранжа перемещения : [c.65]    [c.108]    [c.34]    [c.206]   
Теория пластичности (1987) -- [ c.51 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте