Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Действие лагранжево Эйлеру и Лагранжу

Вариационная производная. Операции, выполняемые при составлении уравнений движения в форме уравнений Лагранжа второго рода (см. (3.29)), представляют собой действие оператора Эйлера-Лагранжа на функцию Лагранжа L q,t,q)  [c.65]

Принцип наименьшего действия Мопертюи — Эйлера — Лагранжа  [c.251]

Обращаясь к принципу наименьшего действия Мопертюи — Эйлера — Лагранжа (см. 17, гл. IV), Якоби замечает, что почти во всех учебниках, даже и в лучших, как Пуассона, Лагранжа и Лапласа, этот принцип представлен так, что, по моему мнению, его нельзя понять ([38], шестая лекция). Упрек Якоби относится, главным образом, к тому, что в изложении того времени была неясной связь принципа наименьшего действия с теоремой живых сил (с интегралом энергии). Кроме того, Якоби указывает на неудачное название самого принципа и связанное с этим неправильное понимание его сущности.  [c.257]


Уравнение движения ( динамики, упругой кривой, математической физики, параболического типа, эллиптического типа, гиперболического типа, смешанного типа, линии действия, теплопроводности Эйлера, Пуассона...). Уравнения движения в векторной форме ( с одним неизвестным...). Уравнения Гамильтона ( Лагранжа...).  [c.93]

Принцип Эйлера — Лагранжа в форме, предложенной Эйлером, и соответствующее выражение механического действия приведены в следующем параграфе.  [c.204]

Вместо главной функции Гамильтона введем характеристическую функцию Якоби. Характеристическая функция связана с главной функцией некоторым соотношением. Это соотношение совпадает с соотношением между механическим действием согласно Гамильтону и Остроградскому и механическим действием согласно Эйлеру и Лагранжу. Рассмотрим снова функцию  [c.372]

Обозначая действие согласно Эйлеру и Лагранжу через 5  [c.372]

Принцип Эйлера — Лагранжа, Из аксиомы идеальных связей непосредственно выводится основной принцип динамики. Действительно. Если связи заменены реакциями, то точки Шч можем мыслить как совершенно свободные и находящиеся под действием заданных сил Zv, Fv, и реакций связей -Rvz.  [c.143]

Принцип Гамильтона. Чтобы полнее выяснить свойства полного интеграла уравнения в частных производных Гамильтона — Якоби, следует рассмотреть функцию действия. Сначала выведем известный принцип Гамильтона из принципа Эйлера — Лагранжа (п. 8). Имеем  [c.315]

Например, электромагнитная сила Лоренца, действующая на частицу при наличии электрического и магнитного полей, порождается именно подобной силовой функцией. Из дифференциальных уравнений Эйлера — Лагранжа (см. ниже, гл. И, п. 10) следует, что связь между силой и силовой функцией при этом задается уравнением  [c.53]

Действие этого постулата не ограничивается областью статики. Он приложим также и к динамике, где принцип виртуальных перемещений соответствующим образом обобщается принципом Даламбера. Так как все основные вариационные принципы механики — принципы Эйлера, Лагранжа, Якоби, Гамильтона — являются всего лишь другими математическими формулировками принципа Даламбера, постулат А есть в сущности единственный постулат аналитической механики и поэтому играет фундаментальную роль Принцип виртуальных перемещений приобретает особое значение в важном частном случае, когда приложенная сила Fi моногенная, т. е. когда она получается из одной скалярной функции — силовой. В этом случае виртуальная работа равна вариации силовой функции LJ qi,. .., ( ). Так как силовая функция равна потенциальной энергии, взятой с обратным знаком, то можно сказать, что состояние равновесия механической системы характеризуется стационарностью потенциальной энергии, т. е. условием  [c.100]


Несмотря на то, что имеется целый ряд вариационных принципов, связанных с именами Эйлера, Лагранжа, Якоби, Гамильтона, все эти принципы взаимосвязаны, и к ним ко всем подходит название принцип наименьшего действия , если понимать этот термин в широком смысле слова.  [c.136]

Якоби раскритиковал рассуждения Лагранжа, касающиеся принципа наименьшего действия , указав на важность того обстоятельства, что варьирование происходит при определенных граничных значениях последнее невозможно, если в качестве аргумента выбрано время. В этом случае верхний предел интеграла действия должен варьироваться определенным образом с тем, чтобы обеспечить сохранение энергии вдоль истинного и варьированного путей. Тем не менее если соответствующим образом понять формулировку принципа наименьшего действия, данную Эйлером и Лагранжем, то окажется, что их выкладки совершенно правильны, а их принцип отличается от принципа Якоби лишь формально. Как мы видели, принцип Якоби представляет собой результат следующих операций.  [c.163]

В свете всего сказанного о параметрических системах формулировка принципа наименьшего действия для консервативных систем, данная Эйлером и Лагранжем, получает новый смысл. Напомним, что этот принцип требует минимизации интеграла по времени от величины 2Т при условии, что для движущейся точки выполняется энергетическое уравнение Т + V = . При переходе от пространства конфигураций к фазовому пространству принцип Эйлера — Лагранжа принимает следующую форму. Требуется найти условия стационарности интеграла  [c.221]

Принцип наименьшего действия (Эйлера—Лагранжа) 17, 18, 165  [c.403]

И, словно отвечая Эйлеру, Лагранж в своей Аналитической механике говорит, что он называет этот принцип принципом наименьшего действия, по аналогии с принципом, который Мопертюи дал под этим названием .  [c.798]

Родство формы уравнений (13) с уравнениями динамики очевидно V соответствует интегралу действия Эйлера — Лагранжа, уравнение (13) — уравнению живых сил, % — некоторой функции полной энергии.  [c.813]

М. у. могут быть получены из наименьшего действия принципа, т. е. их можно совместить с Эйлера — Лагранжа уравнениями, обеспечивающими вариационную экстремальность ф-ции действия.  [c.38]

Наиболее выдающиеся исследования Остроградского относятся к обобщениям основных принципов и методов механики. Он внес существенный вклад в развитие вариационных принципов. Вариационные принципы механики входят в круг вопросов, интересовавших Остроградского в течение всей его жизни. Постоянное возвращение к вариационному исчислению и вариационным принципам механики роднит ого с Лагранжем — одним из создателей вариационного исчисления и творцом аналитической механики. Ранее нами указывалось, что вариационными принципами механики занимались такие корифеи науки, как Ферма, Мопертюи, Эйлер, Лагранж, Гамильтон. Мы также отметили, что новый этап в разработке принципа наименьшего действия связан с именем Лагранжа, который поставил целью свести динамику к чистому анализу. В работах Лагранжа проблемы механики представляют собой лишь определенный класс задач вариационного исчисления.  [c.214]

Естественно возникает вопрос об отношении принципа Герца к принципу наименьшего действия Эйлера — Лагранжа в его классической форме и в форме, которую придал ему Якоби, и к принципу Гамильтона.  [c.233]

Развитие принципа наименьшего действия связано с именами П. Л. Мопертюи (1698— 1759), Эйлера, Лагранжа, К. Г. Якоби (1804 — 1851). Существенный вклад в развитие аналитической механики на основе сформулированного им принципа был сделан У. Р. Гамильтоном (1805— 1865). Независимо от Гамильтона этот принцип несколько позднее был разработан Остроградским, который применил его для более широкого класса задач. Этот наиболее важный и общий принцип получил название принципа Гамильтона — Остроградского.  [c.12]


В задачах первого типа требуется найти законы изменения управляющих сил и моментов, обеспечивающие перемещение механической системы за заданное время из начального фазового состояния в заданное целевое множество с минимальными затратами на преодоление сил сопротивления среды. Такие задачи имеют следующие особенности. Во-первых, они нерегулярны [26], если только в текущее выражение для мощности сил сопротивления не входят в явном виде управляющие воздействия. Действительно, действующие на механическую систему управляющие силы и моменты входят в уравнения ее движения линейно. Отсюда гамильтониан зависит от управляющих сил и моментов также линейно. Поэтому уравнения Эйлера-Лагранжа не содержат в явном виде управляющие воздействия и, следовательно, не позволяют формально определить их оптимальные значения в терминах фазовых и сопряженных переменных. Во-вторых, как показывает опыт, это верный признак того (и так оно оказалось), что оптимальные программы изменения управляющих сил и моментов имеют импульсные составляющие. Поэтому классические вариационные средства непосредственно не применимы для нахождения оптимальных программ (в [12] дано обобщение принципа максимума Понтрягина на простейшие классы импульсных управлений). Задачи, исследованные во второй и третьей главах, принадлежат данному типу.  [c.39]

Решение вспомогательной задачи. Далее предполагается, что выполнены ограничения Ы-ЬЗ и К1 из подразделов 3.1, 3.4, 5.2 главы I. Тогда величины Вт и Во могут быть рассчитаны по формуле (3.33) раздела 3 той же главы. При этом гидродинамические коэффициенты будут функциями только формы тела, числа Рейнольдса и, возможно, угла атаки. Площадь проекции манипулятора на плоскость, перпендикулярную вектору скорости движения его центра масс является функцией только угла атаки. Теперь можно сделать вывод, что Вт = Вт Р,со,у), Во = Во Р,со,у), т.е. величины действующего на ОТМ лобового сопротивления являются функциями только его обобщенных координат и скоростей. Значит, условия применения классической процедуры Эйлера Лагранжа соблюдены.  [c.150]

Стационарность действия необходимо влечет уравнения Эйлера-Лагранжа  [c.667]

Поскольку физические полевые величины в любом случае обеспечивают стационарность действия, то уравнения Эйлера-Лагранжа  [c.669]

Покажем, что каждая обобщенная группа инвариантности действия позволяет при условии выполнения уравнений Эйлера-Лагранжа  [c.680]

Г. Принцип наименьшего действия в форме Мопертюи— Эйлера—Лагранжа—Якоби. Пусть теперь функция Гамильтона Н (р, д) не зависит от времени. Тогда Н (р, д) есть первый интеграл уравнений Гамильтона (1). Спроектируем поверхность Н р, д) = h пз расширенного фазового пространства ( , д, i) в пространство (р, g) . Получится 2п — 1-мерная поверхность Н (Р, д) = h в R ", которую мы уже рассматривали в пункте Б и которую мы обозначили М .  [c.215]

В гл. 5 мы рассмотрели два способа описания динамических систем, возникающих в классической механике. Гамильтонов формализм приводит к рассмотрению динамических систем в пространстве четной размерности, задаваемых системой обыкновенных дифференциальных уравнений первого порядка. При таком подходе координаты и скорости рассматриваются как равноправные координаты в фазовом пространстве. С другой стороны, лагранжев формализм работает исключительно с координатами в конфигурационном пространстве и описывает динамику с помощью систем обыкновенных дифференциальных уравнений второго порядка. Оказывается, что лагранжев формализм может быть введен посредством рассмотрения всех потенциально возможных траекторий системы, среди которых настоящие траектории выделяются как критические точки некоторого функционала, заданного на множестве всех кривых в конфигурационном пространстве. Описания такого рода обычно называются вариационными, поскольку необходимо варьировать потенциально возможные траектории, чтобы найти настоящие. Уравнения Эйлера — Лагранжа (5.3.2) представляют собой не что иное, как уравнения, описывающие критические в вышеописанном смысле кривые функционала действия, рассматриваемого в 4.  [c.342]

Это равенство показывает, что для лагранжианов на многообразии динамика определяется требованием минимизации функционала действия, поскольку, как мы показали в п. 5.3 б, уравнения Эйлера — Лагранжа инвариантны относительно выбора локальной системы координат, т. е. для лагранжианов  [c.372]

Это и есть принцип наименьшего действия Мопертюи Эйлера— Лагранжа — Якоби) ). Важно отметить, что отрезок о х Ь, параметризующий кривую у, не фиксирован и может быть разным у сравниваемых кривых. Зато одинаковой должна быть энергия (функция Гамильтона). Заметим также, что принцип определяет форму траекторк[и, но не время для определения времени нужно воспользоваться постоянной энергии.  [c.216]

Принцип Эйлера — Лагранжа позволяет определять реакции связей. Действительно, если к заданным активным силам, действующим на механическую систему, добавим все реакции связей, то из принципа Эйлера — Лагранжа получим уравнения Ньютона для системы совершенно свободных точек. Однако практически более интересным является метод определения отдельных реакций. Идея этого метода заключается в том, что заданные активные силы дополняют одной интересующей нас реакцией, но зато систему понимают свободной от связи, порождающей одну и именно эту интересующую пас реакцию. Для освобожденной таким образом механической системы, имеющей на одну степень свободы больше, определяют дополнительную голоноыную координату q, изменение которой дает освобожденное перемещение в системе вычисляют новые Г, обобщенную силу Qq в освобожденном движении, подставляют значения переменных для действительного движения в уравнение Лагранжа  [c.171]


Мне кажется, что предыдущие замечания могут заставить признать, что между принципом наименьшего действия и законом равновесия нет никакого параллелизма и никакой гармонии, как это думал Эйлер и даже Лагранж. Эйлер в Берлинских мемуарах ) высказал даже мнение, что, рассматривая бесконечно малое движение, возможно вывести закон равновесия из принципа наименьшего действия и что единственное затруднение, которое здесь имеет место, состоит в том, чтобы разобраться во всех бесконечно малых, которые фигурируют в этой задаче. Видимость подобной гармонии исчезает в большой своей части, если привести интеграл к его правильному виду  [c.291]

Продолжая исследования М. В. Остроградского, Ф. А. Слудский ) и затем М. И. Талызин ) показали, что принцип наименьшего действия в форме Эйлера—Лагранжа и принцип Гамильтона—Остроградского существенно различны. Дело в том, что в принципе Гамильтона вариации координат 6 , изохронны и время не варьируется, так как каждой точке действительной траектории ставится в соответствие точка на другой бесконечно близкой кривой, причем обе точки проходятся в один и тот же момент времени. В случае же принципа Эйлера— Лагранжа связи стационарны и имеет место закон живых сил Т = U + h. При этом допущении время должно варьироваться.  [c.834]

Сопоставление принципа Гамильтона с принципом наименьшего действия Эйлера—Лагранжа показывает, что первый допускает более широкое обобщение. Принцип Гамильтона является наиболее общей и абстрактной формой изложения физической сущности лгеханики. Почти для всех разделов физики можно найти вариационные принципы, которые приведут к соответствующим уравнениям движения при таком построении теории этих отделов физики будут характеризоваться известной структурной аналогией, имеющей серьезную познавательную ценность.  [c.865]

Янга — Миллса компонента представляет собой не динамич. неремеиную, а множитель Лагранжа. Соответствующий eii канонпч. импульс, вычисленный по стандартной ф-ле P — >LjbA тождественно обращается в нуль, а ур-пие Эйлера — Лагранжа, подмечающееся при варьировании действия по Aq,  [c.231]

Легко показать далее, следуя Герцу, что естественное движение свободной голономной системы переводит систему из данного начального в достаточно близкое конечное положение за более короткое время, чем какое-либо другое возможное движение с одинаковым постоянным значением энергии, так как в этом случае энергия п скорость одинаковы, и время перехода пропорционально длине пути. В этом случае интеграл по времени от энергии равен произведению данного постоянного значения энергии на промежуток времени перехода. Таким образом, получается принцип наименьшего действия Эйлера — Лагранжа. Отношение этого принципа к пргшципу Герца такое же, как принципа наименьшего действия в форме Якобп.  [c.234]

Горак выводит для склерономной и реономной неголономных систем в голономных и неголономных координатах, а также в склерономных параметрах обобщенные уравнения Ньютона, Лагранжа — Эйлера и Аппеля — Гиббса. Из этих уравнений получаются как частные случаи уравнения Больцмана, Чаплыгина — Воронца, Ценова и др. Из уравнений Горака можно получить также обобщенный принцип Гамильтона — Остроградского и обобщенные уравнения неголономной динамики в канонической и естественной формах. С целью упрощения установленных им уравнений 3. Горак строит неголономное многообразие со специальной метрикой — вселенную системы. Во вселенной системы, как оказывается, уравнения Лагранжа—Эйлера и Аппеля — Гиббса получают весьма простой вид. Во вселенной обобщаются также вариационные принципы механики — принципы Гаусса — Герца наименьшей кривизны и Гамильтона — Остроградского наименьшего действия. 3. Горак показывает, что принцип Гамильтона — Остроградского эквивалентен уравнениям линии вселенной . Рассматривая время как временной параметр и вводя понятие пространственно-временной силы , 3. Го-раку удалось значительно упростить выражения дифференциальных урав- 105 нений движения неголономной системы.  [c.105]

Движение твердого тела около неподвижной точки является классической проблемой теоретической механики, но известные случаи Эйлера, Лагранжа и Ковалевской исследованы при весьма существенных ограничениях, налагаемых на действующие силы. Практическая гироскопия наших дней потребовала развития теории движения гироскопа при наличии сил сухого и гидродинамического трения, потребовала учета масс и моментов инерции механизмов подвески, вычисления реальных уходов осей симметрии гироскопов и создания теории сложных гироскопических систем. Мы сошлемся на монографию академика А. Ю. Ишлинского , содержание которой в значительной мере обусловлено новыми задачами гироскопии в связи с разработкой систем управления движущихся объектов (ракет, самолетов, судов и т. п.).  [c.32]

Движение твердого тела около неподвижной точки является классической проблемой теоретической механики, но известные случаи Эйлера, Лагранжа и Ковалевской исследованы при весьма существенных ограничениях на действующие силы. Практическая гироскопия наших дней потребовала развития теории движения гироскопа при на-  [c.12]


Смотреть страницы где упоминается термин Действие лагранжево Эйлеру и Лагранжу : [c.142]    [c.102]    [c.400]    [c.576]    [c.141]    [c.677]    [c.681]    [c.648]    [c.713]    [c.100]   
Курс теоретической механики. Т.2 (1977) -- [ c.372 ]



ПОИСК



Действие Эйлера

Действие лагранжево

Действие по Лагранжу

Лагранжа Эйлера

Принцип наименьшего действия Мопертюи—Эйлера —Лагранжа

Принцип наименьшего действия Эйлера—Лагранжа)

Эйлер

Эйлера лагранжев

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте