Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон

Изложены методы расчета размеров элементов конструкций (стержней, пластин, оболочек), обеспечивающих требуемую надежность при случайных воздействиях. Приведено решение задачи для случаев воздействий, имеющих различные законы распределения. Рассмотрены статический и динамический расчеты конструкций как по теории случайных величин, так и по теории случайных функций. Рассмотрены также вопросы оптимизации при случайных нагружениях. Книга содержит многочисленные примеры расчетов.  [c.2]


В первой главе рассмотрены задачи нагружения, описываемые в рамках теории случайных величин. Получены удобные для практического применения соотношения для определения размеров поперечных сечений широкого класса элементов конструкций и схем нагружения (стержни, валы, пластины, оболочки и т.п.) при различных комбинациях законов распределения нагрузок и несущей способности.  [c.3]

Если закон распределения нагрузки известен, то, пользуясь правилами нахождения закона распределения функций случайного аргумента (а вид этой функции крайне прост), можно найти закон распределения максимальных напряжений, действующих в конструкции/1 (S)  [c.6]

Случайный характер других механических характеристик, например модуля упругости Е, можно учесть, используя формулу полной вероятности. Пусть модуль упругости случаен и закон распределения его/s Е) известен. Принимая значение модуля Е равным фиксированной величиной , определим по формуле полной вероятности/ (vv)  [c.7]

Если /4 h) подчиняется нормальному закону распределения,  [c.8]

ЗАДАННОЙ НАДЕЖНОСТИ ПРИ НОРМАЛЬНОМ ЗАКОНЕ  [c.8]

Рассмотрим решение задачи для частного случая, когда распределения нагрузки и несущей способности подчиняются нормальному закону. Этот случай имеет широкое применение и позволяет получить простое замкнутое решение. Применение нормального закона оправдано в случае совместного действия достаточно большого числа случайных-возмущений, подчиняющихся различным законам распределения если среди них нет превалирующего, то результирующее возмущающее воздействие согласно центральной предельной теореме теории вероятностей имеет распределение, близкое к нормальному. На практике распределения многих возмущений отличны от нормального хотя бы потому, что целый ряд параметров (предел прочности, размеры и т.п.) не могут быть величинами отрицательными. Но усечения законов распределения обычно невелики, что позволяет игнорировать теоретическую нестрого сть допущения нормального распределения.  [c.8]

По правилам нахождения законов распределения функции случайного аргумента [9]  [c.9]

Разность R-S также будет распределена по нормальному закону [9] с математическим ожиданием  [c.9]


Предположив, что случайный размер толщины распределен по нормальному закону, коэффициент вариации Afj = 0,033, а доверительная вероятность = 0,9986 (для которой 7 = 3), можем по формуле (1.12) получить  [c.10]

Из выражения (1.20) видно что не при всех значениях/4и возможно спроектировать конструкцию с заданной надежностью. В частности, при Ar > 1/7 не существует конструкции, имеющей гауссовский уровень надежности 7 Графики, показывающие зависимость относительных размеров поперечного сечения F/F от гауссовского уровня надежности и изменчивости несущей способности и нагрузки приведены на рис. 1 и 2. Здесь F — площадь поперечного сечения, подсчитанная при значениях нагрузки и несущей способности, равных их математическим ожиданиям. Анализ показывает, что изменение А сильнее влияет на F/F, чем изменение Aq. Поэтому особо важно уменьшать величину Один из возможных путей — усечение закона распределения несущей способности путем отбраковки материала конструкции. Так, усечение нормального закона распределения на уровне 2а дает = 0,9Af , а усечение на уровне а дает уже А = 0,54Л . Если значения коэффици-  [c.10]

При Проектировании конструкций заданной надежности по жесткости для случая нормального закона распределения нагрузки можно, учитывая, что Я = из (1.6) получить формулу для расчета К  [c.11]

Для задачи проектирования конструкции заданной надежности по устойчивости в случае нормального закона распределения нагрузки для уровня 4кр. определяющего заданную надежность, можно получить  [c.12]

ОПРЕДЕЛЕНИЕ ЗАКОНА РАСПРЕДЕЛЕНИЯ ЛИНЕЙНОЙ ФУНКЦИИ СЛУЧАЙНОГО АРГУМЕНТА В НЕКОТОРЫХ ЧАСТНЫХ СЛУЧАЯХ  [c.12]

При решении задачи нахождения надежности элемента конструкции приходится искать вероятность события Л - 5 > 0. В связи с этим необходимо знать законы распределения несущей способности R и напряжения S. Обычно законы распределения R и нагрузки q бывают заданы, а закон распределения напряжения S определяют по известному закону распределения нагрузки q, т.е./з (17) известен. Необходимо найти/ (S), если S = Kq.  [c.12]

По правилам нахождения закона распределения функции случайного аргумента в нашем случае имеем  [c.13]

Рассмотрим частные случаи законов распределения нагрузки q.  [c.13]

I. Нормальный закон распределения  [c.13]

Следовательно, для всех наиболее употребляемых на практике законов распределения линейные преобразования случайных величин вида S = Kq не меняют закона распределения, изменяются лишь его параметры.  [c.16]

РАСЧЕТ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ЗАДАННОЙ НАДЕЖНОСТИ ПО ПРОЧНОСТИ ПРИ ЗАКОНАХ РАСПРЕДЕЛЕНИЯ НАГРУЗКИ И НЕСУЩЕЙ СПОСОБНОСТИ, ОТЛИЧНЫХ ОТ НОРМАЛЬНОГО  [c.16]

Законы распределения нагрузки и несущей способности могут быть самыми различными. Поэтому в общем случае не всегда удается получить простые формулы для определения К, подобные полученным для случая нормального закона распределения. Но в ряде случаев для некоторых комбинаций законов распределения нагрузки и несущей способности это удается.  [c.16]

Нагрузка и несущая способность подчиняются экспоненциальному закону.  [c.16]

Для законов распределения имеем /з ( )= 3 ехр[-Хз (( - o)]  [c.16]

Сферический купол радиусом г = 1м нагружен давлением q, величина которого случайна с экспоненциальным законом распределения, у которого = = 5,75 1/МПа, Чо = 2 МПа. Кромки купола шарнирно оперты на упругое опорное кольцо (рис. 3). Материал оболочки и кольца одинаков, его несущая способность случайна с экспоненциальным законом распределения, у которого = 0,03 1/МПа, = 300 МПа.  [c.18]

Нагрузка и несущая способность распределены по закону Вей-булла  [c.18]

Для законов распределения имеем  [c.18]

Если /3=2 а = 2а (что соответствует закону Релея), то  [c.20]


Если /3 = 1 а= 1/Х (что соответствует экспоненциальному закону), то  [c.20]

Нагрузка распределена по закону распределения наибольших значений двойное экспоненциальное распределение), несущая способность - по нормальному закону  [c.21]

С учетом того, что S= Kq, для закона распределения S имеем  [c.21]

Для рассматриваемого закона распределения напряжений  [c.21]

Проведя аналогичные выкладки для различных сочетаний законов распределения нагрузки и несущей способности, когда не удается аналитическими методами взять интеграл в выражении для надежности, можно получить подобные же выражения для определения К (эти результаты приведены в табл- 1.2).  [c.22]

Цилиндрическая оболочка радиусом г = 1 м нагружена внутренним давлением q, величина которого случайна, с нормальным законом распределения с параметрами гпд = 1,8 МПа, oq = 0,036 МПа. Несущая способность материала оболочки случайна и распределена по закону Вейбулла с параметрами р = 2, R = 670 МПа, а = 226= МПа .  [c.22]

Воспользуемся данными табл. 1.2. Для рассматриваемых параметров законов распределения имеем Г = 0,8934, Г = 0,324,  [c.22]

Нагрузка и несущая способность распределены по логарифмически нормальному закону В этом случае  [c.22]

С <0,30/, Si <1,0% Мп < 2,5% Сг < 3,0% Ni <3,0% Мо <1,0% Си < =-=3,0% А1 <0,75% Ti < -< 0,35% W < 2,0%, установлено, что для данного диапазона легирования изменение механических свойств металла шва пропорционально концентрации легирующих элементов и что при комплексном их легировании действие всех элементов подчиняется закону аддитивности. Непосредственное определение механических характеристик металла швов позволило установить коэффициенты влияния каждого элемента и составить эмпирические уравнения для расчета олшдаемых механических характеристик металла сварных низколегированных ншов в следующем виде для предела прочности шва, кгс/мм  [c.201]

Если не удается получить аналитическую зависимость коэффициента К от размеров поперечных сечений элемента конструкции, то эту зависимость можно выразить графически следующим образом. Тем или иным численным методом, используя современные ЭВМ, решают прямую детерминистическую задачу нахождения максимального напряжения S от действия внешней нагрузки q = при заданном характерном размере поперечного сечения h. Согласно выражению (1.1) найденное значение 5 в этом случае будет равно коэффициенту К. Варьируя величину Л, можно получить зависимость К = /(/г), по которой строится график. Поставим задачу пусть на конструкцию действует случайная нагрузка q, закон распределения которой /2 (q) известен. Несушая способность материала конструкции также случайна, и закон распределения ее/2 (R) известен. Требуется определить размеры поперечного сечения конструкции из условия равенства ее надежности заданной.  [c.6]

Геометрические параметры сортамента, из которого изготавливаются элементы конструкции (толщина листа, площадь поперечного сечения профиля, толщина стенок труб и т.п.),также являются случайными величинами с законом распределения Д И). Поэтому найденный в соответствии с зависимостями (1.4), (1.6), (1.9) размер поперечного сечения /1расч представляет собой  [c.8]

На сферическую оболочку радиусом г = 1 м действует внутреннее давление q, величина которого случайна и распределена по нормальному закону. Пусть = = 5 МПа = 0,5 МПа nijf = 500 МПа t/j = 50 МПа Надо определить толщину оболочки А, при которой Я = 0,9758. Случайный разброс толщины оболочки следует учитывать с доверите сьной вероятностью Я , = 0,9986, т.е. Язад/Я = 0.9772. Для Н = 0,9772 гауссовский уровень надежности 7 = 2. По (1.19) находим а =  [c.9]

Прямоугольная пластина длиной 2 м, шириной 1 м нагружена равномерно распределенной нагрузкой q, случайная величина которой распределена по нормальному закону (Шц = I МПа oq = 0,1 МПа). Концы пластины защемлены по всему контуру. У материала пластины д = 0,3 = 500 МПа aj = 50 МПа. Надо так подобрать толщину h, чтобы надежность = 0,9758. Случайный разброс тол-шлны оболочки следует учитывать с доверительной вероятностью Я/, = 0,9986, т.е. Язад/Я , = 0,9772. Для Я = 0,9772 7 = 2 по (1.19) а = 0,96 МПа" /3 = 24 X X Ю МПа" f = 10 МПа". По формуле (1.18) находим К = 374. По данным [2] для такой пластины а, = 0,497. Тогда по табл. 1.1  [c.10]

Круглая пластина радиусом 1 м нагружена в центре сосредоточенной силой, величина которой случайна и распределена по нормальному закону гпр = 5000 Н ар = 500 Н). Концы пластины защемлены по всему контуру. Надо так подобрать толщину Л, чтобы надежность пластины пс жесткости равнялась 0,9962. Известно, что с вероятностью = 0,9986 случайный модуль Е>2 - 10 Па. Случайный разброс толшдаы пластины следует учитывать с доверительной вероятностью Hf, = = 0,9986, т.е. = 0.999. Пусть = 0 5 - м = 2 10" Па. Дм  [c.11]

На круглую пластину радиусом 1 м действуют сжимающие радиалшые нагрузки, равномерно распределенные по контуру, которые представляют собой случайную величину с нормальным законом распределения. Края пластины свободно оперты по контуру. Надо так подобрать толщину пластины й,то)бы ее надежность по устойчивости Язад = 0,9958. Кроме того, известно, что т = 2 10 Н/м а = = 2 10 Н/м 11 = 0,3 с вероятностью Hg = 0,9986 Е>2 - 10 Па. Учет случайного разброса толщины пластины следует проводить с доверительной вероятностью Ял = 0,9986, т.е. Язад/Я -Я = 0,9986. Для Я = 0,9986 7 = 3. По (1.23)  [c.12]


Таким образом, получшти нормальный закон распределения с параметрами  [c.13]

Лля рассматриваемой оболочки К = rfh, отсюда/i = rIK = 2,67 10" м. В предположении нормального закона распределения значения толщины оболочки с коэффициентом вариации Л/j = 0,033 и доверитсльНий вероятности = 0,9986 (для которой у = 3) по формуле (1.12) для номинальной толщины можно получить  [c.22]


Смотреть страницы где упоминается термин Закон : [c.165]    [c.6]    [c.7]    [c.8]    [c.14]    [c.14]    [c.16]   
Смотреть главы в:

Физика процессов в генераторах когерентного оптического излучения  -> Закон


Основы теоретической механики (2000) -- [ c.0 ]

Введение в ядерную физику (1965) -- [ c.300 ]

Динамика процессов химической технологии (1984) -- [ c.0 ]

Гидравлика. Кн.2 (1991) -- [ c.0 ]

Динамика машинных агрегатов на предельных режимах движения (1977) -- [ c.0 ]

Техника в ее историческом развитии (1982) -- [ c.0 ]

Жидкости для гидравлических систем (1965) -- [ c.0 ]

Металлургия благородных металлов (1987) -- [ c.0 ]

Коррозия и защита от коррозии (2002) -- [ c.0 ]

Теория пластичности (1987) -- [ c.0 ]

Промышленные полимерные композиционные материалы (1980) -- [ c.0 ]

Справочник по электротехническим материалам Т1 (1986) -- [ c.0 ]

Гидравлика (1984) -- [ c.0 ]

Гидравлика Основы механики жидкости (1980) -- [ c.0 ]

Механика сплошной среды Часть2 Общие законы кинематики и динамики (2002) -- [ c.0 ]

Основы прогнозирования механического поведения каучуков и резин (1975) -- [ c.0 ]

Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.0 ]

Краткий справочник по физике (2002) -- [ c.0 ]

Свойства газов и жидкостей Издание 3 (1982) -- [ c.0 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте