Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип наименьшего действия Мопертюи—Эйлера —Лагранжа

Принцип наименьшего действия Мопертюи — Эйлера — Лагранжа  [c.251]

Обращаясь к принципу наименьшего действия Мопертюи — Эйлера — Лагранжа (см. 17, гл. IV), Якоби замечает, что почти во всех учебниках, даже и в лучших, как Пуассона, Лагранжа и Лапласа, этот принцип представлен так, что, по моему мнению, его нельзя понять ([38], шестая лекция). Упрек Якоби относится, главным образом, к тому, что в изложении того времени была неясной связь принципа наименьшего действия с теоремой живых сил (с интегралом энергии). Кроме того, Якоби указывает на неудачное название самого принципа и связанное с этим неправильное понимание его сущности.  [c.257]


Л. Эйлер впервые строго доказал принцип Мопертюи для случая движения материальной точки, находящейся под действием центральной силы (1744 г.). Наконец, Ж. Лагранж распространил принцип наименьшего действия на широкий класс задач динамики системы.  [c.201]

В формулировках принципа наименьшего действия, обсуждавшихся до сих пор, не уделялось внимания условиям движений, предположенных возможными, и все-таки эти условия имеют такое же значение, как и сама величина действия, так как в зависимости от характера наложенных условий содержание принципа принимает совершенно различное значение. Дело идет не только о признаке, по которому сделан выбор, но и о природе движений, которые подлежат отбору. Однако, пока это обстоятельство, недооценка которого привела ко многим роковым ошибкам, было ясно понято и принцип наименьшего действия получил первую правильную формулировку, прошло длительное время. Если открытие принципа наименьшего действия приурочить именно к этому моменту, то только Лагранжу можно приписать эту заслугу. Между тем такая оценка была бы несправедлива в отношении тех людей, которые подготовили почву и начали работу, впоследствии удачно завершенную Лагранжем. К числу этих людей относятся прежде всего Лейбниц, судя главным образом по его письму 1707 г., оригинал которого утерян, затем Мопертюи и Эйлер.  [c.583]

И, словно отвечая Эйлеру, Лагранж в своей Аналитической механике говорит, что он называет этот принцип принципом наименьшего действия, по аналогии с принципом, который Мопертюи дал под этим названием .  [c.798]

Наиболее выдающиеся исследования Остроградского относятся к обобщениям основных принципов и методов механики. Он внес существенный вклад в развитие вариационных принципов. Вариационные принципы механики входят в круг вопросов, интересовавших Остроградского в течение всей его жизни. Постоянное возвращение к вариационному исчислению и вариационным принципам механики роднит ого с Лагранжем — одним из создателей вариационного исчисления и творцом аналитической механики. Ранее нами указывалось, что вариационными принципами механики занимались такие корифеи науки, как Ферма, Мопертюи, Эйлер, Лагранж, Гамильтон. Мы также отметили, что новый этап в разработке принципа наименьшего действия связан с именем Лагранжа, который поставил целью свести динамику к чистому анализу. В работах Лагранжа проблемы механики представляют собой лишь определенный класс задач вариационного исчисления.  [c.214]


Развитие принципа наименьшего действия связано с именами П. Л. Мопертюи (1698— 1759), Эйлера, Лагранжа, К. Г. Якоби (1804 — 1851). Существенный вклад в развитие аналитической механики на основе сформулированного им принципа был сделан У. Р. Гамильтоном (1805— 1865). Независимо от Гамильтона этот принцип несколько позднее был разработан Остроградским, который применил его для более широкого класса задач. Этот наиболее важный и общий принцип получил название принципа Гамильтона — Остроградского.  [c.12]

Г. Принцип наименьшего действия в форме Мопертюи— Эйлера—Лагранжа—Якоби. Пусть теперь функция Гамильтона Н (р, д) не зависит от времени. Тогда Н (р, д) есть первый интеграл уравнений Гамильтона (1). Спроектируем поверхность Н р, д) = h пз расширенного фазового пространства ( , д, i) в пространство (р, g) . Получится 2п — 1-мерная поверхность Н (Р, д) = h в R ", которую мы уже рассматривали в пункте Б и которую мы обозначили М .  [c.215]

Это и есть принцип наименьшего действия Мопертюи Эйлера— Лагранжа — Якоби) ). Важно отметить, что отрезок о х Ь, параметризующий кривую у, не фиксирован и может быть разным у сравниваемых кривых. Зато одинаковой должна быть энергия (функция Гамильтона). Заметим также, что принцип определяет форму траекторк[и, но не время для определения времени нужно воспользоваться постоянной энергии.  [c.216]

Лагранжу совершенно чужды теологические рассуждения Мопертюи. И не находят у него никакого отклика слова Эйлера в письме к нему от 9 ноября 1762 г. Какое удовлетворение получил бы Мопертюи, если бы был еще жив, увидев свой принцип наименьшего действия возведенньш на высшую ступень, доступную для него ).  [c.798]

Лагранж, вместе с тем, отвергает претензии принципа наименьшего действия на всеобщую значимость и на звание основного общего закона природы. Мы уже видели активное наступление теологии на науку под флагом самой науки в XVIII в., выразившееся в работах Мопертюи, отчасти Эйлера и др. И тот факт, что Лагранж отвергал всякие метафизические мотивы, связанные с нажимом на антропоморфно близкое нам наименьшее действие , помогал материалистически-детерминистическому мировоззрению в его борьбе с идеалистической телеологией.  [c.801]

Формулировка Мопертюи принципа наименьшего действия была еще весьма несовершенна. Первая научная формулировка принципа была дана Эйлером в том же 1744 г. в сочинении Метод нахождения кривых линий, обладающих свойствами максимума либо минимума, или решение изопериметрической задачи . Он сформулировал свой принцип следующим образом интеграл J mvds имеет наименьшее значение для действительной траектории, рассматривая последнюю в группе возможных траекторий, имеющих общие начальное и конечное положения и осуществляющихся с одним и тем же значением энергии. Эйлер дает своему принципу точное математическое выражение и строгое обоснование для одной материальной точки, подчиненной действию центральных сил. На протяжении 1746—1749 гг. Эйлер написал несколько работ о фигурах равновесия гибкой нити, где принцип наимень шего действия получил применение к задачам, в которых действуют упругие силы. Дальнейшее продвижение здесь было достигнуто трудами Ж. Лагранжа.  [c.185]

Первая публикация Мопертюи о принципе наименьшего действия относится к 1744 г. Пменно в этот год он принимает предложение Фридриха Великого занять пост президента Берлинской академии наук и переезжает в Берлин. Это было официальное признание высоких научных заслуг Мопертюи — автора нескольких известных книг и большого количества статей по математике, механике , физике, астрономии, биологии и прикладным проблемам. Публикации по принципу наименьшего действия — это не только новый этап в творчестве Мопертюи, поиск фундаментальных принципов мироздания, но и важнейшее событие в истории классической механики. Начавшаяся после публикации принципа дискуссия, активными участниками которой стали Кениг, Эйлер, Даламбер, Дарси, Куртиврон, Вольтер, Лагранж, Л. Карно и другие видные ученые XVIII-XIX вв., привела к уточнению многих ранее введенных понятий, философскому осмыслению роли механики и ее принципов в системе наук, формированию нового математического аппарата механики, получившей после Лагранжа название аналитической.  [c.232]

В 18 в. интенсивно развиваются аналитич. методы решения задач М., основывающиеся на использовании дифф. и интегр. исчислений. Для матер, точки эти методы разработал Л. Эйлер, заложивший также основы динамики ТВ. тела. Аналитич. методы решения задач динамики системы основываются на принципе возможных перемещений, развитию и обобщению к-рого были посвящены исследования швейц. учёного И. Бернулли, франц. учёных Л. Карно, Ж. Фурье и Ж. Лагранжа, и на принципе, высказанном франц. учёным Д Аламбером и носящем его имя. Разработку этих методов завершил Лагранж, получивший ур-ния движения системы в обобщённых координатах (назв. его именем) им же разработаны основы совр. теории колебаний. Др. путь решения задач М. исходит из принципа наименьшего действия в форме, высказанной для точки франц. учёным П. Мопертюи и обобщённой на случай системы точек Ла-гранжем. В М. сплошной среды Эйлером, швейц. учёным Д. Бернулли, а также Лагранжем и Д Аламбером были разработаны теор. основы гидро-, динамики идеальной жидкости.  [c.415]



Смотреть страницы где упоминается термин Принцип наименьшего действия Мопертюи—Эйлера —Лагранжа : [c.460]    [c.548]   
Смотреть главы в:

Теоретическая механика  -> Принцип наименьшего действия Мопертюи—Эйлера —Лагранжа



ПОИСК



519 — Принцип действия

Действие Эйлера

Действие лагранжево

Действие лагранжево Эйлеру и Лагранжу

Действие по Лагранжу

Действие по Мопертюи

Лагранжа Эйлера

Мопертюи

Мопертюи—Лагранжа принцип

Принцип Лагранжа

Принцип Мопертюи

Принцип Эйлера — Лагранжа

Принцип наименьшего действия

Принцип наименьшего действия Лагранжа

Принцип наименьшего действия Мопертюи

Принцип наименьшего действия Эйлера—Лагранжа)

Эйлер

Эйлера лагранжев

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте