Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизмы Скорость — Измерение

Механизмы приборов по измерению времени, скорости, ускорения, колебаний, сил, моментов, давлений, деформаций и др.  [c.10]

Из методов кинематического исследования механизмов наиболее полно разработаны графические. Они требуют вычерчивания механизма для ряда положений ведущего звена за один период движения и выполнения соответствующих этим положениям масштабных построений планов скоростей и ускорений. Такие методы обладают рядом достоинств, и поэтому широко применяются на практике при кинематическом и кинетостатическом расчетах механизмов. Скорости и ускорения в данном случае являются векторными величинами, которые представляют собой отрезки прямых, выражающих определенный результат измерения вещественным числом. Отрезки имеют конечные размеры, начальную точку и направление, обозначаемое стрелкой, обращенной острием в сторону направления. При векторном выражении кинематических параметров механизмов следует обращать внимание на особенность результата. Так, линейные скорости двух произвольно взятых точек на окружности радиуса г алгебраически равны между собой, но векторно они не равны, так как направлены под углом друг к другу.  [c.42]


И вспомогательных механизмах учтены при измерениях. Скорость скольжения шаровой поверхности примерно на 26% выше средней скорости поршня. На фиг. 42 и 43 показано изменение площади проходных сечений по углу поворота системы, необходимое для учета взаимного расположения коленчатого вала и звезды цилиндров.  [c.501]

Эксплуатационные свойства готовых изделий подразделяют па общие II специфические. Общим показателем качества продукции является надежность. Состав специфических свойств зависит от типа и назначения механизма. Так, для металлорежущих станков это точность обработки, габариты обрабатываемых изделий, скорость резания металлов и пр. для приборов — точность, пределы измерения н пр. для грузоподъемных машин — грузоподъемность, высота и скорость подъема грузов и пр.  [c.14]

Судя по количеству водорода, накапливающегося в котлах в зависимости от времени, а также по данным лабораторных измерений скорости коррозии, скорость роста оксида подчиняется параболическому закону 123], а следовательно, контролируется диффузией. Механизм этого процесса, как это описано в гл. 10, связан с миграцией ионов и электронов через слой твердых продуктов реакции.  [c.283]

На вопрос о природе света и механизме его распространения давала ответ гипотеза Максвелла. Па основании совпадения экспериментально измеренного значения скорости света в вакууме со значением скорости распространения электромагнитных волн Максвелл высказал предположение, что свет — электромагнитные волны. Эта гипотеза подтверждается многими экспериментальными фактами. Представлениям электромагнитной теории света полностью соответствуют экспериментально открытые законы отражения и  [c.263]

Во времена Ньютона еще не были сделаны прямые измерения скорости света в разных средах. Поэтому полученный вывод не мог быть проверен непосредственно. Впоследствии такие измерения были выполнены (Фуко, 1850 г.) и показали, что скорость света в плотных средах (вода, например) меньше, чем скорость света в воздухе, тогда как показатель преломления при переходе света из воздуха в воду равен 1,33, т. е. больше единицы. Таким образом, ньютоново толкование показателя преломления оказывается неправильным. Однако более углубленный анализ механизма распространения света в веществе показывает, что этот вопрос не столь прост.  [c.17]

Из деформации движущихся частей можно определить те силы, с которыми действуют друг иа друга эти части определив также скорости движения деформированных частей механизма, находят мощность, передаваемую механизмом. Для измерения сил, действующих между движущимися частями механизмов, в каком-либо месте вставляют упругий (деформирующийся) элемент, по деформации которого и определяют развиваемые им силы. Например, для измерения мощности, развиваемой локомотивом, между локомотивом и пер- F,  [c.159]


В современных машинах находят применение механизмы с упругими, гидравлическими, пневматическими и другими видами связей, теоретический расчет которых требует обязательной опытной проверки. Поэтому наряду с развитием теоретических методов синтеза и анализа необходимо изучение и развитие методов экспериментального исследования машин и механизмов. Экспериментальное исследование современных скоростных автоматов и комплексных систем часто дает единственную возможность получить полноценное решение задачи или определить параметры, необходимые для последующих расчетов. Анализ уравнения движения машины указывает пять основных параметров, измерение которых необходимо и достаточно для всестороннего экспериментального исследования механизмов перемещения, скорости, ускорения, силы и крутящие моменты. Величины деформаций, напряжений, неравномерности хода, к.п.д. и вибрации определяются результатами измерений пяти указанных основных механических параметров.  [c.425]

Дефектоскоп ВД-40Н состоит из сканирующего механизма с ВТП и стационарной электронной стойки (рис. 74). При осевом перемещении объекта контроля преобразователя описывают винтовую линию вокруг его поверхности. Скорость перемещения объекта определяется скоростью вращения ВТП, их числом и шириной зоны контроля каждого из них. В приборе используются два ВТП и два измерительных канала соответственно. Структурная схема каждого из каналов отличается от схемы каналов дефектоскопа ВД-ЗОП тем, что здесь способ проекции используется для уменьшения влияния зазора. Кроме того, имеется дополнительный канал измерения расстояния между преобразователем и поверхностью детали. Сигнал, полученный от одной из измерительных обмоток и несущий информацию, в основном о величине зазора, обрабатывается в этом канале и служит для управления коэффициентом передачи основного измерительного канала. Таким образом, сохраняется неизменной чувствительность дефектоскопа при изменениях зазора, что позволяет вы-  [c.144]

В работе активация образцов протонами была использована для измерения диффузионных характеристик покрытий, для выяснения механизма и скорости переноса кислорода в пористых, расплавленных и предварительно обожженных покрытиях. В зависимости от температур начала размягчения покрытия можно расположить в следующий ряд ЭВТ-8 (500° С), ЭВТ-24 (650° С), ЭВТ-100 (720° С). От тугоплавкости материалов покрытий зависит время, затрачиваемое на переход пористого шликерного слоя в расплавленное состояние и, следовательно, продолжительность ускоренной диффузии кислорода по дефектам и порам.  [c.173]

С помощью синергетики представилось возможным с единых позиций описать поведение материала при различных условиях его нагружения. В результате этого оказывается возможным на основе анализа параметров рельефа излома, в рамках сохранения неизменным механизма разрушения или путем измерения скорости роста трещины определять эквивалентные характеристики кинетического процесса усталостного разрушения. Оказывается возможным из анализа рельефа излома получать информацию о всей совокупности реализованных факторов воздействия на материал, которые вызвали распространение трещины. Получаемые величины эквивалентных характеристик становятся количественными показателями затрат энергии на процесс усталостного разрушения.  [c.22]

Таким образом, точка пересечения кинетических кривых близка к среднему размеру максимальной ячейки дислокационной структуры 2-10 м, формирующейся перед вершиной усталостной трещины в зоне пластической деформации, с точностью разброса экспериментальных данных. Эта величина разделяет два масштабных подуровня — мезо I и мезо II. Поэтому существование в середине кинетической диаграммы особой точки для сплавов на различной основе является общим синергетическим признаком нарушения принципа однозначного соответствия, когда происходит усложнение механизма поглощения энергии у вершины усталостной трещины, и это вызывает изменение кинетического процесса в случае реализуемого нагружения материала с постоянной нагрузкой. Именно в этот момент происходит изменение в закономерности роста усталостной трещины, которое определяется изменением формирования параметров рельефа излома и переходом от линейной к нелинейной зависимости скорости роста трещины или шага усталостных бороздок от длины трещины. Многочисленные измерения кинетических параметров роста трещины в виде шага уста-  [c.195]


Развитие системы цифрового анализа изображений, когда набор статистики осуществляется РЭМ с преобразованием аналогового сигнала в цифровые коды, позволило решить проблему проведения анализа параметров рельефа в автоматизированном режиме с использованием ЭВМ [85-89]. В этом случае удается достичь хороших результатов измерения параметров рельефа с обеспечением требуемых метрологических характеристик получаемых данных. В направлении развития усталостной трещины нарастание скорости усталостных трещин сопровождается нарастанием шага усталостных бороздок или иных регулярно повторяющихся элементов рельефа. Речь идет об изменении рассматриваемых параметров рельефа на мезоскопическом масштабном уровне от нескольких сотен ангстрем (несколько сотых долей микрона) до нескольких микрон. Состав и структура рельефа усталостных изломов чрезвычайно разнообразны для разных конструкционных материалов. От точности получения информации при проведении измерений параметров рельефа во многом зависит не только практическая ценность получаемых данных, но особенно важно получать объективную информацию при анализе механизмов и закономерностей развития процесса разрушения. В связи с этим ниже дается краткая информация о методических особенностях получения данных о параметрах рельефа излома в автоматизированном режиме анализа изображения, формируемого в электронном микроскопе или считываемого с любого объекта видеокамерой.  [c.207]

Различие механизмов растворения железа и никеля, с одной стороны, и хрома, с другой, может быть связано с повышенным сродством хрома к кислороду. Возможно, что хемосорбция ионов ОН на этом металле приводит к более полному заполнению ими поверхности с образованием более прочной связи. Имеются основания предполагать, что такие хемосорбционные слои могут не только ускорять, но и замедлять анодный процесс. Это следует прежде всего из результатов измерений скорости анодного растворения в условиях непрерывной механической зачистки поверхности. Было установлено [49], что такая зачистка приводит к значительному снижению перенапряжения анодного растворения железа, никеля и хрома в серной и соляной кислотах в активном состоянии (рис. 2), причем для никеля и железа при некоторой предельной скорости зачистки исчезает зависимость скорости растворения от содержания  [c.11]

Исследования микроструктуры при нагреве или охлаждении и механизмов пластической деформации при растяжении образцов в широком диапазоне скоростей нагружения, а также при измерении микротвердости вдавливанием алмазного или сапфирового индентора выполняют на образцах, имеющих форму двусторонней лопаточки с рабочим сечением 9 мм и длиной рабочей части 46 мм (ряс. ], б).  [c.12]

Использование установки ИМАШ-9-66 открывает принципиально новые возможности для изучения влияния таких факторов, как температура, время и скорость растяжения, на процессы упрочнения и разупрочнения металлов и сплавов в различном структурном состоянии (после тех или иных режимов термической или термомеханической обработок). Измерение микротвердости может служить также одним из чувствительных методов изучения механизма деформации, закономерностей фазовых и структурных превращений широкого класса материалов. Например, в работах [66 67 ], выполненных на установке ИМАШ-9-66, показано, что метод измерения микротвердости позволяет на основании анализа температурной зависимости микротвердости устанавливать температурные интервалы для полупроводниковых материалов с различными механизмами деформации, а также определять природу этих механизмов и изучать влияние на них легирования и других факторов. С помощью полученных температурных зависимостей микротвердости проведено исследование кинетики процессов старения и разупрочнения ряда сталей и сплавов [48, с. 25—32 85—95 68 69], влияния фазового наклепа на упрочнение аустенита [50, с. 27—31 ], роли неметаллических включений в процессе высокотемпературного разрушения стали [50, с. 110—114 129—132] и др.  [c.172]

Особенно возросла роль измерений в связи с развитием автоматического управления, так как автоматические системы и счетно-решающие устройства должны получать в качестве исходных данных информацию о различных величинах, определяющих ход регулируемого процесса температуре, давлении газа, скорости потока жидкости и т.д. При этом результат измерения не обязательно выдается в виде числа, а преобразуется в команду, управляющую рабочими механизмами.  [c.13]

Если в системе протекают составные процессы, то они могут быть последовательными (действующими по очереди) или же одновременными (т. е. независимыми и, возможно, аддитивными). Это существенное различие, если скорости составляющих процессов заметно различаются. Действительно, скорость последовательного процесса при этом будет определяться самым медленным, а одновременного процесса — самым быстрым составляющим процессом. Возможность 2) подразумевает, что при данных условиях (температура, напряжение, скорость деформации и т. д.), когда относительные вклады составляющих процессов сравнимы, происходит либо последовательный, либо одновременные процессы. В настоящее время нет данных, позволяющих определить тип составного процесса при индуцированном водородом КР. Один из возможных способов состоит в измерении энергий, активации растрескивания в нескольких узких температурных интервалах. При этом энергия активации будет расти с температурой в случае независимых процессов и уменьшаться — в случае последовательных [326], при условии, что область исследованных температур включает переход от условий доминирования одного процесса к условиям преобладания другого. Необходимо также, чтобы в этой температурной области механизм, определяющий скорость каждого процесса, оставался неизменным (например, перенос массы в растворе при анодном растворении или поглощение водорода металлом при водородном растрескивании.  [c.134]


В течение двух последующих лет Ассур работает главным образом над составлением пособий для студентов. За это время им были опубликованы три таких пособия Схемы построения некоторых кривых (1910 г.), Картины скоростей и ускорений точек плоских механизмов (1911 г.), Графические методы определения момента инерции маховиков (1911 г.). В последнем пособии Ассуру принадлежит весь текст и приложение, посвященное измерению площадей плоских фигур, ограниченных криволинейным контуром. К этому пособию приложен очерк Другой графический метод определения момента инерции маховика , написанный К. Э. Рерихом. Вопрос, разбираемый в последнем из перечисленных пособий, по-видимому, заинтересовал Ассура, так как в следующем, 1912 г. он опубликовал на немецком языке статью Метод характеристических кривых в приложении к графическому исчислению кратных интегралов , в которой рассматриваются интегралы вида  [c.57]

Этап И — проведение наблюдений и измерений. Он включает 1) измерения параметров работоспособности линии и ее элементов в периоды нормального функционирования (время отдельных рабочих и холостых ходов и степень их совмещения во времени технологические режимы скорость, равномерность и стабильность перемещений механизмов температуру рабочих жидкостей и газов и др.) 2) фотографию работы оборудования на протяжении 12—14 рабочих смен, хронометраж простоев отдельных видов и т. д. 3) измерения обрабатываемых деталей, их геометрической точности, определение шероховатости поверхности и других характеристик качества. На этом же этапе могут выполняться и другие измерения износ инструментов, занятость операторов и наладчиков и др.  [c.196]

Для дискретного измерения вибраций работающего механизма сохраняется измерительная часть описанной выше схемы с добавлением датчиков для измерения динамических нагрузок в соединениях деталей, датчиков скорости вращения ротора и т, п. При необходимости исследования области низких и средних частот применяются фильтры верхних частот, обрезающие несущую значительную долю вибрационной энергии высокочастотную часть спектра, что позволяет ввести максимальное усиление при записи на магнитограф.  [c.149]

Система управления, работающая по методу случайного поиска, обладает ценными свойствами. Случайность выбора направления движения исполнительных механизмов обеспечивает независимость работы системы на любых скоростях. По этой же причине система управления не требует измерения фаз при изменении скорости вращения. Принципиально она может работать с аппаратурой, показывающей только наличие вибраций опор и изменение их амплитуд. При этом не требуется высокой точности измерений. Система может следить за изменениями неуравновешенности в процессе работы и автоматически обеспечивает ее устранение.  [c.287]

Машина состоит из вертикально расположенной станины в виде двух стоек и жесткой поперечины, механизмов нагружения, измерения удлинения и усилия, а также механизма записи диаграммы растяжения. Испытуемый образец 7, закрепленный в захватах, помещается в ванночке, заполненной средой, в которой проводится испытание. Нижний захват может поступательно перемещаться с постоянной скоростью 1,85 мм/мин. Привод машины осуществляется от двигателя 1 через редуктор. Верхний захват соединен с помощью шарнирной опоры с динамометром (плоская пружина или упругое кольцо). Прогиб пружины измеряется индикатором 6 и реохордом  [c.166]

На рис. 3.26 представлена схема авиационного прибора, предназначенного для измерения скорости движения самолета. Этот прибор содержит два упругих элемента манометрическую коробку 1 и спиральную пружинку (волосок) 5. Манометрическая коробка деформируется в зависимости от величины разности давлений извне (Рг) и внутри ее (Pi) в соответствии с этой деформацией перемещается жесткий центр 6, играющий роль ползуна кривошипно-шатунного механизма. Это движение через пространственный рычаг, поворачивающийся около оси X — X, и через зубчатый сектор 3 и шестерню 4 передается на стрелку прибора 7. Волосок 5  [c.109]

Скорость потока, измеренная с помощью крыльчатого анемометра (рис. 2-63, для измерения скорости до 5 л/тс) определяется по графику рис. 2-64. Определение скорости воздушного потока производят в течение 1—2 мин. По истечении этого времени механизм анемометра и секундомер выключаются. Число делений, приходящееся на 1 сек, определяется путем деления ра зности конечного и начального 128  [c.128]

При поляризационных измерениях с помощью потенциостата возможно использование автоматической развертки потенциала для его непрерывного смещения с заданной скоростью — потен-циодинамтеский метод. Увеличение скорости измерения потен-циодинамических поляризационных кривых позволяет более тонко изучить механизм процесса (В. М. Княжева, А. И. Голубев и М. X. Кадыров).  [c.458]

Найденное соотношение между тих показывает, что процессы в системе отсчета, относительно которой перемещается изменяющийся механизм, протекают медленнее, чем в той, относительно которой этот механизм покоится. В частности, такой механизм можно использовать в качестве часов, и, следовательно, наш вывод гласит, что ход часов замедляется в системе отсчета, от1 осительно которой часы движутся. И этот вывод теории относительности находит непосредственное опытное подтверждение. Исследования космических лучей установили наличие в их составе так называемых р-мезонов — элементарных частиц с массой, примерно в 200 раз превышающей массу электрона. Частицы эти нестабильны, они самопроизвольно распадаются подобно атомам радиоактивных веществ. Измерения дают для среднего времени жизни р-мезонов значение Хо = 2,15-10 с. Но мезоны движутся со скоростью, близкой к скорости света. Поэтому за время своей жизни они проходили бы в среднем путь цхо, равный примерно 3-10 -2,15-10" л 600 м. Между тем опыт показывает, что мезоны успевают пройти без распада в среднем гораздо большие пути. Противоречие разрешается с помощью формул теории относительности. Время Хо = = 2,15-10 с относится к покоящемуся (или медленно движущемуся) мезону, заторможенному каким-либо плотным веществом, составляющим часть установки, применяемой для измерения продолжительности среднего времени жизни мезона. Наблюдение же над летящим мезоном производится с помощью приборов, относительно которых мезон движется с большой скоростью. По отношению к системе отсчета, связанной с этими приборами, среднее время жизни мезона есть х= х,,/)/1 — 6. Так как для мезона Р близко к единице, то х значительно превосходит Хц. Поэтому средний путь т, проходимый мезоном в нашей системе отсчета, должен быть значительно больше 600 м, что находится в согласии с данными прямого опыта.  [c.461]

Колесо расположено на оси, которая с помощью передаточного механизма может соединяться со стрелками присоединение и отключение передаточного механизма от оси осуществляется при помощи включающего устройства, рычажок 6 которого находится на корпусе прибора. Чашечные анемометры применяют при измерении скоростей от 4 до 25 м1сек.  [c.137]

К звену механизма, у которого измеряют скорость поступательного движения, прикрепляют белый экран с черным треугольником. В процессе движения этот экран, освещаемый импульсно через равные промежутки времени, фотографируют. В результате эксперимента на снимке получают ряд треугольников. Кривая, соединяющая вершины этих треугольников, представляет собой график ц(з) усредненной скорости звена как функцию положения механизма. В случаях периодического изменения скорости звена с достаточной частотой график хорошо наблюдается визуально. Для измерения угловой скорости вместо треугольника применяют две противоположные архимедовы спирали, выходящие из центра вращения звена.  [c.433]


Сопоставление соотношений (5.85)-(5.89) свидетельствует о мультифрактальности процесса формирования рельефа усталостного излома [150]. Под мультифрактальностью понимается протекание одновременно различных процессов разрушения на разных масштабных уровнях как в случае статического разрушения, так и в случае последовательной смены механизмов разрушения при росте усталостной трещины. Это подтверждается фактом однозначной зависимости фрактальной размерности зоны предразрушения от относительного сужения [138], так как утяжка материала по поверхности образца или детали в зоне прохождения усталостной трещины нарастает при увеличении скорости ее роста [126]. Мультифрактальность процесса разрушения следует из результатов измерения параметров рельефа излома хрупкого статического внутризеренного и межзеренного роста трещин, а также при формировании ямочного рельефа излома в случае вязкого разрушения [142]. Смена масштабного уровня протекания процесса  [c.263]

Результаты фрактографического исследования диска № 2 показали, что после достижения шага усталостных бороздок более (1-1,25) 10 м в разрушении материала начинают играть существенную роль статические проскальзывания. В такой ситуации СРТ не может однозначно характеризоваться величиной шага усталостных бороздок, поэтому при оценке длительности разрушения по шагу бороздок при величинах последнего более (1-1,25) 10 м необходимо вести корректировку на иные механизмы разрушения материала. Это тем более необходимо было сделать после перехода в область шага бороздок 2 10" м и более. На этой стадии разрушения процесс формирования ямочного рельефа является доминирующим и доля усталостных бороздок в изломе резко убывает в направлении роста трещины. Такая ситуация типична для нестабильного роста трещины. В рассматриваемом диске в направлении развития трещины в сторону полотна ямочный рельеф начал занимать более 95 % площади излома уже при длине трещины около 12 мм от очага разрушения. По направлению роста трещины по оси диска в его ступичной части доля усталостных бороздок составила приблизительно от 30 до 40 %. Это объясняется тем, что в сторону полотна трещина развивалась с более высокой скоростью, чем по оси диска. В этом нацравлении она должна была проходить в единицу времени большие расстояния, чтобы сохранить неизменной свою форму. В связи с этим измерения шага усталостных бороздок и их  [c.495]

Толщина слоя продуктов реакции в композитах Ti — В и Ti — Si достигает 2 мкм и охватывает весь представляющий интерес интервал толщин в практически важных материалах. Поэтому исследования кинетики реакции должны быть проведены в этом интервале толщин. Однако методы исследования роста столь тонких слоев развиты еще недостаточно, и поэтому точность измерений окажется невысокой при наложении указанных, ограничений толщины. Рэтлифф и Пауэлл [35] изучали реакцию между титаном и карбидом кремния и обнаружили заметное изменение скорости реакции при толщине реакционной зоны 10 мкм. Этот эффект не наблюдался при толщинах менее 4,4 мкм. Авторы показали, что изменение механизма реакции может быть обусловлено насыщением поверхностного слоя титана углеродом из карбида кремния. Если толщина слоя титана значительно меньше использованной авторами этой работы (3,81 мм), то насыщение титана углеродом будет происходить быстрее, и изменения кинетики реакции, обусловленные этим процессом, будут происходить на более ранних стадиях. Следовательно, необходимо компромиссное решение между HHMieHHeM точности, вызванным ограничениями толщины исследуемого слоя, и большей значимостью данных для таких толщин слоев, которые возникают на практике.  [c.101]

С целью получения данных для разработки сплавов Кляйн и др. исследовали влияние легирующих элементов в титановом сплаве на скорость реакции с борным волокном [20]. Измерения скорости реакции бора с бинарными титановыми сплавами были проведены при 1033 К- Эта температура достаточно низка, чтобы изменение механизма реакции при ожидаемой температуре эксплуатации было маловероятным, и в то же время достаточно высока для того, чтобы при разумных выдержках можно было получить измеримые скорости роста слоя. Время отжига составляло 10, 50 и 100 ч.  [c.111]

Хотя результаты первых попыток исследования распространения погранияной трещины были не вполне понятны, они позволили обнаружить наиболее простой способ непосредственного экспериментального определения энергии адгезии Дальнейшее развитие этих методов могло бы дать способ независимого определения затраченной энергии и механизма диссипации в композитах. Помимо этого существуют другие оценки прочности при разрушении адгезионных слоев, основанные на измерении вязкости распространения трепщны в полимерном клее между двумя твердыми телами. Чтобы обеспечить распространение трещины по центру связующего слоя на конечном расстоянии от границы раздела, особое внимание в таких исследованиях (например, в работах [44, 53, 63]) было уделено частным видам геометрии, толщине связующего слоя, условиям отверждения и скорости распространения трещины. Ясно, что при таких условиях происходит разрушение связующего слоя, а не границы раздела, поэтому разрушение композита следует рассматривать как разрушение полимера при наложенных механических ограничениях.  [c.260]

Скорость коррозии стали, полученной весовым и колориметрическим методами, не совладает с ее величиной, вычисленной по пересечению тафелевских линейных участков катодной и анодной кривых с линией стационарного потенциала стали. Так, в случае раствора соляной кислоты, насыщенной сероводородом, при 20° первые два метода дают величину скорости коррозии, равную 1,32 10 3 а/см (см. табл. 2), а поляризационные измерения - величину 7,1 10-4 а/см2 см. рис. 6). Подобное расхождение нельзя отнести за счет кислородной деполяризации. Причины этого несовпадения остаются неясными. Можно предположить, что действие сероводорода связано с каким-либо механизмом неэлектрохимического происхождения (на-  [c.54]

Сопротивление скольжению со стороны смазочного слоя подчиняется в условиях граничной смазки закономерностям внешнего трения, а не внутреннего. Это сказывается хотя бы в том, что сопротивление скольжению не возрастает пропорционально скорости, а остается бо.лее или менее постоянным, не завися от последней . В то же время сопротивление скольжению зависит от нагрузки, возрастая приблизительно пропорционально ее величине, что характерно для внешнего трения. Спрашивается как можно помирить этот результат, очень важный для понимания механизма граничной смазки, с измерениями по методу сдувания, хотя обнаруживающими существование измененной величины вязкости, но не обнаруживающими отклонений от закона внутреннего трения Ньютона Это кан ущееся противоречие можно понять, если учесть, что при методе сдувания слой жидкости подвергается усилию только со стороны воздуи1ного потока. При граничной смазке, наоборот, течение смазочного слоя между трущимися тепами происходит в совершенно иных условиях, при которых тангенциальные  [c.206]

Для измерения средней скорости применяются оптические прт1боры, основанные на стробоскопическом эффекте, и часовые механизмы, позволяющие измерять перемещение звена в определенный промежуток времени.  [c.586]

При низкой надежности, контролепригодности или пецрием-лемых быстроходности и точности на основе полученной информации разрабатываются предложения по модернизации механизма. На модели просчитываются возможные варианты улучшения конструкции и проводится их диагностический анализ. Затем как для реальных, так и для проектируемых модернизируемых механизмов составляются рекомендации по наладке, контролю и диагностированию. При этом прежде всего выбираются контрольные и диагностические параметры, т. е. такие, по которым легче оценить состояние механизма и выделить отдельные дефекты. Такими параметрами могут быть осциллограммы скорости, ускорения, давлений и т. п., сигналы о включении и выключении отдельных устройств, а также результаты обработки этих первичных зависимостей показатели качества, коэффициенты разложения в спектр и т. д. При этом учитываются возможности их измерения, выбираются датчики и аппаратура и отрабатываются методы обработки в зависимости от производственных условий — ручные, механизированные, автоматические. На основании данных эксперимента и моделирования получают эталонные величины и допуски для контрольных и диагностических параметров, а также значения (для аналоговых — вид зависимостей) диагностических параметров при характерных дефектах для составления дефектных карт.  [c.100]


Смотреть страницы где упоминается термин Механизмы Скорость — Измерение : [c.361]    [c.110]    [c.158]    [c.141]    [c.92]    [c.407]    [c.178]    [c.296]    [c.119]    [c.142]    [c.42]    [c.49]   
Справочник машиностроителя Том 1 Изд.3 (1963) -- [ c.435 ]

Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.418 ]



ПОИСК



Механизм зубчатый регулятора скорости с возвратным ходом измерения прокатываемой лент

Механизмы специального назначения для измерения и записи скоростей

Скорости 379, 382, 385, 386 — Распределение 386, 387, 389 — Сложение плоских механизмов— Измерени

Скорости Единицы измерения звеньев механизмов — Планы 133 — Планы — Построение

Скорости Единицы измерения механизмов — Определени

Скорости механизмов

Скорость — Измерение



© 2025 Mash-xxl.info Реклама на сайте