Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость света и ее измерение

СКОРОСТЬ СВЕТА И ЕЕ ИЗМЕРЕНИЕ  [c.196]

Скорость света и ее измерение  [c.197]

В этой главе рассматриваются главным образом эксперименты и их результаты. Мы разберем способы измерения скорости света и экспериментального подтверждения инвариантности ее величины в любой инерциальной системе отсчета. Мы не будем здесь обсуждать вопросы об электромагнитной природе  [c.311]

Обратим внимание на следующее обстоятельство. Первые измерения скорости света были выполнены при астрономических наблюдениях, т. е. давали значение скорости света в вакууме. Измерения Физо, Фуко и Майкельсона проводились в воздухе, 122  [c.122]


Если эфир неподвижен, можно легко усмотреть большое отличие в астрономических определениях скорости света и земных . В первых определяется скорость света, движущегося в одном направлении — от звезды к Земле. В земных опытах свет распространяется в противоположных направлениях — до и после отражения от зеркал. Наш повседневный опыт говорит о том, что скорость может зависеть от направления, как различна скорость лодки, идущей вверх и вниз по реке. Аналогом реки в экспериментах со скоростью света служит, очевидно, движение Земли по орбите со скоростью, равной примерно 30 км/с. Учтем это в опытах Физо. Пусть на пути от А та В свет распространяется в направлении, совпадающем со скоростью движения Земли. Тогда его скорость относительно неподвижного эфира равна + v, где v — скорость движения Земли. При распространении луча в противоположном направлении скорость света относительно эфира равна с —v. Что же дают в таком случае измерения Среднее значение скорости света Почему же тогда ее принимают за одну из основных фундаментальных физических постоянных Проблема обнаружения эфира вновь предстает перед учеными в виде мучительной головоломки.  [c.126]

Магнитная индукция. Основная характеристика магнитного поля — магнитная индукция В наиболее наглядно может быть определена по механическому действию, которое испытывает электрический ток в магнитном поле. Воспользуемся для этой цели формулой (7.12), в которой положим а = я/2, 5 = 1 см . Напомним, кроме Того, что коэффициент Же = 1/с. При этих условиях за единицу магнитной индукции можно принять индукцию такого поля, в котором максимальный момент, испытываемый контуром площадью 1 см и обтекаемым током, численная величина которого равна с (т. е. скорости света в вакууме, измеренной в см/с), составляет I дин-см. Эта единица индукции называется гаусс (Гс). Иначе можно определить гаусс как индукцию такого поля, в котором каждый сантиметр прямолинейного проводника, расположенного перпендикулярно полю и по которому протекает ток с единиц, испытывает силу в одну дину. Размерность индукции, согласно любому из определений,  [c.204]

Лишь очень небольшая доля всех используемых в настоящее время лазеров действительно работает в одномодовом режиме, т. е. на одной частоте и с пучком, имеющим гауссов профиль интенсивности. Большинство газовых лазеров имеет гауссов профиль ТЕМоо моды, но измерения их частотного спектра показывают, что они излучают на целом ряде частот, разделенных интервалом с 2Ь Гц, где с—скорость света и Ь — длина резонатора лазера. В общем случае каждой из этих продольных мод часто соответствует множество поперечных мод, так что профиль интенсивности выходного излучения не гауссов, а фазовое распределение в поперечном сечении не является простым. Подобное сложное частотное и фазовое распределение реального лазерного излучения неожиданно сильно  [c.135]


В середине XIX в. были также накоплены сведения об электро динамической постоянной, фигурирующей при переходе от электрических к магнитным единицам. Она имеет размерность скорости и по значению очень близка к скорости света в вакууме. Наилучшие измерения, проведенные электромагнитными методами, приводили к значению (299 770 30) 10 см/с. Имеются данные, что столь хорошее совпадение этих констант, казавшееся в те времена случайным, стимулировало исследования Максвелла по созданию единой теории распространения электромагнитных волн. После появления этой фундаментальной теории уже не могло быть сомнений в том, что скорость света в вакууме и электродинамическая постоянная — это одна и та же константа, а совпадение результатов измерений ее значения, выполненных различными методами, является доказательством универсальности теории Максвелла, справедливой для любых электромагнитных волн. Ниже будет охарактеризован современный способ прецизионного определения скорости света в вакууме.  [c.46]

Если эфир полностью увлекается водой, то скорость света по отношению к воде су с/п одинакова для лучей 1 и 2. Если измерять скорость света относительно неподвижных зеркал интерферометра (т.е. проводить измерения в системе, покоящейся относительно установки), то должны получаться различные значения ско юсти света в лучах 1 и 2 а именно j f и для луча 2 и l — V для луча 1 (постоянная скорость течения воды обозначена через и).  [c.367]

Если каждый из двух наблюда телей располагает большим числом часов с совершенно одинаковым ходом, то они могут произвести следующий опыт. Пусть сначала наблюдатель в системе 5 распределит свои часы вдоль оси х и установит их все на одно и то же время. Это вовсе не так уж просто осуществить, но мы отложим анализ того, как следует точно выполнить эти измерения, до тех пор, пока в гл. 11 не будет рассмотрен аналогичный опыт с точки зрения специальной теории относительности. Однако если мы будем приближенно считать скорость света бесконечно большой ), то надо только посмотреть на все часы, чтобы удостовериться, что все их начальные показания одинаковы. Теперь мы можем сравнивать показания часов в системе S с показаниями часов 1, 2, 3,. .. в системе 5, когда часы в S проходят мимо каждых часов в системе 5. Если такой опыт придется производить с реальными макроскопическими часами, то по чисто техническим причинам мы должны ограничить скорость движения V системы S величиной порядка 10 см/с, т. е. порядка скорости типичного искусственного спутника. При таком условии У/с< 1, и опыт подтверждает, что если часы в системе S установлены одинаково с часами 1, то их показания будут одинаковы и с показаниями часов 2,3,4,..,  [c.84]

Во времена Ньютона еще не были сделаны прямые измерения скорости света в разных средах. Поэтому полученный вывод не мог быть проверен непосредственно. Впоследствии такие измерения были выполнены (Фуко, 1850 г.) и показали, что скорость света в плотных средах (вода, например) меньше, чем скорость света в воздухе, тогда как показатель преломления при переходе света из воздуха в воду равен 1,33, т. е. больше единицы. Таким образом, ньютоново толкование показателя преломления оказывается неправильным. Однако более углубленный анализ механизма распространения света в веществе показывает, что этот вопрос не столь прост.  [c.17]

Основная трудность, на которую наталкивается экспериментатор при определении скорости распространения света, связана с огромным значением этой величины, требующим совсем иных масштабов опыта, чем те, которые имеют место в классических физических измерениях. Эта трудность дала себя знать в первых научных попытках определения скорости света, предпринятых еще Галилеем (1607 г.). Опыт Галилея состоял в следующем два наблюдателя на большом расстоянии друг от друга снабжены закрывающимися фонарями. Наблюдатель А открывает фонарь через известный промежуток времени свет дойдет до наблюдателя В, который в тот же момент открывает свой фонарь спустя определенное время этот сигнал дойдет до Л, и последний может, таким образом, отметить время т, протекшее от момента подачи им сигнала до момента его возвращения. Предполагая, что наблюдатели реагируют на сигнал мгновенно и что свет обладает одной и той же скоростью в направлении АВ и ВА, получим, что путь АВ + ВА = 2Д свет проходит за время т, т. е. скорость света с = 20/х. Второе из сделанных допущений может считаться весьма правдоподобным. Современная теория относительности возводит даже это допущение в принцип. Но предположение о возможности мгновенно реагировать на сигнал не соответствует действительности, и поэтому при огромной скорости света попытка Галилея не привела ни к каким результатам по существу, измерялось не время распространения светового сигнала, а время, потраченное наблюдателем на реакцию. Положение можно улучшить, если наблюдателя В заменить зеркалом, отражающим свет, освободившись таким образом от ошибки, вносимой одним из наблюдателей. Эта схема измерений осталась, по существу, почти во всех современных лабораторных приемах определения скорости света однако впоследствии были найдены превосходные приемы регистрации сигналов и измерения промежутков времени, что и позволило определить скорость света с достаточной точностью даже на сравнительно небольших расстояниях.  [c.418]


В 1972 г. значение скорости света было определено на основе независимых измерений длины волны и частоты света. В качестве источника был выбран, по ряду причин, гелий-неоновый лазер, генерирующий излучение с длиной волны 3,39 мкм. Длина волны этого излучения измерялась с помощью интерферометрического сравнения с эталоном длины, т. е. с длиной волны оранжевого излучения криптона (см. 31). Методами нелинейной оптики (генерации излучения с суммарными и разностными гармониками, см. 236) частоту лазерного излучения удалось сравнить с эталоном времени ). Таким образом было получено значение скорости света  [c.426]

Необходимо обратить внимание и на то, что в ряде случаев не делается различия между понятиями физические константы и еще более обобщенным термином универсальные, фундаментальные или мировые константы. Покажем это на ряде примеров. Первым из них является претенциозное название табл. 2. Так же просто трактуется вопрос в [16] ...принято считать, что универсальные, или мировые, фундаментальные — все три термина употребляются обычно как синонимы... В превосходной монографии [17], к сожалению, читаем, что коэффициенты пропорциональности, подобные гравитационной или инерционной постоянным и зависящие от выбора основных единиц (системы измерений.— О. С.) и определяющих соотношений, получили название универсальных или мировых постоянных . Анализ физической литературы показывает, что, по всей видимости, термин универсальные постоянные постепенно выходит из употребления, его можно считать устаревшим. Понятие же мировые постоянные , напротив, еще только входит в моду , но чрезвычайно важно отметить, что ему с самого начала придается иной, значительно более вселенский по своему содержанию физический смысл. Приведем в подтверждение этого цитату С современной точки зрения кажется очень удачным, что первые измерения величины с пришли из астрономии — это дало возможность определить скорость света в вакууме, т.е. действительно мировую постоянную [18]. Более подробно эти вопросы обсуждаются в ч. 3.  [c.31]

Если же для отсчета времени в разных местах мы пользуемся различными часами, которые находятся в тех местах, где происходят события, то световые сигналы необходимы для того, чтобы синхронизовать часы, находящиеся здесь , и часы, находящиеся там (после их транспортировки), т. е. скорость световых сигналов играет столь же существенную роль. Именно вследствие этого, как уже указывалось в 7, в набор тех основных инструментов , при помощи которых мы производим измерения промежутков времени и расстояний, кроме линеек и часов обязательно должны входить источники световых сигналов. Поэтому наряду с вопросами о постоянстве длины линеек и хода часов возникает вопрос о постоянстве скорости света.  [c.241]

В зависимости от выбора параметра радиосигнала, за которым наблюдают при измерении времени запаздывания, различают следующие методы измерения импульсный, частотный и фазовый. В табл. 7.5 показан принцип измерения дальности различными методами. Условные обозначения в таблице ПРД — передатчик ПРМ — приемник с — скорость света Е — энергия Ги — период между импульсами Хш — длительность импульса Д — дальность до цели (объекта) А/м — девиация частоты f — частота модуляции /прд—частота излучения /отр —частота отраженных колебаний ф — фаза.  [c.358]

При этом имеется в виду, что гидравлическое сопротивление системы установки практически не изменяется. На практике это обеспечивается использованием в установках апробированных средств контроля за расходом потока жидкости и величиной ее pH на освоенных нашей промышленностью приборах различного конструктивного исполнения, в том числе и приборах лабора- торного назначения. Послойный анализ, очевидно, предпочтителен для колонок лабораторного назначения, корпус которых изготовлен из прозрачного материала для наблюдения н контроля за скоростью перемещения и величиной зон сорбции. Измерение величины зоны сорбции, а также скорости ее перемещения в видимом или ультрафиолетовом свете производится с помощью широко известных средств физико-химического анализа.  [c.327]

Абсолютными измерениями называют такие, при которых используются прямое измерение одной (иногда нескольких) основной величины и физическая константа. Так, в известной формуле Эйнштейна Е=тс масса (т) — основная физическая величина, которая может быть измерена прямым путем (взвешиванием), а скорость света (с) — физическая константа.  [c.492]

В 1983 г. основными были названы единицы измерения времени и скорости, при этом скорости света в вакууме было придано точное, но в принципе произвольное значение с = 299 792 458 м/с. Длина и ее единица — метр, по существу, стали производными. Однако формально длина в СИ остается основной ФВ, и ее единица определяется следующим образом метр — расстояние, которое проходит свет в вакууме за 1/299 792 458 долю секунды.  [c.19]

В XIX в. появилась возможность точного измерен[ия скорости света и в каком-либо веществе (газообразном или жидком). Из таких измерений можно определить с/и = пи сравнить его с табличным значением показателя преломления для данного вещества, получаемого из основанных на использовании закона преломления измерений, которые можно провести с большой точностью. Обычно значения п ---- sin ф/.sin ср2 хорошо согласуются со значениями, найденными из измерений скорости света, но в некоторых случаях возникают расхождения. Так, например, для показателя преломления сероуглерода вместо п = 1,64 было получено значение 1,76, что выходит за пределы допустимой погрешности измерений. Это является следствием значительных трудностей, неизбежно возникаюпхих при описании движения импульса в среде, в которой показатель преломления зависит от частоты, т. е. в диспергирующей среде. В таком случае кроме фазовой скорости нужно ввести euie групповую скорость, характеризующую скорость распространения всей группы волн, к рассмотрению которой мы переходим.  [c.46]


Скорость света > принадлежит к числу важнейших физических констант, которые принято называть фундаментальными. Пожалуй, ни одна константа не имеет такого основополагающего значения в теоретической и экспериментальной физике, как скорость света. Велика и чисто практическая значимость скорости света. Точное ее значение требуется в радио- и све-толокации, при измерении расстояний от Зем-  [c.196]

Коэффициент Ж-1 обозначается ео. Обращаясь к урав-гению (7.12а) или аналогичным ему (7.9) и (7.11), видно, что при таком выборе произойдет увеличение единицы силы тока в с раз, где под с следует понимать число, равное скорости света в вакууме, измеренной в сантиметрах в секунду. Иногда для того, чтобы подчеркнуть, что речь идет о числовом коэффициенте, вводят вместо с специальное обозначение где 3 = 3-101°. Соответственно и единица заряда СГСМ эказывается в 3-10 ° раз больше единицы заряда СГСЭ. Подставляя соответствующие величины в заков Кулона (7.1), найдем, что е,о — 1/с . Подобно произве  [c.191]

С метрологической точки зрения существует разница между коэффициентами ,1о и ео. В то время как первый определен как неиз у1енная, зафиксированная международным соглашением величина, значение ео определяется точностью измерения скорости света и по мере уточнения последней может несколько изменяться.  [c.197]

Пои измерении скорости можно использовать любые единицы длины L (метр, сантиметр, километр, микрон, световой год и др.) и единицы времени Т (минута, секунда, час, год и др.). Скорость света выражают мегаметрами в секунду, скорость звука — метрами в секунду, а скорость осадки здания — миллиметрами в год. Модуль истинной скорости Чтобы пройти путь As, точке потре-точки, Т. е. ее числовое зна- бовалось бы некоторое время А/. От-чение, равен первой произ- ношение пройденного пути к затрачен-водной от пути по времени времени называют численным зна-  [c.24]

Стремление определить исходный эталон длины с очень большой точностью, на первый взгляд, представляется неоправданным. Для того чтобы оценить необходимость таких измерений, ернемся к рассмотрению упоминавшейся выше задачи о прецизионном определении важнейшей константы — скорости света ii вакууме (см. 1.4). Напоминаем, что в этих опытах одновременно измеря.тись длина волны и частота стабилизированного инфракрасного лазера и было показано, что погрешность определения с == ). оказывается непосредственно связанной с точ- юстью первичного эталона длины. Действительно, длину волны стабилизированного неон-гелиевого лазера можно интерферо-метрически измерить с очень малой погрешностью ( 10 А). Для у становления абсолютного значения /. необходимо сравнение ее с первичньгм эталоном (длина волны спектральной линии /-вак "  [c.249]

Вопрос о размерности имеет чрезвычайно важное значение для понимания проблемы физических констант. Подавляющее большинство физических постоянных имеет размерность, т. е. помимо числового значения констант в таблицах указываются и их единищл. Например, скорость света с = 2,997 10 метров (м), деленных на секунду (с) (приводится округленное значение с)-элементарный заряд е=1,6 10 кулон (Кл), 1 Кл=1,610 ампер (А), умноженных на секунду постоянная Планка А = 6,62 10 джоулей (Дж), умноженных на секунду, или, раскрывая размерность джоуля, А = 6,62 10 м кг с масса покоя электрона /и,=9,1 10 кг и т. д. Размерность любой физической величины отражает ее связь с величинами, принятылш за основные при построении системы единиц. В приведе1шых вьппе примерах используется Международная система единиц (СИ), в которой основными единицами являются метр, килограмм, секунда, ампер, моль (для измерения количества вещества), кельвин (для измерения температуры) и кандела (для измерения силы света). В другой часто применяемой в физике системе — СГС — основными единицами выбраны сантиметр, грамм и секунда.  [c.39]

Излучение лазеров обладает целым рядом особенностей, выгодно отличающих его от излучения других источников света. Оно существенно более монохроматично, т. е. область частот, в пределах которой происходит генерация, очень мала. Именно эта особенность позволяет резко повысить точность определения частоты. В настоя1цее время стабильность частоты лазеров доведена до фантастичес1 их пределов — различие в одновременно генерируемых лазером частотах составляет всего лишь 10 самой частоты. Измерения скорости света, выхтлнеиные различными группами исследователей, дали практически совпадающие результаты. Так, в США было получено значение с= = (299792,4574 0,0011) км/с, в Англии — с = (299792,4590 + + 0,0008) Kjw/ . Точность измерений константы с по сравнению с измерениями Фрума увеличилась почти в lOO(l) раз и составляет в настоящее время примерно 310 .  [c.125]

Преимущества сцинтилляционных счетчиков таковы. Во-первых, у них высока эффективность регистрации, равная почти 100% для заряженных частиц и 30% для у-квантов. Во-вторых, у сцинтилляционных счетчиков очень мало разрешающее время, предел которого определяется длительностью люминесцентной вспышки. Продолжительность вспышки зависит от вещества сцинтиллятора. Для неорганических кристаллов, таких как Nal, это время имеет порядок 10" с, для органических кристаллов (антрацен, нафталин) — примерно 10" с, для пластических сцинтилляторов доходит до 10"° с. Поэтому неорганические и особенно пластические сцинтилляторы особенно хороши там, где требуется высокое разрешение по времени. Третьим преимуществом люминесцентного счетчика является возможность измерения энергии как заряженных частиц, так и у-квантов. Для измерения энергии более пригодны неорганические кристаллы, так как в органических кристаллах и пластиках плохо выполняется линейность зависимости интенсивности вспышки от энергии первичной частицы. Но даже и в счетчиках с неорганическими кристаллами энергия измеряется с точностью порядка 10% в области энергий от сотен кэВ и выше и с точностью порядка 50% в области десятков кэВ. Сцинтилляционным счетчиком можно измерять не только энергию, но и скорость тяжелых заряженных частиц с энергиями в области десятков МэВ. Для этого используется тонкий кристалл. В таком кристалле измеряется не вся энергия частицы, а лишь потеря энергии на расстоянии толщины кристалла, т. е. —dE/dx. А это и есть измерение скорости (см. гл. VIII, 2, формула (8.24)). Если же на пути частиц поставить комбинацию из тонкого и толстого кристаллов, то можно измерить энергию и скорость, т. е. энергию и массу. Таким путем можно легко отделять, например, протоны от дейтронов, измеряя в то же время энергии и тех, и других частиц. Как недостаток сцинтилляционных счетчиков отметим то, что с ними труднее работать, чем с газоразрядными. Например, кристалл Nal очень гигроскопичен и боится больших потоков света. Поэтому этот кристалл приходится тщательно герметизировать и экранировать от наружного освещения. Сцин-тилляционный счетчик сейчас является одним из основных типов детекторов как в самой ядерной физике, так и в ее технических приложениях. В сцинтилляционных счетчиках в качестве рабочего вещества иногда используются жидкие прозрачные сцинтилляторы, которые могут иметь неограниченно большой эффективный объем (вырастить большой кристалл трудно).  [c.501]

Понятие Г. с. играет важную роль п в физике, и в технике, поскольку все методы измерения скоростей распространения волн, связанные с запаздыванием сигналов (в т. ч. скорости света), дают Г. с. Она фигурирует при измерении дальности в гидро- и радиолокации, при зондировании ионосферы, в системах управления космич. объектами и т. д. Согласно относительности теории Г. с. не может цревышать скорости распространения света в вакууме, т. е. всегда Ггр<с.  [c.545]


ЕСТЕСТВЕННЫЕ СИСТЕМЫ ЕДИНИЦ — системы единиц измерений, в к-рых за осн. единицы приняты фундам. постоянные — скорость света в вакууме с, гравитац. ностояиная G, постоянная Планка постоянная Больцмана k, число Авогадро JVa и др. В обычных системах единиц размер осн. единиц выбирают произвольно этот выбор определяет значение коэф. в разл. физ. соотношениях. В Е. с. е. приняты за единицы сами эти коэф., являющиеся мировыми постоянными, и при этом условии из физ. соотношений вычисляются единицы разл. физ. величин. Т. о., вид соответствующих ур-нИ11 физики значительно упрощается, В разл. областях применяются разл. Е. с. е., в к-рых ур-ния освобождаются от коаф., содержащих размерные постоянные. Е. с, о. можно в принципе воспроизвести в лаборатории без сравнении с эталонами.  [c.29]

СОПУТСТВУЮЩАЯ СИСТЕМА ОТСЧЁТА — система отсчёта, связанная С рассматриваемой системой тел (сплошной средой) пространственные координаты этой системы тел (частиц сплошной среды) в С. с. о. не изменяются при их движении, т. е. тела покоятся относительно С. с. о. Показания часов каждого тела С. с. о. (часов, движущихся вместе с телом) ваз. истинным, или собственным временем этого тела. Темп течения собств. времени на разных телах С. с. о. может быть разным. Наир., если тела двигаются в неоднородном гравитац. поле, то периоды маятниковых часов тел, расположенных в точках с разными ускорениями силы тяжести, будут разными. Для измерения расстояний в С. с. о., как и в любой др. системе отсчёта, надо ввести эталон расстояния. Обычно эталон определяют, используя постулат теории относительности о постоянстве скорости света во всех системах отсчёта. Эталон расстояния можно определить как расстояние, проходимое светом в единицу собств. времени данного тела. Из-за зависимости собств. времён от скоростей тел (относительно инерциальной системы отсчёта) и их взаимодействий эталоны расстояний на этих телах могут быть различны. В случае, когда С. с. о. связана с движением одного тела, её называют также собственной системой отсчёта. и. К, Розгачёва.  [c.601]

Запись кинетики малых деформаций производится фотоэлектрическим устройством 5. Для этой цели между источником света и фотоэлементом установлена рамка с фигурной щелью, которая через систему рычагов соединена с внутренним цилиндром так, что ее линейные перемещения пропорциональны углу поворота цилиндра (деформации материала). Перемещение рамки вызывает изменение светового потока, поступающего на фотоэлемент, и изменение вследствие этого его анодного тока. Величина анодного тока регистрируется трехшлейфовым осциллографом на фотобумаге. Для проверки начального положения рамки и тарировки ее перемещения в цепь фотоэлемента через электронный усилитель б включен миллиамперметр. Измерение больших деформаций осуществляется фотоэлектронным способом в сочетании с оптической системой 7. В последнем случае рамка заменяется зубчатым диском. Отметки времени воспроизводятся на фотобумаге в виде прямой, прерывающейся через каждую секунду. Длина отрезка этой прямой зависит от скорости движения фотобумаги и может изменяться от 0,15 до 110 см1сек.  [c.164]

Ограничений по мощности можно избежать, если производив измерения в условиях синхронизма [144], т.е. если луч света распространяется по кристаллу в направлении, для которого фазовые скорости падающего и преобразованного излучения равны между собой. При этом мощность преобразованного излучения растет примерно пропорщюнально квадрату пути, пройденного в кристалле, и уровень мощности на выходе из кристалла может быть весьма значителен. Для определения нелинейной восприимчивости в направлении синхронизма достаточно измерить и толщину кристалла. Высокий уровень мощности преобразованного излучения позволяет использовать для измерений газовые лазеры, что существенно повышает точность измерения. Однако практически невозможно подобрать геометрию опыта таким образом, чтобы измерялась одна компонента тензора. Нелинейное преобразование в условиях синхронизма определяется значением зффективной нелинейной восприимчивости, зависящей от нескольких компонент тензора, согласно соотношению  [c.90]


Смотреть страницы где упоминается термин Скорость света и ее измерение : [c.465]    [c.414]    [c.28]    [c.249]    [c.287]    [c.415]    [c.424]    [c.124]    [c.175]    [c.25]    [c.242]    [c.247]    [c.376]    [c.464]    [c.669]   
Смотреть главы в:

Оптика. Т.2  -> Скорость света и ее измерение



ПОИСК



Астрономические методы измерения скорости света

Брадлея метод измерения скорости света

Измерения скорости света земных источников

Использование рассеяния света на гиперзвуковых частотах для измерения скорости и поглощения звука (вводные замечания)

Рёмера метод измерения скорости свет

Скорость света

Скорость света измерение методом Фуко

Скорость — Измерение

Фотографирование ультразвуковых волн. Дифракция света . Измерение скорости и поглощения ультразвука



© 2025 Mash-xxl.info Реклама на сайте