Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушения стадии

Разрушение в области температур хрупко-пластичного перехода (Тх—Тх) происходит после некоторой, часто значительной, пластической деформации (рис. 5.13) и характеризуется тем, что оно начинается и развивается до некоторого предела по одному механизму, а завершается по другому — хрупко, сколом. Фрактографический анализ позволяет по речному узору скола выделить эти две стадии разрушения стадию вязкого докритического роста трещины и стадию  [c.206]


На немонотонный, скачкообразный процесс подрастания усталостной трещины за цикл нагружения на величину менее параметра кристаллической решетки указывают прямые эксперименты [73-77]. Регистрируемая на поверхности образца СРТ может сохраняться неизменной применительно к начальной стадии разрушения (стадия I), соответствующей процессу формирования псевдо-бороздчатого рельефа излома, так же как и величина шага усталостных бороздок применительно ко II стадии роста трещин. Все это дает основание проводить единое теоретическое описание процесса непрерывного и одновременно дискретного развития усталостной трещины.  [c.202]

В настоящее время особенно актуальны вопросы усталости и живучести материалов, предназначенных для Крайнего Севера. При исследовании процессов, происходящих при циклических нагрузках, с точки зрения обеспечения надежности материалов особый интерес представляет последняя стадия усталостного разрушения — стадия распространения трещин. Эти исследования можно проводить только на достаточно массивных образцах.  [c.39]

С помощью уравнений повреждений могут описываться обе основные стадии длительного разрушения — стадия рассеянных повреждений и стадия развития макроскопических трещин. В первом случае предполагают, что повреждения развиваются одновременно во множестве малых объемов, выделенных из рассматриваемого тела, сохраняющего при этом свою сплошность в смысле основного допущения механики сплошной среды. Во втором случае в теле имеется одна или несколько макроскопических трещин и повреждения развиваются только перед фронтом каждой из этих трещин, т. е. носят локальный характер. Для полного опн-  [c.3]

Деформация металлов вследствие высокотемпературной ползучести является, как уже указывалось, вязкопластической и протекает, как и мгновенно-пластическая деформация, при условии сохранения постоянства объема материала. Лишь на последней перед разрушением стадии ускоренной ползучести деструкция и разрыхление материала могут приводить к некоторому возрастанию его объема.  [c.24]

При мягком нагружении на стадии окончательного разрушения (стадия развития магистральной трещины при жестком режиме, когда 2,пШр = 0,99) повреждение, подсчитанное по зависимостям (4.44) и (4.45), составило соответственно 1,135 и 1,27 (рис. 4.15, кривая 3).  [c.106]

Это объясняется в первую очередь сложностью процесса усталости металлов и недостаточным вниманием при исследованиях к обоснованию взаимосвязи тех структурных характеристик, которые исследовались, и кинетики процессов зарождения и развития магистральных усталостных трещин, которые в конечном итоге приводят к усталостному разрушению. Вторая стадия усталостного разрушения — стадия развития магистральной усталостной трещины. Несмотря на большие достижения в последние годы в области описания развития тре-  [c.32]


При необходимости, проводятся испытания образцов сварного соединения на ударный изгиб в широком диапазоне температур, например, от -40 до +100 °С с оценкой критической температуры хрупкости по критерию 50 %-ной волокнистой (вязкой) составляющей (В, %) в изломе образцов [63]. При этом параметр ударной вязкости рассматривается состоящим из двух стадий сопротивляемости металла разрушению стадии на зарождение трещины и последующей стадии на развитие разрушения, которая оценивается волокнистой составляющей. Следовательно, КТХ характеризует температуру, при которой металл начинает проявлять склонность к хрупкому разрушению при ударных нагрузках от зародившейся макротрещины.  [c.160]

В момент деформирования, соответствующий точке 4> происходит равномерное по объему накопление областей локализованного разрушения (стадия вторичного дисперсного накопления повреждений) и некоторое снижение до 35% доли локально разгруженных элементов структуры. Нормированная корреляционная функция затухает на расстоянии около (8-9) к. Далее происходит смена механизма структурного повреждения (вторичная локализация), связанная с началом формирования макродефекта, сопровождаемым локализацией микро-, деформаций, резким возрастанием до 60% от общего объема доли разгруженного материала и увеличением угла наклона ниспадающей ветви диаграммы деформирования.  [c.142]

По мере увеличения размеров физически короткой трещины становятся справедливыми подходы и модели линейной механики разрушения. Стадия распространения физически коротких трещин переходит в заключительную стадию развития длинных трещин. Разнообразие существующих моделей и расчетных уравнений скорос-  [c.40]

Рассмотрим вторую стадию процесса разрушения — стадию сравнительно быстрого распространения самой длинной зародышевой трещины. На этой стадии главная роль принадлежит уже не касательным, а нормальным напряжениям ст. На этой стадии трещины при определенных условиях становятся неустойчивыми и могут расти без дальнейшего увеличения приложенных напряжений. Критический момент — потеря равновесия — определяется из энергетических условий необходимо, чтобы упругая энергия, которая высвобождается при раскрытии трещины, была, по крайней мере, равна поверхностной энергии стенок трещины. Основанная на этих положениях известная схема Гриффитса дает количественную оценку условий потери равновесности и развития трещины разрушения при критическом напряжении  [c.241]

Обычное усталостное разрушение развивается в две стадии стадия I—образование у поверхности трещин в местах концентрации полос скольжения стадия II —распространение трещин в объем металла вплоть до его окончательного разрушения. Стадия I этого процесса обычно характеризуется ростом трещии и продвижением вдоль плоскостей в направлении максимальных напряжений среза. Эта стадия может занимать основную часть долговечности. Однако рост трещины на этой стадии в коице концов прекращается, по-видимому, вследствие ее встречи с препятствием, например, границей зерна последующее развитие этого зародыша трещины происходит в соответствии с критерием, основанным иа максимуме главных напряжений или максимуме относительных напряжений в сложно напряженном металле. Стадия II характеризуется появлением обычных бороздок на поверхиости разрушения. Напряжения, необходимые для завершения стадии I, соответствуют обычному пределу усталости материала и оии гораздо выше напряжений, необходимых для последующего распространения поверхностной трещины.  [c.300]

При рассмотрении статической прочности внимание в основном должно быть сосредоточено на первой стадии разрушения — стадии упруго-пластической деформации металла и перехода к зарождению трещины. Распространение трещины обычно сопровождается динамическими эффектами и рассмотрено в главе XI.  [c.200]

Предел вьшосливости для натурных образцов из этого чугуна в зависимости от вероятности разрушения, стадии разрушения и критерия подобия (110 определяют из уравнения  [c.566]


В настоящее время анализ развития разрушения (вторая стадия разрушения) традиционно проводят с помощью аппарата механики разрушения. Основная концепция механики разрушения заключается в существовании некоторых параметров К,  [c.7]

Кроме указанных закономерностей, из предложенного критерия зарождения хрупкого разрушения следует, что зарождение острых микротрещин (способных инициировать хрупкое разрушение) может наступать на более поздних стадиях деформирования, чем зарождение пор, контролирующих вязкое разрушение материала. Принципиальная возможность реализации указанной ситуации была показана в подразделе 2.1.2.2, где зарождение пор и острых микротрещин рассматривалось по дислокационным механизмам в матрице.  [c.109]

Преодоление указанных противоречий, по всей видимости, возможно при анализе процесса разрушения в конечном объеме материала (зерне) и при разделении процессов повреждения на такие три стадии, как зарождение и стабильный рост микротрещин в зерне, а также их объединение (в масштабе зерна) при нестабильном развитии. Тогда несовпадение зон максимального повреждения и развития разрушения становится понятным, так как совсем не обязательно, чтобы зона зарождения и роста микротрещин (зерно) совпадала с поверхностью их объединения (ниже процесс разделения зон повреждения и разрушения рассмотрен подробнее).  [c.137]

Очевидно, что контролирующим параметром первой и второй стадий процесса повреждения (зарождение и стабильный рост микротрещин) является деформация, а третьей (нестабильное развитие микротрещин и их объединение) —максимальные нормальные напряжения. Следовательно, учет стадийности усталостного разрушения может быть, в частности, полезен при формулировке усталостного уравнения, учитывающего влияние максимальных напряжений.  [c.137]

К разрушениям второго типа, которые могут происходить также при различных схемах нагружения, следует отнести разрушения, для которых критические параметры существенно зависят от времени нагружения в том или ином виде. Типичным примером является разрушение, получившее в литературе название разрушение при взаимодействии ползучести и усталости [240, 341] при циклическом нагружении в определенном температурном интервале долговечность при одной и той же амплитуде деформации зависит от скорости деформирования, значительно уменьшаясь при малых эффективных скоростях деформирования, в частности при циклировании с выдержками. На стадии развития усталостного повреждения также известны многочисленные экспериментальные данные о влиянии частоты нагружения в определенных условиях, особенно в коррозионной среде, на скорость роста усталостных трещин [199, 240, 310,  [c.150]

С целью более полной проверки модели был выполнен расчетный анализ долговечности одноосных образцов при двух режимах нагружения с различными скоростями деформирования на стадиях растяжения и сжатия. В первом режиме скорости деформирования i = lO-s с-, Il2 = с во втором— gi = 10- с-, 2 =10-2 с в обоих режимах нагружения размах деформаций Де = 2%. Результаты расчетов показали, что с увеличением по модулю скорости деформирования 2 (сжимающая часть цикла) при неизменной i (растягивающая часть цикла) долговечность до зарождения межзеренного разрушения уменьшается (рис. 3.12). Такой эффект связан с уменьшением залечивания пор при сжатии (с увеличением Ibl темп уменьшения радиуса пор падает), что достаточно хорошо согласуется с имеющимися экспериментальными данными [240, 273].  [c.185]

Анализ долговечности сварных узлов на стадии образования усталостного разрушения может быть выполнен на основе из-вестных деформационных критериев разрушения [141, 144, 147] или при использовании разработанного деформационно-силового критерия (см. раздел 2.3). Процедура расчета при этом аналогична анализу долговечности материала у вершины усталостной трещины, так как по сути трещина является острым геометрическим концентратором напряжений и деформаций. Расчет кинетики НДС в концентраторах напряжений в настоящее время проводится с использованием коэффициентов концентрации упругопластических деформаций и напряжений, процедура получения которых достаточно полно представлена в работах [141, 147]. В случае необходимости уточненного анализа НДС в концентраторе можно воспользоваться решением упругопластических задач с помощью МКЭ.  [c.268]

В связи с изложенным настоящая глава будет посвящена разработке методов определения ОСН в сварных толстолистовых конструкциях с многопроходными швами, а также исследованию долговечности сварных узлов на стадии развития усталостной трещины. Решение поставленной задачи опирается на разработанные методы расчета НДС при термопластическом деформировании материала, базирующиеся на МКЭ, а также на методы анализа параметров механики разрушения и модель развития усталостной трещины.  [c.269]

Приведенные в предыдущем разделе исследования ОСН в сочетании с методами расчета траектории трещины и параметров механики разрушения (см. подраздел 4.1.3) и моделью развития усталостной трещины (см. подраздел 4.1.4) позволяют исследовать долговечность сварных узлов на стадии развития трещины.  [c.317]

Таким образом, проведенные исследования позволили отклонить предположения о разрушении металла коллектора в результате снижения малоцикловой прочности или коррозионного растрескивания. Необходимо подчеркнуть, что и по другим характеристикам, таким, как хрупкая прочность, сопротивление усталостным разрушениям на стадии зарождения и развития трещин на воздухе и в коррозионной среде, были подтверждены высокие показатели, при которых преждевременное разрушение коллектора не должно было бы произойти. Вместе с тем, эксперименты по замедленному деформированию (растяжение гладких образцов с малой скоростью деформирования) в коррозионной среде показали, что при составе среды, соответствующей отклонениям, имевшим место в процессе эксплуатации разрушившихся коллекторов (низкий водородный показатель pH, присутствие кислорода), может происходить значительное снижение пластичности стали, причем тем большее, чем ниже скорость деформирования. Такая закономерность соответствует зависимости критической деформации от скорости деформирования в условиях ползучести материала (см. гл. 3). Данное обстоятельство привело к необходимости изучения возможных временных процессов деформирования материала коллектора при стационарном нагружении. Выполненные эксперименты, ре-з льтаты которых будут представлены ниже, показали, что  [c.328]


Холодная деформация может проводиться до определенных пределов, так как при исчезновении запаса пластичности возникает разрушение металлов и сплавов. Поэтому рекристаллизационный отжиг следует проводить при определенных стадиях холодной деформации.  [c.87]

Судя по кинетическим кривым /тр(т) на рис. 59 и наблюдениям за поверхностью образцов в процессе испытания, в деформируемых никельхромовых сплавах на гладких образцах при относительно невысоких напряжениях кинетику трещин можно представить следующим образом вначале медленный рост одной (или небольшого количества) первичной трещины (стадия /), затем множественное образование новых трещин и вследствие этого замедление роста каждой отдельной трещины (стадия II), заключительная стадия — быстрое развитие одной или нескольких трещин до полного разрушения (стадия III). При повышении напряжения сокращается во времени или вовсе исчезает вторая стадия, при уменьшении напряжения, наоборот, она сильно растягивается . Необходимо отметить, что большое количество трещин может возникнуть и при действии высоких напряжений, однако в последнем случае они образуются практически одновременно, а не последовательно, что при анализе излома и трещиноватости поверхности детали (образца) определяется по степени их развития.  [c.86]

Образование и развитие трещин. Развитие микроскопических трещин контролировалось непрерывно в процессе испытания, однако появление микротрещин обнаруживалось при всех указанных выше условиях термоциклирования лишь на заключительных перед окончательным разрушением стадиях испытания. После возникновения межзеренных трещин наблюдался их быстрый рост, слияние в макротрещину и конечное разрушение образца в период снижения температуры, т. е. в условиях наличия растягивающих напряжений. Во всех случаях разрушение носит межзереннный характер (рис. 7).  [c.49]

При растяжении плоских образцов с центральной сквозной трещиной перед наступлением критического состояния равновесия (когда трещина начинает быстро лавинообразно распространяться ири постоянной внешней нагрузке) почти всегда наблюдается стадия медленного устойчивого докритического роста трещины. Это медленное подрастание трещины, хорошо известное экспериментаторам, приводит к тому, что критическая длина трещины 1с превышает исходную длину U на 30, 50, а то и на 100 % в зависимости от свойств материала и длины исходной трещины. Зависимость напряжения в неослабленном сечении образца от длины устойчивой трещины принято называть докритической диаграммой разрушения. Стадии медленного роста трещины придается настолько большое значение, что ири исследовании механических свойств материалов иреднолагается дополнять диаграммы деформации диаграммами разрушения.  [c.138]

Это указывает на то, что при А/С>Л контролирующим мик- ромеханизмом разрушения становится ротационная неустойчивость. Переход в область ускоренного разрушения (стадия III, рис. 172) dl/dN=4,5- 10 м/цикл) характе-  [c.351]

Процесс коррозии расчленяется на стадии возникновения и разрушения. Стадия возникновения коррозии носит электрохимический характер и протекает медленно. В латунях она вызывается пластической деформацией защитной поверхностной пленки под воздействием местных напряжений постепенно эта пленка разрывается у выходов плоскостей скольжения к поверхности или над границами зерен [54]. Это объяснение подтверждается измерениями потенциала и тока образцов, подвергаемых растяжению до наступления пластической деформации. При пластическом растяжении происходят дискретные процессы, характеризующиеся тем, что при увеличении растяжения синхронно уменьшается потенциал и возрастает ток или величина максимумов тока [55]. С другой стороны, трещины под напряжением наблюдаются у сплавов, образующих защитные пленки в условиях, при которых образование защитной пленки маловероятно. Поэтому в качестве общей гипотезы принимается положение [53, 56], что, кроме электрохимического взаимодействия между более благородным и менее благородным компонентами, должен оказывать свое влияние также и так называемый эффект твердого раствора. Упомянутее явление состоит в том, что  [c.260]

Если на обследуемом объекте или его аналогах происходили отказы, то проводят анализ соответствующей технической документации, обращая внимание при этом на следующие данные дата и время разрушения стадия технологической операции, когда произошло разрушение температура и влажность окружающей среды степень и последствия разрушения вид, назначение и размеры объекта наличие на нем заводской или монтажной маркировки срок службы к моменту разрушения состояние поврежденного объекта расстояние, на которое отброшены куски металла, и размер зоны теплового воздействия при воспламенении рабочего продукта размещение примыкающих деталей и фотодокументация места повреждения. Химический состав, термообработка и механические свойства материала конструкции технология ее сооружения, сварка, термообработка и контроль качества в процессе монтажных работ. Состав, давление, температура, скорость и влажность коррозионной среды. Величина постоянных и переменных напряжений, частота их изменения, вид напряженного состояния, ориентация главных нормальных напряжений. Планируемые условия эксплуатации и отклонения от них в процессе работы и непосредственно перед повреждением объекта, акты освидетельствований и сведения о ремонтах. При этом учитывается информация монтажной и технологической документации, обслуживающего объект персонала и информация о прежних подобных повреждениях. В процессе анализа проводят контрольную проверку каждого наблюдения относительно истории повреждения конструкции и отмечают все противоречия, так как часто именно они позволяют найти главную причину повреждения. Значи-  [c.217]

Р5ырубку и пробивку обычно осуществляют металлическими пуансоном и матрицей. Пуансон вдавливает часть заготовки в отверстие матрицы. В начальной стадии деформирования происходит врезание режущих кромок в заготовку и смец еиие одной части заготовки относительно другой без видимого разрушения (рис. 3.39, а).  [c.104]

Для обоснования условия зарождения микротрещин скола на пределе текучести обычно используют факт наличия микротрещин и микронесплошностей на самых ранних стадиях пластической деформации. В то же время анализ экспериментальных результатов, представленных схематически на рис. 2.6,6, а также проведенные нами исследования [2, 131] (см. также подраздел 2.1.4) показали, что зарождение микротрещин скола, приводящих к хрупкому разрушению, может происходить при напряжениях, существенно превышающих предел текучести. Для того чтобы разрешить это противоречие, ответим на вопрос условие зарождения каких микротрещин должно входить в критерий хрупкого разрушения Как уже обсуждалось, микротрещи-  [c.67]

Рассмотрим усталостное разрушение зерна поликристалли-ческого ОЦК металла. При периодическом нагружении процесс усталостного разрушения зерна можно подразделить на три стадии 1) зарождение микротрещин по границам и в теле фрагментированной (или ячеистой) дислокационной структуры, возникающей в процессе циклического деформирования 2) стабильный рост микротрещин за счет эмиссии дислокаций из их вершин 3) образование разрушения в масштабе зерна при нестабильном росте микротрещин.  [c.137]

Долговечность до момента разрушения в масштабе зерна определяется стадией развития микротрешины от длины зародышевой трещины Р до критических размеров If.  [c.140]


Процесс малоциклового усталостщ)го разрушения ОЦК металлов может быть подразделен на три этапа множественное зарождение микротрещин на самых ранних стадиях циклического упругопластического деформирования, стабильное подрастание микротрещин за счет эмиссии и стока дислокаций в их вершины и, наконец, нестабильное развитие микротрещин до ближайших эффективных барьеров, которыми могут являться микронапряжения или границы деформационной субструктуры. Исходя из указанной схематизации усталостного разрушения ясно, что долговечность до зарождения макроразрушения определяется двумя параметрами НДС неупругой деформацией (точнее, размахом неупругой деформации в цикле) и максимальными напряжениями в цикле. Первый параметр определяет скорость стабильного роста микротрещины, а второй — ее критическую длину.  [c.148]

В условиях циклического нагружения уменьшение эффективной скорости деформирования, обусловленное либо уменьшением частоты, либо выдержкой в цикле, либо формой цикла, может вызвать существенное снижение числа циклов Nf до разрушения, как показано на рис. 3.1,6 на примере нержавеющей стали типа 304, испытанной при 600 и 700 °С и размахе деформации Ае = 1 %. Аналогичные данные получены для бейнитной стали 2,25 Сг — 1 Мо [286] при Т = 575 °С и Ле = 0,5 % выдержка в циклах растяжения и сжатия до 6 мин приводит к снижению усталостной долговечности в три-четыре раза по сравнению с непрерывным циклированием со скоростью деформирования = 4-10- с-. Подобное влияние скорости деформирования на повреждаемость материала наблюдается и на стадии роста усталостной трещины. Например, для никелевого сплава 1псопе1718 уменьшение частоты нагружения до 0,1 Гц  [c.151]

Известна также формула Формена [16], относящаяся в основном к области перехода разрушения от стадии устойчивого роста (пэрисовский участок) к ускоренному и отражающая влияние асимметрии нагружения,  [c.190]

Одно из принципиальных различий между этими двумя механизмами коррозии металлов заключается в том, что при электрохимической коррозии одновременно происходят два процесса окислительный (растворение металла на одном участке) и восстановительный (выделение катиона из раствора, восстановление кислорода и других окислителей на другом участке металла). Например, в результате растворения цинка в серной кислоте образуются ионы цинка и выделяется газообразный водород при действии воды железо переходит в окисное или гидроокис-ное состояние и восстанавливается кислород с образованием гидроксильных иоиов. При химической коррозии разрушение металлической пoвeJЗXнo ти осуществляется без разделения на отдельные стадии и, кроме того, продукты коррозии образуются непосредственно на тех участках поверхности металла, где происходит его разрушение.  [c.6]

Коррозионное растрескивание напряженного металла развивается последовательно в несколько стадий начальная — от. момента действия агрессивной среды до возникновения разрушений в виде первичных трещин, и последующие стадии, при которых трещины развиваются так иитеиенвио, что наступает мгновенное ра фушенис металла. На рис. 78 показана в качестве примера одна из последних стадий развития понерхиостиых трещин в око-лошовной сварной зоне, у котороГ остаточные напряжения не были сняты.  [c.108]

Это свойство особенно резко выражено у пластичных металлов. На рис. 55 приведена диаграмма нагружения па растяжение и сжатие образцов из нпзкоуглеродистой стали. В случае растяжения материал проходит через хорошо известные стадии после упругой деформации металл начинает течь (участок т) и в результате объемного наклепа упрочняется (участок п). По достижении предела прочности начинается образование шейки, заканчивающееся разрушением образца.  [c.126]

В противоположность первым стадиям возникновения внутризерениых и межзеренных трещин, развивающихся в течение длительного времени, окончательное разрушение наступает внезапно и носит характер хрупкого излома.  [c.291]

Для однородного хрупкого материала неравномерность распределения напряжений из-за коииенг-рации сохраняется на всех стадиях нагружения и при статических нагрузках. В местах действия максимальных напряжений начинается разрушение материала (путем образования трещин). Особенно чувствительна к концентраторам закаленная сталь и тем больше, чем выше ее характеристики прочности. Эффективный коэффициент концентрации напряжений для хрупких однородных материалов весьма близок к теоретическому. Следовательно, для хрупкого материала в расчетах на прочность при статических нагрузках можно пользоваться теоретическими коэффициентами концентрации напряжений.  [c.111]


Смотреть страницы где упоминается термин Разрушения стадии : [c.181]    [c.119]    [c.59]    [c.127]    [c.138]    [c.65]    [c.285]   
Защита от коррозии на стадии проектирования (1980) -- [ c.373 ]



ПОИСК



Г-интегрироваиие вязкости разрушения на стадии движения (— propagation

Изн стадии

Износ металла при полном разрушении оксидной пленки. Влияние первоначальной стадии коррозии

Исследование кинетики высокотемпературного разрушения на стадии развития трещин при статическом, циклическом и длительном статическом нагружении

Кинетические особенности коррозионно-усталостного разрушеНачальная стадия разрушения

Критерии механики разрушения на стадии развития трещин при статическом и циклическом нагружении

Критерии разрушения оболочки на закритической стадии деформирования

Начальная стадия вязкого разрушения

Начальная стадия разрушения клина

О расчете по допускаемым напряжениям, по стадии разрушения и по предельным состояниям

Разрушение — Время 358 — Стадия

Разрушение — Время 358 — Стадия вязкое

Разрушение — Время 358 — Стадия распространения

Разрушение — Время 358 — Стадия смешанное

Разрушение — Время 358 — Стадия хрупкое

Стадия образования зон предварительного разрушения

Стадия хрупкого разрушения

Степнов М. Н. Вероятностные закономерности двух стадий усталостного разрушения легких сплавов

Третья стадия ползучести и разрушение

Энергетические критерии разрушения на стадии инициирования трещин



© 2025 Mash-xxl.info Реклама на сайте