Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Измерение лабораторное

Температура в комнате, измеренная лабораторным ртутным термометром, равна 20 °С.  [c.81]

Температура застывания определяет предел текучести масла, т. е. предел его подвижности. Повышение вязкости масла вызывает увеличение потерь мошности на его прокачивание в гидросистеме и может привести к полной потере работоспособности гидропривода самоходной машины. В технической характеристике масла указана температура застывания, измеренная лабораторным путем. В гидравлической системе машин температура текучести (прокачиваемости) отличается от температуры, определенной в лаборатории. Предельная температура прокачиваемости масла в гидросистеме обычно на 8—12°С выше температуры застывания, указанной в технической характеристике масла.  [c.141]


При особо точных измерениях лабораторными термометрами с ценой деления 0,1 °С не следует ограничиваться в работе теми поправками, которые проверяющими организациями даются через 5°С, ибо в середине интервала между двумя точками градуировки поправка может оказаться резко отличающейся от поправок в точках градуировки термометра. Это может произойти потому, что капилляр, в котором находится ртуть, может иметь местное сужение или расширение. Для устранения этих погрешностей необходимо проводить градуировку по какому-либо эталонному прибору с интервалами, значительно меньшими, например через 0,5—1 "С (эталонным прибором в данном случае может служить платиновый термометр сопротивления).  [c.84]

Измеренные лабораторным путем функции т = т (р), к = к (р), р2 = Р2 (Р) дополняют уравнение (21.4) при условии, что в лаборатории моделировались пластовые условия деформирования образца. В рассматриваемом случае деформации должны происходить из-за снижения порового давления при неизменных обжимающих образец нагрузках (см. 19) это условие вызвано принятой здесь локальной формулировкой гипотезы о постоянстве горного давления, а также не требующей анализа нелинейных связей деформаций и напряжений (а также деформаций и пористости) элементарного вывода.  [c.195]

Поправка на вероятную погрешность измерения лабораторными ртутными термометрами с верхним пределом шкалы 400— 600 °С составляет (3—7) С.  [c.194]

В зависимости от назначения и точности измерения приборы разделяются на технические (рабочие), используемые для практических целей и повседневных измерений лабораторные, предназначенные для лабораторных и экспериментальных работ в производственных условиях, требующих учета погрешностей образцовые, служащие для проверки и градуировки лабораторных и рабочих приборов.  [c.186]

Туман и облака в воздухе в любое время доступны измерениям лабораторными средствами с воздушных шаров и самолетов. Однако значительно легче проводить оптические измерения или радиолокационные наблюдения с наземной станции. С другим случаем, когда возникли аналогичные проблемы, столкнулась исследовательская группа, изучавшая процессы в доменных печах. Нужно было определить размер и число частиц сажи, вылетающих в вытяжную трубу. При оседании на металлический зонд они коагулируют и становятся неразличимыми. В горячий поток газа поместить микроскоп нельзя, но легко направить на него луч видимого света или ультрафиолетового излучения и измерить интенсивность и угловое распределение рассеянного света.  [c.448]

Лабораторные приборы служат обычно для точных измерений. Ими пользуются, как правило, при исследовательских и наладочных работах. Для получения большой точности измерений лабораторные приборы имеют тщательное выполнение, совершенные схемы и специальные приспособления для отсчета показаний. При пользовании этими приборами к их показаниям вводятся поправки, определяемые опытным или расчетным путем.  [c.19]


Технические термометры градуируются и поверяются в термостате при погружении в жидкость только хвостовой части, т. е. при постоянной глубине погружения, соответствующей их положению при измерении. Лабораторные и образцовые термометры градуируются и поверяются при переменной глубине погружения с таким расчетом, чтобы при каждом очередном отсчете температуры ртутный столбик в капилляре не выступал более чем на 5 мм над крышкой термостата.  [c.72]

Каждая лабораторная работа состоит из двух частей. В первой приводятся теоретические сведения и задачи, помогающие учащимся грамотно и осмысленно выполнять лабораторные работы. Вр второй части излагается цель работы, дается описание необходимых материалов, оборудования, оснастки, инструмента, приводятся методические указания к порядку выполнения опытов, формы таблиц для записей данных измерений и результатов подсчетов. Заканчивается каждая работа указанием по составлению отчета и контрольными вопросами.  [c.3]

Использование микроинтерферометра для измерения неровностей поверхности основано на явлении интерференции света, которое можно наблюдать с помощью специального оптического устройства. Микроинтерферометры применяют в лабораторных условиях для оценки наиболее чистых поверхностей с неровностями высотой в пределах 0,02—2 мк. Поле зрения у этих приборов малое — до 0,5 мм .  [c.91]

Местная коррозия в результате возникновения гальванических макропар наблюдается и в случае различия электрохимических характеристик отдельных участков одного и того же металла. Контактная коррозия в лабораторных условиях исследуется путем моделирования макропар, измерения их коррозионных токов, построением коррозионной поляризационной диаграммы, по величине тока и потенциалам электродов пары в электролите при изменении внешнего сопротивления и т. д. Вели электродами гальванической пары являются анодные и катодные структурные составляющие какого-либо металла, то тэ кая  [c.348]

Судя по количеству водорода, накапливающегося в котлах в зависимости от времени, а также по данным лабораторных измерений скорости коррозии, скорость роста оксида подчиняется параболическому закону 123], а следовательно, контролируется диффузией. Механизм этого процесса, как это описано в гл. 10, связан с миграцией ионов и электронов через слой твердых продуктов реакции.  [c.283]

I дин-см/рад. Применение зеркал и электронных систем дает возможность в исключительных условиях измерять углы поворота вплоть до 10 рад. Задав для всех необходимых еличин разумный порядок их числовых значений, составьте схему лабораторного прибора для измерения гравитационной постоянной G. (Не ожидайте, что удастся довести точность до 10 рад ) Упругая постоянная кручения имеет следующий порядок величины К 10"R /L дин-см/рад, где й и L — радиус и длина кварцевой нити (в см).  [c.297]

Будем искать выражение импульса, которое было бы инвариантно относительно преобразования Лоренца. Это выражение должно быть таким, чтобы составляющая импульса частицы по оси у не зависела от составляющей по оси х скорости системы отсчета, в которой наблюдается соударение. Если такое выражение будет найдено, то сохранение проекции импульса на ось у в одной системе отсчета будет обеспечивать ее сохранение во всех системах отсчета. Мы уже знаем, что относительно преобразования Лоренца смещение Ау в направление у одинаково во всех системах отсчета. Однако время А/, затрачиваемое на прохождение расстояния Ау, зависит от системы отсчета, и, следовательно, составляющая скорости Vg = = Ay/At тоже зависит от системы отсчета. Для измерения промежутка времени можно воспользоваться, вместо лабораторных часов, воображаемыми часами, расположенными на частице. Эти последние будут измерять собственное время частицы Ат. Это время должно быть признано всеми наблюдателями. Таким образом, отношение Ау/Ат одинаково для всех систем отсчета.  [c.379]

Энергия и импульс быстрого протона. Для некоторого протона по лабораторным измерениям р = 0,995. Каковы его релятивистская энергия и импульс  [c.395]

Частица, распадающаяся за время, соизмеримое с с, вряд ли заслуживает названия частица . Такой промежуток времени потребовался бы для разделения разлетающихся частиц и в том случае, если бы они вовсе не были перед этим связаны в одной частице. Указанный промежуток времени (lO- ) составляет естественный эталон, по сравнению с которым распады можно в известном смысле подразделять на быстрые и медленные. Из приведенной выше таблицы видно, что все указанные там распады (за исключением распадов я°-мезонов и Е°-барионов, сводящихся просто к испусканию фотона) в высшей степени медленны по сравнению с с, причем средние времена жизни находятся в пределах от 17 мин (для нейтрона) до 10 с (для Л- или S -барионов). Обычно, чем выше кинетическая энергия, имеющаяся для образования продуктов распада, тем быстрее распад. По сравнению с промежутком времени, достаточным для лабораторных измерений, даже долгоживущие частицы со средним временем жизни порядка 10 ° с существуют так недолго, что проблема изучения свойств этих нестабильных элементарных частиц требует специальных методов, аппаратуры и большой изобретательности.  [c.438]


Основная трудность, на которую наталкивается экспериментатор при определении скорости распространения света, связана с огромным значением этой величины, требующим совсем иных масштабов опыта, чем те, которые имеют место в классических физических измерениях. Эта трудность дала себя знать в первых научных попытках определения скорости света, предпринятых еще Галилеем (1607 г.). Опыт Галилея состоял в следующем два наблюдателя на большом расстоянии друг от друга снабжены закрывающимися фонарями. Наблюдатель А открывает фонарь через известный промежуток времени свет дойдет до наблюдателя В, который в тот же момент открывает свой фонарь спустя определенное время этот сигнал дойдет до Л, и последний может, таким образом, отметить время т, протекшее от момента подачи им сигнала до момента его возвращения. Предполагая, что наблюдатели реагируют на сигнал мгновенно и что свет обладает одной и той же скоростью в направлении АВ и ВА, получим, что путь АВ + ВА = 2Д свет проходит за время т, т. е. скорость света с = 20/х. Второе из сделанных допущений может считаться весьма правдоподобным. Современная теория относительности возводит даже это допущение в принцип. Но предположение о возможности мгновенно реагировать на сигнал не соответствует действительности, и поэтому при огромной скорости света попытка Галилея не привела ни к каким результатам по существу, измерялось не время распространения светового сигнала, а время, потраченное наблюдателем на реакцию. Положение можно улучшить, если наблюдателя В заменить зеркалом, отражающим свет, освободившись таким образом от ошибки, вносимой одним из наблюдателей. Эта схема измерений осталась, по существу, почти во всех современных лабораторных приемах определения скорости света однако впоследствии были найдены превосходные приемы регистрации сигналов и измерения промежутков времени, что и позволило определить скорость света с достаточной точностью даже на сравнительно небольших расстояниях.  [c.418]

В последнее время вместо вращающегося колеса с успехом применяют другие, более совершенные методы прерывания света. Наилучшие результаты получены с помощью конденсатора Керра (см. 152), Б котором наложение быстропеременного поля дает возможность производить до 10 прерываний в секунду. Это позволяет значительно улучшить точность результатов или сильно сократить длину базиса D. Так, в опытах Андерсона (1937 г.) длина базиса D составляла всего лишь 3 м, т. е. вся установка помещалась на лабораторном столе. Многочисленные усовершенствования в методах регистрации, использовавшие современные достижения радиотехники и электроники, позволили чрезвычайно сильно повысить точность измерений.  [c.424]

Лабораторные методы определения скорости света, позволяющие производить эти измерения на коротком базисе, дают возможность определять скорость света в различных средах и, следовательно, проверять соотношения теории преломления света. Как уже неоднократно упоминалось, показатель преломления света в теории Ньютона равен п — sin i/sin г = v /v , а в волновой теории п = sin i/sin т = где — скорость света в первой среде,  [c.427]

ИМИ процесса пользовались методами, основанными на анализе проб жидкости, отбираемых на выходе из образца пористой среды или вдоль его длины. Этот метод, испытанный в отечественной и зарубежной практике лабораторного экспериментирования, был принят и в наших исследованиях. Ввиду того, что визуальное контролирование процесса вытеснения смешивающихся жидкостей не представлялось возможным, так как исключалась возможность замера объемных расходов смешивающихся фаз фильтрационного потока, а также с целью повышения точности производимых измерений нами был использован метод, основанный на анализе отбираемых проб жидкости при выходе ее из образца в процессе вытеснения с последующим определением  [c.35]

Измерение различного рода экспериментальных величин (углов, расстояний, скоростей и т. д.) производится в системе координат, связанной с местом, где ставится опыт, — с лабораторией. Такая система называется лабораторной системой координат (л. с. к.). Ею очень удобно пользоваться благодаря экспериментальной наглядности выраженных в ней результатов.  [c.214]

Метод вращающегося зеркала (метод Фуко). Метод определения скорости света, разработанный в 1862 г. Фуко, можно отнести к первым лабораторным методам. С помощью этого метода Фуко осуществил измерения скорости света в средах, для которых показатель преломления п> 1.  [c.200]

Среди специальных термометров упомянем длиннокорпусные калориметрические термометры, метеорологические, клинические максимальные термометры, а также палочные для очень широких пределов измерений, лабораторные и промышленные термометры с вложенной шкалой. Нельзя не упомянуть о термометрах, в которых вместо ртути используется другая жидкость. Для многих случаев, когда требуются измерения ниже точки затвердевания ртути —38,87 °С, могут использоваться различные органические жидкости, такие, как этиловый спирт (до —80°С), толуол (до —100 °С) и пентан (до —200 °С). Метеорологические минимальные термометры также используют спирт в качестве термометрической жидкости и стеклянный указатель минимальной достигнутой температуры, который находится ниже мениска столбика жидкости в капилляре.  [c.410]

Так, за годы одиннадцатбй пятилетки мощная материально-техническая база создана в Московском центре стандартизации и метрологии. Выполнен объем работ по строительству нового здания, введено в эксплуатацию 19 тыс. м производственных площадей. Для обеспечения необходимой точности измерений лабораторные помещения оснащены прецизионными системами кондиционирования и вентиляции, созданы экранированные термоконстантные помещения, поставлены специальные фундаменты на виброгасящих опорах. Центр оснащен высокоточным современным метрологическим оборудованием, в том числе 55 рабочими эталонами свыще 200 поверочных установок высшей точности.  [c.52]


Частотная зависимость отклонений Лц от гассма-новского условия [I = onst, ослабевает по мере перехода от ультразвуковых частот к звуковым (менее 30 кГц) и на сейсмических частотах, видимо, лежит в пределах точности измерений (лабораторные данные на этих частотах, естественно, отсутствуют).  [c.154]

По величине этой разности давлений и атмосферному давлению, измеренному лабораторным барометром, Ратм = 738 мм рт. ст. (1,003 кГ/см ) вычисляем  [c.204]

Для измерения давления жидкостей и газов в лабораторных условиях помимо пьезометра пользуются лгидкостпьтми и механическими маиометрамп.  [c.23]

Кроме расс.мотренных методов испытаний, применяемых при лабораторных исследованиях, в последние годы разработан ряд новых физико-химических методов, к числу которы.х относится применение меченых атомов, оптические методы измерения толщины тонких пленок на металлах, определение структуры окис-ных тенок на металлах и др. Эти методы отличаются большой чувствительностью и пригодны для решения ряда важных теоретических вопросов.  [c.351]

Исследование тепловых потерь с поверхности горизонтальных паропроводов в условиях естественной конвекции проводилось па лабораторной установке, где измерения производились на горп-зоптальной трубе диаметром d=30 мм.  [c.58]

Термопара — 10 7о РЬ/Р1, применяемая для воспроизведения МПТШ-68 и точных лабораторных измерений, обычно изготавливается, как показано на рис. 6.4. Выбирается проволока диаметром от 0,3 до 0,5 мм и отжигается при 1250°С в воздухе в течение получаса перед помещением в изолятор из окиси алюминия с двумя каналами, который также предварительно нагревается в печи до температуры 1200°С.  [c.283]

Порядок передачи размера единиц физической величины от эталона или исходного образцового средства к средствам более низких разрядов (вплоть до рабочих) устанавливают в соответствии с поверочной схемой. Так, по одной из поверочных схем передача единицы длины путем последовательного лабораторного сличения и поверо[( производится от рабочего эталона к образцовым мерам высшего разряда, от них образцовым мерам низших разрядов, а от последних к рабочим средствам измерения (оптиметрам, измерительным машинам, контрольным автоматам и т. п.).  [c.110]

Первая оценка скорости света в вакууме была проведена еще в конце XVn в. и базировалась на астрономических наблюдениях. Было замечено, что промежуток времени между затмениями ближайшего спутника Юпитера уменьшается при сближении с Землей и увеличивается при их расхождении. Анализируя эти наблюдения, Ремер предположил, что свет распространяется с конечной скоростью, равной 3,1см/с. Эта смелая идея находилась в противоречии с господствующими тогда взглядами школы Декарта, согласно которым свет должен распространяться мгновенно. В XIX в. усилиями Физо, Фуко и других физиков, развивавших волновую теорию света, были проведены тщательные измерения этой константы. При этом использовались различные лабораторные устройства. В частности, применялся метод вращающегося зеркала, который был в начале XX в. усовершенствован Майкельсоном, определившим скорость света с высокой точностью. Мы не будем подробно рассматривать эти тонкие и остроумные исследования. Укажем лишь, что во всех таких опытах фактически измеряется время, необходимое для прохождения импульсом света вполне определенного пути. Таким образом, в результате эксперимента измеряется скорость светового импульса, точнее, скорость некоторой его части. Например, можно вести измерения по переднему или заднему фронту сигнала, исследовать область максимальной энергии импульса и т. д.  [c.45]

Прежде всего нам необходимо ввести четкую систему обозначений, чтобы всегда знать, о какой системе отсчета говорится. Если нужно перейти от скорости частицы v, измеренной в движущейся системе отсчета, к скорости v, измеренной в лабораторной системе отсчета, мы прибав.чяем V к v  [c.136]

Применяемая иногда в лабораторных измерениях фитильная лампа определенной конструкции, в которой горит чистый амилацетат,не может служить эталоном силы света. Эта так называемая свеча Гефнера составляет около 0,90 кд. Распределение энергии свечи Гефнера по длинам воли хорошо изучено именно поэтому она представляет интерес для лабораторных целей как сравнительно легко осуществляемый источник света с хорошо известными характеристиками.  [c.53]

Задача определения скорости света принадлежит к числу важнейших проблем оптики и физики вообще. Решение этой задачи имело огромное принципиальное и практическое значение. Установление того, что скорость распространения света конечна, и измерение этой скорости сделали более конкретными и ясными трудности, стоящие перед различными оптическими теориями. Первые методы определения скорости света, опиравшиеся на астрономические наблюдения, способствовали со своей стороны ясному пониманию чисто астрономических вопросов о затмениях отдаленных светил и о годичном параллаксе звезд. Точные лабораторные методы определения скорости света, выработанные впоследствии, используются при геодезической съемке. Теоретическое обоснование и экспериментальное исследование принципа Допплера в оптике сделали возможным решение задачи о лучевых скоростях светил или движущихся светящихся масс (протуберанцы, каналовые лучи) и привели к весьма широким астрономическим обобщениям. Сравнительное измерение скорости света в вакууме и различных средах послужило в свое время в качестве ехрег1теп1ит сгис1з для выбора между волновой и корпускулярной теориями света, а впоследствии привело к понятию групповой скорости, имеющему большое значение и в современной квантовой физике. Сравнение скорости распространения света с константой с максвелловской теории, обозначающей, с одной стороны, отношение между электромагнитными и электростатическими единицами заряда, а с другой — скорость распространения электромагнитного поля, сыграло важнейшую роль при обосновании электромагнитной теории света. Наконец, вопрос о влиянии движения системы на скорость распространения света и вся обширная совокупность связанных с ним экспериментальных и теоретических проблем привели к формулировке эйнштейновского принципа относительности — одного из самых значительных обобщений  [c.417]

Как уже упоминалось, лабораторные методы определения скорости света представляют собой, по существу, усовершенствования метода Галилея. Удачными оказались два приема способ Физо, автоматизирующий моменты пуска и регистрации возвращающегося сигнала (прерывания), и метод Aparo — Фуко, основанный на точном измерении времени пробега светового сигнала (вращающееся  [c.422]

В тех случаях, когда А можно считать не зависящим от концентрации, обобщенный закон Бугера (157.2) оказывается очень полезным для определения концентрации поглощающего вещества путем измерения поглощения, которое может быть выполнено очень точно при помощи фотометров более или менее сложной конструкции. Этим приемом нередко пользуются в лабораторной и промыщ-ленной практике для быстрого определения концентрации веществ, химический анализ которых оказывается очень сложным (колориметрия и спектрофотометрия, абсорбционный спектральный анализ).  [c.567]

Измерения интенсивности света, рассеянного атмосферой, проведенные в безоблачные дни в горных условиях, когда допустимо считать атмосферу свободной от случайных запылений, дали для числа Авогадро цифру, удовлетворительно согласующуюся с общепризнанным значением по исправленным данным, полученным между 1938 и 1951 гг., эти измерения дают для числа Авогадро значение (61,0 0,8) 10 моль в прекрасном согласии с принятым значением (60,2 0,3) 10 моль ). Хорошие результаты получены также из опытов по рассеянию света в газах в лабораторных условиях (Кабанн и его сотрудники по их последним данным Na = (61,0 0,8)моль-1).  [c.587]


В настоящее время в нашей стране и за рубежом разработано и выпускается промышленностью большое количество голографических установок и приборов, предназначенных как для лабораторных исследований, так и для контроля качества промышленной продукции. Аппаратура предназначена для получения голограмм и интерферограмм исследуемых объектов и измерения их параметров. Современные 10лографические установки имеют хорошие виброзащитные устройства и могут эксплуатироваться практически в любых условиях.  [c.71]

Высокая степень точности измерения изменения энергии методом резонансного поглощения -у-лучей без отдачи позволяет использовать этот метод для обнаружения и изучения весьма тонких эффектов, апример для определения магнитных диполь-ных и электрических квадрупольных моментов возбужденных состояний ядер, для исследования влияния электронных оболочек на энергию ядерных уровней. В 1960 г. Паунд и Ребка использовали резонансное поглощение у-лучей без отдачи в Fe для измерения в лабораторных условиях гравитационного смещения частоты фотонов, предсказываемого в общей теории относительности Эйнштейна. Эффект удалось обнаружить при удалении источника от поглотителя (по высоте) всего на 21 м.  [c.179]

Таким образо.м, время, в течение которого устанавливается или пропадает двойное лучепрело.мление в электрическом поле, позволяет использовать ячейку Керра в качестве практически безынерционного оптического затвора. Это свойство эффекта Керра нашло применение как на практике, так и в лабораторных исследованиях. В частности, ячейка Керра использовалась в опытах по измерению скорости света, а в последнее время она с успехом была применена для получения мощных импульсов света в твердотельных лазерах.  [c.69]


Смотреть страницы где упоминается термин Измерение лабораторное : [c.104]    [c.36]    [c.132]    [c.200]    [c.130]    [c.69]    [c.46]    [c.374]   
Теоретические основы теплотехники Теплотехнический эксперимент Книга2 (2001) -- [ c.327 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте