Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анодная кривая

Практически в большинстве случаев бывает удобнее графически складывать омическое падение потенциала с анодной кривой, так как последняя, как правило, имеет более плавный ход.  [c.272]

При пересечении анодных кривых с горизонталью 1/ Х получаются отрезки V A 1 и 2, длина каждого из которых характеризует соответствующую величину анодного тока данного металла, т. е. суммарную скорость его растворения за счет саморастворения и за счет внешнего тока от других металлов. Таким образом, анодные функции сохраняются не у всех металлов, а только у тех, обратимый потенциал которых отрицательнее значения общего потенциала системы (т. е. только у первого и второго металлов) через них протекает анодный ток, который подается во внешнюю цепь или обусловлен саморастворением металла.  [c.289]


Если условия контактной коррозии металлов таковы, что суммарная анодная кривая вновь пересекается с сум-  [c.361]

Для анодной пассивации конструкции необходимый ток / т 5 берется из соответствующей анодной кривой (рис. 259). Необходимое напряжение складывается из АК,  [c.365]

I — идеализированная анодная кривая 2 — реальная анодная кривая, полученная наложением кривых-, / и 2 3 — реальная анодная кривая, полученная наложением кривых / а 3 2 3 — катодное выделение водорода соответственно в отсутствие и в присутствии включений металлов с низким перенапряжением водорода.  [c.49]

Избирательное коррозионное разрушение металлических материалов является наиболее опасным, так как при незначительных потерях массы металла и сохранении в общем прежнего внешнего вида конструкции, аппарата или отдельной детали резко снижаются их механические свойства, что может привести к катастрофическим последствиям. Большинство случаев структурной и локальной коррозии может быть объяснено с позиции представлений о парциальных анодных кривых, развитых В. П. Батраковым на основании литературных данных и собственных экспе-  [c.31]

На рис. 11 представлено семейство анодных кривых для трех структурных составляющих сплава, которые характеризуются следующими параметрами (для структурных составляющих, склонных к перепассивации)  [c.33]

Характер анодных кривых для каждой структурной составляющей и каждого физически неоднородного участка зависит от химического состава этих составляющих, кристаллической структуры, концентрации ионов водорода, температуры, природы и концентрации активаторов, природы и концентрации анодных замедлителей, внутренних напряжений и приложенных внешних напряжений, В зависимости от ряда указанных факторов изменяется равновесный потенциал, потенциалы начала пассивации и полной пассивации, а также потенциал перепассивации и в ряде случаев потенциал пробоя (в присутствии активаторов, внутренних или приложенных внешних напряжений). Одновременно в зависимости от указанных факторов будет изменяться критический анодный ток пассивации и ток в пассивном состоянии.  [c.35]

Практически при коррозии металлов на особенности анодных кривых структурных составляющих и физически неоднородных участков металла оказывают влияние одновременно несколько из рассмотренных факторов.  [c.35]

Сплавы, склонные к коррозии под напряжением, характеризуются по крайней мере двумя анодными кривыми — основным фоном металла и участком, на котором возникает надрез с пиком напряжения, имеющим наиболее высокую скорость растворения. Такими участками могут быть структурные составляющие, границы зерен, блочных структур, кристаллографические плоскости и плоскости скольжения, дислокационные структуры. Наиболее интенсивно коррозия под напряжением развивается, когда надрезы находятся в активном состоянии или в состоянии пробоя.  [c.39]


Для простоты приводится одна анодная поляризационная кривая для щели и открытого участка поверхности сплава. Как видно из рис. 17, сплав в щели находится в активном состоянии, а на открытой поверхности — в пассивном состоянии (коррозионный потенциал им ет более положительное значение). В этих условиях между участком сплава в щели и открытой поверхностью возникают локальные токи, что приводит к сближению их потенциалов ( к, и к,). Однако в этих условиях система часто остается не полностью заполяризованной. В процессе коррозии металла в щели изменяется состав раствора (pH, концентрация ионов металла и других компонентов раствора) из-за возникающих диффузионных ограничений, что приводит к изменению хода анодной парциальной кривой для этой части поверхности. При этом может изменяться положение равновесного потенциала, Еа и значения других величин, и парциальные анодные кривые для сплава в щели и на открытой поверхности становятся разными.  [c.42]

В результате графического суммирования сил токов всех трех катодных процессов получается суммарная катодная кривая (К<)обр — соответствующая случаю коррозии всех трех металлов в контакте друг с другом. Таким же графическим суммированием сил токов анодных процессов получается суммарная анодная кривая (1 а5)обр — Для этого к анодной кривой первого металла (V ajoep — a, начиная со значения потенциала (l/aJo6p следует графически прибавить анодный ток второго металла. Построение суммарной анодной кривой (Vai)o6p — ас следует прекратить после ее пересечения с суммарной катодной кривой (VJo6p — Vk -  [c.288]

Данный электрохимический механизм возможного повышения коррозионной стойкости сплава катодным легированием в условиях возможного пассивирования анодной фазы, сформулированный Н. Д. То-машовым, можно пояснить с помощью поляризационной коррозионной диаграммы (рис. 218). На этой диаграмме (К)обр а — кривая анодной поляризации пассивирующейся при / и V анодной фазы сплава ( VJoepV K, — кривая катодной поляризации собственных микрокатодов сплава ( к)обр кг — кривая катодной поляризации катодной присадки к сплаву ( к)обр к,.—суммарная катодная кривая. Локальный ток /j соответствует скорости коррозии сплава без катодной присадки, а для сплава с катодной присадкой этот ток имеет меньшую величину /2 [точка пересечения анодной кривой (1 а)обрЛЛУа с суммарной катодной кривой (1 к)обр кс1- При недостаточном увеличении катодной эффективности (суммарная катодная кривая пересекается с анодной кривой при I < / ) или при затруднении анодной пассивности [анодная кривая активного сплава (Va)o6p V a, достигает очень больших значений тока] происходит увеличение локального тока до значения /3, а следовательно, повышается и скорость коррозии сплава.  [c.318]

Если условия контактной коррозии металлов таковы, что суммарная анодная кривая пересекается с суммарной катодной кривой ( к)обр кс в области значительной зависимости последней от перенапряжения катодного процесса (перенапряжения ионизации кислорода), например в точке 1, то нетрудно заметить, что величина суммарного коррозионного тока Г (который полностью или большая часть его приходится на основной металл) определяется ходом суммарных катодной (в основном) и анодной кривых. Суммарные же величины отличаются от кривых основного (анодного) металла на величину соответствующих токов металла катодного контакта, которые определяются ходом катодной (в основном) и анодной кривых этого металла. Ход катодной кривой металла катодного контакта определяется катодной поляризуемостью его катодных участков Рк, и величиной поверхности этих участков Skj, а ход анодной кривой этого металла — его обратимым электродным потенциалом в данных условиях (V a.)oep. анодной поляризуемостью его анодных участков Ра, и величиной поверхности этих участков Чем положительнее значения (УмеХбр> тем меньше его анодные функции при контакте с другим металлом и больше катодные функции. Таким образом, эффективность ускоряющего действия металла катодного контакта на коррозию основного металла зависит от природы металла катодного контакта [его обратимого электродного потенциала в данных условиях (Каг)обр. поляризуемости электродных процессов Ркг и Рзг и соотношения 5к. Sa J и его поверхности 5а. При этом в условиях преимущественного катодного контроля процесса коррозии главную роль будут играть (Ка обр. Skj и Рк2-  [c.360]


Если условия контактной коррозии металлов таковы, что суммарная анодная кривая (Fai)o6pVa пересекается с суммарной катодной кривой (VJo6p K области диффузионного контроля последней, например в точке 2 (рис. 255), то нетрудно заметить, что величина суммарного коррозионного тока /" (который полностью или большая часть его приходится на основной металл) определяется только ходом суммарной катодной кривой. Суммарная же катодная кривая отличается от катодной кривой основного (анодного) металла на величину катодного тока металла катодного контакта, который определяется только поверхностью катодных  [c.360]

До сих пор, как при построении поляризационных кривых, так и при построении коррозионных диаграмм мы пользовались так называемыми идеальными поляризационными кривыми. За начальный потенциал анодной кривой Д п[шнимался равновесный потенциал анодного металла, за начальный потенциал катода — равновесный потенциал катодного процесса в данных условиях. В реальных случаях даже при отсутствии тока имеется достаточно причин для отклонения этих потенциалов от раврговеспых значений. Такими причинами могут быть, например, образование или удаление защитных пленок, накопление на поверхности электродов различных включений и т. д.  [c.54]

При большем числе электродов в системе для оиределения полярности каждого электрода и силы тока суммируют катод-1[ые кривые всех электродов и иолучают суммарную катодную кривую аналогичным способом суммируют все анодные кривые II получают суммарную анодную кривую. Точка иересечения обеих суммарных кривых дает общую силу тока в системе, а также общий потенциал системы Е . Сила тока на каждом электроде определяется ио точке иересечения его анодной или катодной иоляризационной кривой с горизонталью, проведенной через Е .  [c.58]

В последнее время а ряде работ показана возможность применения анодной защиты металлов и сплавов, если только они склонны к пассивации. Характерная потен-циостатическая анодная поляризационная кривая пассивирующихся металлов приведена на рис. 206. При достижении величины потенциала 1 и соответственно тока /1 начинается пассивация металла. При смещении потенциала до значения 2 металл полностью пассивируется при этом он растворяется с очень небольшой скоростью, соответствующей плотности тока (ток полной пассивации). На анодной кривой имеется широкая область потенциалов, от 2 до 3, в которой сохраняется устойчивое пассивное состояние.  [c.307]

Если кривые катодной поляризации (рис. 5.5) пересекают анодные кривые при более высоких потенциалах в области пере-пассивации, скорость коррозии, например нержавеющей стали, становится выше, чем в пассивной области и продуктами коррозии становятся СггОу и Fe ". Перепассивация наблюдается не только у нержавеющей стали, но также у хрома, для которого потенциал реакции  [c.79]

Для достижения наилучшего ингибирующего эффекта концентрация пассиватора должна превышать определенное критическое значение. Ниже этого значения пассиваторы ведут себя как активные деполяризаторы и увеличивают скорость коррозии на локализованных участках поверхности (питтинг). Более низкая концентрация пассиватора соответствует бЬлее отрицательным значениям окислительно-восстановительного потенциала, и вследствие этого катодная поляризационная кривая пересекает анодную кривую в активной, а не в пассивной области (см. рис. 16.1).  [c.262]

Анодная поляризация алюминиевых вакуумных покрытий в 3 %-ном Na l незначительна, что указывает на сравнительно легкий процесс анодного растворения в присутствии галогенов. Покрытия, полученные из порошковых материалов, имеют плотные и толстые окисные пленки, вызывающие более значительную анодную поляризацию. Анодная кривая обратного хода для всех исследуемых покрытий смещается в отрицательную сторону, причем для электрофоретического покрытия на 40-50 мВ, вакуумного и электростатического - на 60 - 70 мВ. Эти данные свидетельствуют о различной защитной способности окисных пленок, имеющихся на алюминиевых покрытиях.  [c.81]

Для получения полной анодной кривой бьша применена разработан ная И.Л. Розенфельдом методика предварительной активации поверх кости, которая дает поляризационные кривые, характерные для пассиви рующегося металла с областями активного растворения, активно-пас сивного и пассивного состояния. На рис. 22 приведены анодные поляри зационные кривые алюминия АД1 и алюминиевых покрытий при ско рости наложения потенциалов 10 мВ/с в средах 0,01 н. Na l. В 0,01 н растворе Na l стационарный потенциал стали с электрофоретическим покрытием при гидростатическом обжатии на 0,1 Вис гидроимпульс ным - на 0,2 В положительнее потенциала чистого алюминия и состав ляет - 1,3 и -1,2 В соответственно.  [c.82]

Весьма интересные результаты были получены при изучении влияния ингибиторов на коррозию при пластической деформации металлов. Оказалось [68 69], что в присутствии ингибиторов не только уменьшается скорость коррозии, но и ослабляется влияние деформации. На рис. 16 представлены поляризационные кривые, полученные для стали 20. Коррозионной средой служила 1,1 н. НС1 (4%-ный раствор НС1), близкие результаты были получены в 1,1 н. H2SO4. Из рисунка следует, что деформация влияет сильнее всего на поляризационные характеристики образцов стали в состоянии поставки анодные кривые смещаются в отрицательном, а катодные — в положительном направлении. Несколько меньше, но вполне отчетливо (особенно для анодного процесса) это влияние проявляется на кривых для отложенных образцов. Введение ингибиторов исключает эффект деформации, уменьшает скорость коррозии, стационарный потенциал при этом смещается в положительную сторону.  [c.48]


Поляризационные диаграммы пассивирующихся металлов отличаются от рассмотренных ранее тем, что на определенном участке анодной кривой наблюдается максимум тока. При смещении в область более положительных потенциалов ток падает (рис. 17, а).  [c.49]

Кривая 1 на рис. 17, а отвечает тому случаю, когда металл в отсутствие внешней поляризации находится в равновесии с собственными ионами (идеализированная анодная кривая) и потенциал до наложения тока отвечает обратимому потенциалу металла При смещении потенциала в положительную сторону скорость растворения металла увеличивается и достигает максимального значения при Е = Е ,п, где н.п — потенциал начала пассивации. В области потенциалов между ЕгиЕ ,п происходит так называемое активное растворение металла, наклон на этом участке положителен  [c.49]

В реальных условиях на реакцию ионизации — разряда ионов металла — накладывается какая-либо другая реакция, чаще всего выделение водорода или окисление кислорода. При реакции выделения водорода равновесный потенциал в выбранной среде отвечает величине н г- Применяя принцип независимого протекания электродных реакций и принцип суперпозиции поляризационных кривых [25], мы получим новую анодную кривую растворения металла , начинающуюся уже не от равновесного потенциала металла ,., а от его коррозионного потенциала Есог (кривая 2, рис. 17, а). Скорость коррозии (в отсутствие внешнего тока) будет равна при этом i or- Если на поверхности корродирующего металла будет присутствовать примесь более электроположительного металла, то равновесный потенциал водородного электрода не изменится, но скорость выделения водорода при тех же потенциалах будет выше (кривая 5, рис. 17, а), что приведет к сдвигу потенциала коррозии в положительную сторону ( ror) и к увеличению ее скорости до i or. Ситуация, однако, существенно меняется, если равновесный водородный потенциал положительнее, чем Е . Тогда введение металлов, на которых облегчается выделение водорода, приводит не к усилению, а к резкому замедлению коррозии, так как коррозионный потенциал окажется в этом случае в положительной области (рис. 17, б).  [c.50]

Таким образом, поверхность сплава (металла) может также характеризоваться группой парциальных катодных кривых, вклад каждой из них в общий суммарный катодный процесс определяется скоростью процесса восстановления окислителя и площадью отдельных участков. Одновременное рассмотрение группы парциальных катодных и анодных кривых усложняет подход к анализу коррозионного процесса. Поэтому предлагается рассматривать величину коррозионного потенциала, который устанавливается после помещения сплава в коррозионноактивную среду, и его положение на парциальных анодных кривых структурных составляющих. В момент помехцения сплава в раствор отдельные  [c.35]

Если коррозионноактивная среда обладает низкой электропроводностью (разбавленные растворы, почвенная коррозия) или в связи с особенностями консфрукции, pH раствора, концентрация окислителя у разных участков поверхности будет разная, и величина стационарного потенциала может быть различной для разных участков поверхности. В этом случае выбирают на анодной кривой два значения коррозионного потенциала и по анодному току можно оценить коррозионные потери на отдельных участках конструкции.  [c.36]

Различные виды структурной и локальной коррозии определяются природой структурных составляющих и неоднородных участков поверхности, характеризующихся индивидуальным анодным поведением при различных потенциалах в соответствии с осо-бениобтями парциальных анодных кривых.  [c.36]

Сплавы, склонные к межкристаллитной коррозии, характеризуются несколькими анодными кривыми (твердый раствор, обедненный твердый раствор, интермеа-аллиди, карбиды, сегрегация технологических примесей на границах). В зависимости от величины окислительно-восстановительного потенциала раствора  [c.36]

Так же, как и в случае межкристаллитной коррозии, металл характеризуется несколькими анодными кривыми, зависяш,ими от адсорбционных свойств поверхности и наличия металлических или неметаллических включений. Точечная и язвенная коррозия особенно характерна в средаза, содержащих хлорид-, бромид-или иодид-ионы, которые адсорбируются на отдельных участках металла. Условия пассивации на таких участках резко отличаются от основного фона металла как по потенциалам начала пассивации, так и по потенциалам полной пассивации. Изменяется также величина критического тока пассивации и потенцмал пробоя. Точечная и язвенная виды коррозии проявляются или в области потенциалов, характеризующих переход из активного состояния в пассивное, или в области высоких потенциалов, характеризующих переход из пассивного состояния в состояние пробоя. При этом участки с ослабленной пассивной пленкой пробиваются при  [c.38]

Таким образом, при наличии питтинговой коррозии сплав характеризуегся несколькими анодными кривыми, сдвинутыми относительно друг друга и отрах ающими поведение основного металла и различных питтингов.  [c.39]

Напряжения также могут вызывать структурн)яе изменения в сплаве, что, в свою очередь, приведег к изменению дифференциальных анодных кривых. Кинетика развития трещин определяется влиянием электрохймичееких н механических факторов.  [c.39]

Если твердый раствор состоит из двух компонентов и наблюдается избирательное растворение одного из компонентов, то в этом случае следует рассматривать две анодные кривые для каждого компонента сплава, даже если они входят в состав твердого раствора. При определенных значениях стационарного потенциала один из компонентов находится в активном свстоянии,. другой — в пассивном. Этим, вероятно, объясняются границы устойчивости, установленные Тамманом (закон п/8).  [c.39]

Эффект щелевой коррозии определяете диффузионными ограничениями, которы.е ириводят или к изменению анодной кривой (при ограничении дифо 5узии анодных замедлителей), вследствие уменьшения концентрации анодных замедлителей., или к смещению в отрицательную сторону равновесного окислительно-восстановительного потенциала раствора (при ограничении диффузии окислителя), вследствие уменьшения концентрации окислителя в щели.  [c.41]


Смотреть страницы где упоминается термин Анодная кривая : [c.360]    [c.37]    [c.51]    [c.51]    [c.300]    [c.168]    [c.83]    [c.169]    [c.190]    [c.50]    [c.26]    [c.33]    [c.34]    [c.36]    [c.37]    [c.39]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.0 ]



ПОИСК



Анодная кривая идеальная

Анодная кривая реальная

Анодные гальваностатические кривые заряжения

Анодные поляризационные кривые

Анодные поляризационные кривые в зависимости от плотности тока

Анодные поляризационные кривые для угольного анода

Анодные потенциостатические кривые

Анодные потенциостатическне кривые заряжения

Анодный

Кривые анодной поляризации

Обобщенная анодная поляризационная кривая

Пассивность металла — Кривая анодной пассивности

Полирование черных металлов — Кривые анодной поляризации 1.82 — Составы электролитов и режимы полирования

Поляризационная кривая железа анодная

Улита) анодная поляризационная крива

Улита) поляризационная кривая, полученная методом анодной поляризации и действием окислителей различной силы (работы

Уравнение кривой анодной поляризации



© 2025 Mash-xxl.info Реклама на сайте