Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Второй метод составления уравнений движения

ВТОРОЙ МЕТОД СОСТАВЛЕНИЯ УРАВНЕНИЙ ДВИЖЕНИЯ  [c.393]

Наиболее простым и удобным методом составления уравнений движения механизмов является метод лагранжевых уравнений. При составлении уравнений Лагранжа второго рода предполагается, что движение механизма исследуется в системе обобщенных координат, в качестве которых должны быть приняты независимые параметры, определяющие положение механизма, например, углы по-  [c.486]


Для теоретического исследования динамических процессов составляем дифференциальные уравнения движения системы, пользуясь известной методикой С. Н. Кожевникова. Особенности этих уравнений состоят в том, что переход каната через разрез изменит расчетные эквивалентные схемы (рис. 178) и структуру уравнений для первой и второй схемы, что является результатом изменения места присоединения массы с моментом инерции Метод составления уравнения для этих двух расчетных эквивалентных схем подробно рассмотрен в работе [146].  [c.389]

Чтобы изучить действие возмущающей планеты на систему, состоящую из Солнца и возмущаемой планеты, начинаем с составления уравнений движения системы при условии, что возмущающая планета не существует. В этом случае движение будет кеплеровским, и во втором приближении изучаются возмущения кеплеровского движения, вызванные возмущающей планетой. Для этого применяется метод вариации произвольных постоянных.  [c.552]

Метод Лагранжа наиболее удобен для исследования колебаний систем, число степеней свободы которых превосходит единицу. По этой причине здесь сформулируем только общий способ составления уравнений движения так, чтобы иметь возможность применить рассматриваемый метод для решения задач. Однако анализ общего случая отложим до второй части настоящего трактата.  [c.397]

Из общего уравнения динамики вытекают дифференциальные уравнения движения системы материальных точек, в которые не входят силы реакций идеальных связей. Возможно решение как прямых (определение сил по заданному движению), так и обратных задач (определение движения по заданным силам) динамики. При решении обратных задач приходится интегрировать составленную систему дифференциальных уравнений движения. Заметим, что использование общего уравнения динамики является формальным методом составления дифференциальных уравнений движения системы. Этот метод является менее удобным и менее эффективным по сравнению с применением уравнений Лагранжа второго рода (читатель сможет в этом убедиться, ознакомившись с содержанием следующего параграфа).  [c.414]

Законы Ньютона и законы сохранения. При выводе уравнений движения или покоя среды возможны два подхода. Первый — метод материальной частицы — заключается в составлении на основе второго закона Ньютона дифференциального уравнения движения (покоя) с последующим его интегрированием такой подход применяется главным образом в гидроаэромеханике. Второй — метод контрольных объемов — использует общие законы механики и физики (законы сохранения) для составления суммарных (интегральных) характеристик движения он характерен для гидравлики.  [c.7]


Из общего уравнения динамики вытекают дифференциальные уравнения движения материальной системы, в которые не входят реакции идеальных связей. Возможно решение как первых (определение сил по заданному движению), так и вторых задач (определение движения по заданным силам) динамики. При решении вторых задач приходится интегрировать составленную систему дифференциальных уравнений движения. Заметим, что использование общего уравнения динамики является формальным методом составления дифференциальных уравнений движения системы. Этот метод является менее удобным и менее эффективным по сравнению с применением уравнений Лагранжа второго рода (читатель сможет в этом убедиться, ознакомившись с содержанием следующего параграфа). Однако общее уравнение динамики справедливо как для голономных, так и для неголономных систем. Уравнения Лагранжа второго рода применимы только к голономным системам.  [c.451]

Если по условию требуется определить какую-либо реакцию связи, то надо с помощью уравнений Лагранжа определить обобщенные ускорения системы (т.е. вторые производные по времени обобщенных координат), затем, применив закон освобождаемости, составить дифференциальное уравнение движения соответствующей материальной точки или применить метод кинетостатики и из составленного уравнения, решая первую задачу динамики, найти искомую реакцию.  [c.549]

Задача об устойчивости заданного движения материальной системы может рассматриваться с различных точек зрения. Речь может идти, во-первых, о разыскании оценок отклонений обобщенных координат и обобщенных скоростей от их значений в опорном движении в любой момент времени, когда начальные возмущения достаточно малы. Об основывающемся на этом воззрении определении устойчивости движения по Ляпунову кратко говорилось в п. 11.10, а составлению уравнений возмущенного движения — уравнений в вариациях — были посвящены пп. 11.14—11.17. Во-вторых, может рассматриваться лишь орбитальная устойчивость, когда вопрос о протекании во времени возмущенного движения отодвигается на второй план, а изучаются лишь траектории возмущенного движения и устанавливаются критерии их близости к опорной траектории. При этом часто, ограничивая постановку задачи, рассматривают только консервативные возмущения — такие, при которых на возмущенных траекториях сохраняется то же самое значение постоянной энергии /г, что и на опорной траектории. Принцип стационарного действия Лагранжа оказывается при этой постановке задачи наиболее приспособленным методом исследования орбитальной устойчивости, поскольку траекториями как опорного, так и возмущенного движений являются геодезические линии многообразия / элемента действия, т. е. простейшие геометрические  [c.721]

Детерминированное математическое описание физической модели массообменных процессов в зоне технологического процесса получается упрощенным и несовершенным, прежде всего из-за трудности достоверно сформулировать граничные условия, а также выбрать и принять параметры процесса в уравнениях математического описания. Параметры делятся на характеризующие свойства материалов (теплоемкость, плотность и др.) и характеризующие явления переноса энергии и массы (теплопроводность, кинематическая вязкость и др.). Параметры первой группы, входящие в уравнения сохранения массы и энергии, обычно принимаются усредненными значениями для условий технологического процесса. Выбор параметров второй группы (констант переноса) требует особого внимания, поскольку тепловая работа печей, как отмечалось, обычно лимитируется процессами переноса. Однако до настоящего времени слабо изучены теплофизические свойства исходных материалов, особенно расплавов, что тормозит развитие теории печей. Создание общей теории позволит полностью исключить эмпирический подход в расчетах и конструировании печей (производительность, расход топлива и пр.). Анализ типовых тепловых режимов определяет оптимальные условия тепловой работы (тепло-массообмен, генерация тепла, движение газов, циркуляция расплавов и пр.) как существующих, так и проектируемых печей. В настоящее время разработаны обобщенные методы металлургических расчетов и методики составления математических моделей ряда процессов и технологических схем для ЭВМ [53]. Физико-химические закономерности в агрегатах и процессах автогенных способов плавки изучаются при помощи физического моделирования (особенно в совокупности с математическим моделированием), укрупненно-лабораторных исследований и полупромышленных испытаний [54]. Накопленный опыт позволяет оценить важность и необходимость исследований на малых установках, которые дают возможность, с одной стороны, еще до строительства промышленного агрегата решить вопросы технологического, теплотехнического и конструктивного характера, а с другой стороны, определить, какие результаты исследований можно перенести на крупный агрегат, а какие вопросы требуют уточнения или разрешения в опытно-промышленных условиях. Такую работу позволяют в широких масштабах проводить лаборатории, оснащенные современным  [c.80]


Созданный Лагранжем аппарат аналитической механики и, в частности, второй метод составления уравнений движения материальной системы в дальнейшем с успехом использовались многими авторами при анализе сложных гироскопичесгах систем. Следует вместе с тем отметить, что Лагранж нигде не вводит в рассмотрение диссипативные силы, столь существенные в практических приложениях.  [c.138]

В 1...2 доя составления уравнений движения использовалась система аналитических вычислений REDU E. Эта система позволяет не только получить уравнения движения, но и составить программу их интегрирования на одном из алгоритмических языков. В данном параграфе рассматривается иной подход к анализу уравнений движения, а именно их автоматическое получение и интегрирование численными методами. Приводится описание алгоритма, который позволяет в значительной мере сократить количество выкладок, связанных с получением уравнений движения, и затраты труда на программирование при численном интегрировании уравнений движения. В основе алгоритма лежит реализация второго метода Лагранжа получения уравнений движения с помощью численного определения частных производных.  [c.68]

Динамика промышленных робртов. В отличие от копирующих манипуляторов с ручным приводом промышленные роботы представляют собой механическую сис[гему, в которой динамические нагрузки (нагрузки от сил инерции) могут быть значительными. Эти нагрузки определяются из решения системы уравнений движения. Для составления уравнений движения пространственного механизма с несколькими степенями свободы применяются два метода метод уравнений Лагранжа второго рода и кинетостатический метод. Поясним оба метода на примере простейшего промышленного робота с тремя степенями свободы при цилиндрической зоне обслуживания (рис. 149).  [c.272]

Таким образом, метод приведения сил и масс позволяет свести задачу о движении многозвенного механизма, нагруженого многими силами и моментами сил, к движению одной точки В или звена АВ (см. рис. 6,2.4), При составлении уравнений движения механизма эти функции т к Jj, можно подставлять лишь в уравнения, содержащие кинетическую энергию. Обычно используют либо уравнение кинетической энергии, либо уравнение Лагранжа второго рода.  [c.490]

В методе Гамеля иная картина процесс вывода проходит без привлечения уравнений связей, в уравнениях движения фигурирует первоначальная кинетическая энергия, выраженная через все неголономные скорости. При составлении уравнений движения по записи Гамеля дифференцируется первоначальная кинетическая энергия, после чего все зависимые скорости заменяются их выражениями через независимые. Г. Н. Космодемьянская, которой принадлежат некоторые главы в нашей монографии Основы механики неголономных систем , показала, что в случае полной склерономности системы, когда кинетическая энергия представляет собой чисто квадратическую форму второго измерения, уравнения движения составляются в обоих случаях идентичные. Случай реономных систем требует особого исследования на основе современных методов — теории дифференцируемых многообразий. Нами предложен в данном -случае метод нормальных неголономных координат , т. е. использование таких независимых -неголономных -скоростей, при данных неголономных связях, через которые кинетическая энергия выражалась бы в квадратической форме от скоростей, без удвоенных их произведений, -п-р-ичем в левые части уравнений должны все входить тоже только раздельно. Тогда результат дифференцирования будет один и тот же обоих случаях, независимо от того, когда полагаются нулю зависимые  [c.7]

Общая теория малых колебаний материальной точки приводится во всех курсах теоретической механики. Задача обычно сводится к отысканию решения линейного дифференциального уравнения второго порядка с постоянными коэффициентами. Наибольшие затруднения, по-видимому, представляют вопросы, связанные с определением сил,, создающих колебательное движение, а также составление дифференциальных уравнений, определяющих малые колебания. В простейших задачах линейные дифференциальные уравнения в точности описывают механический процесс. В общем же случае эти уравнения являются лишь приближенными и остаются справедливыми только для достаточно малых колебаний. Методы линеаризации уравнений движения остаются и в настоящее время наиболее простым и эффективным средством решения бТ)льшей части технических задач.  [c.48]

Для составления уравнений движения воспользуемся методом Лафанжа. Уравнения Лафанжа второго рода для описания движения твердого тела можно получить из вариационного принципа Д Аламбера-Лафанжа (1.11), если выбрать на шестимерном конфигурационном многообразии твердого тела локальные координаты. Для этого достаточно, например, задать радиус-вектор полюса Гр как функцию криволинейных координат ( ,, 2, Яз) и выразить компоненты ортогонального оператора Г через углы Эйлера в формуле (1.1). Выполняя преобразования, аналогичные проделанным в 4.9 с заменой суммирования на интеграл по мере, получим уравнения Лафанжа второго рода, описывающие движение свободного твердого тела.  [c.130]

Уравнения Лагранжа второго рода дают общий метод составления дифференциальных уравнений движения механической системы с голономными идеальными удерживающими связями в обобщенных координатах. Строгий вывод этих уравнений выходит за рамки данного курса, поэтому проиллюстрируем их справедливость на очень частном случае механической системы с одной степенью свободы, когда наложенхсые на нее связи являются не только голономными идеальными удерживающими, но и стационарными.  [c.300]


Введенный Л. Эйлером метод неголономных координат оказался весьма плодотворным, и в неголономной механике им широко воспользовались для создания систематической теории аналитической динамики неголономных систем. Для составления дифференциальных уравнений движения неголономной системы в квазикоординатах были использованы два метода в одном из них оперируют системой лагранжевых скоростей, во втором — их линейными комбинациями (Воронец — Гамель) . При наличии нелинейных неголономных связей второй метод неприменим. На это обстоятельство впервые обратил внимание Л. Йонсенкоторый предложил в этом случае пользоваться неголономньши координатами, соответствующими нелинейным комбинациям лагранжевых скоростей (нелинейными неголономными координатами). Метод линейных и нелинейных неголономных координат раввива Г. Гамель  [c.96]

А. Пшеборский для нелинейного случая, но при линейных относительно ускорений неголономных связях второго порядка вывел уравнения типа Маджи, выраженные в декартовых координатах. Последнее обстоятельство создает определенные неудобства и в известном смысле ограничивает общность его метода. Для рассматриваемого общего случая дифференциальные уравнения движения системы в лагранжевых координатах в форме Воронца — Гамеля, Аппеля — Гиббса и Ценова установил М. Ф. Шульгин 2. Р. Казанину принадлежит любопытная идея преобразования уравнений нелинейных реономных неголономных связей любого порядка в уравнения линейных склерономных связей первого порядка путем введения надлежащих новых параметров. Эта идея, как показывает Казанин, оказывается плодотворной, например, при составлении динамических уравнений движения системы и решении задачи об определении реакций связей.  [c.99]

Изложенный метод является эффективным алгебраическим методом исследования и синтеза пространственных механизмов, основанным на использовании однородных координат, которые дают возможность объединить сложное преобразование поступательного и вращательного относительных движений в одной матрице 4-го порядка, представляющей соответствующий тензор второго ранга. Применением однородных координат, а также введением фиктивных звеньев можно уменьшить количество вводимых координатных систем по сравнению с методами, в которых используются неоднородные координаты (С. Г. Кислицына, Г. С. Калицына и др.), и тем самым уменьшить количество вычислительных операций при составлении расчетных уравнений для определения искомых параметров. В этом методе преобразование координат и геометрические связи между звеньями полностью отображаются тензорным или эквивалентным ему матричным уравнением замкнутости механизма, которое распадается на двенадцать уравнений относительно искомых и известных параметров. Из этого числа могут быть отобраны в общем случае шесть наиболее простых уравнений, а остальные уравнения использованы для контроля правильрюстн определения параметров.  [c.167]

В интересующих нас сейчас асимптотических теориях, наряду с подобластями типа классического пограничного слоя, появляются еще другие подобласти, порядки которых по продольным и поперечным размерам, скоростям, перепадам давления и др. отличаются от ilYРе. Оценка порядков по рейнольдсову числу масштабов протяженности этих подобластей и механических и термодинамических характеристик движений среды в них представляет основной этап построения асимптотических решений. Вторым этапом служит составление рядов по параметрам, малость которых обеспечивается стремлением внешнего рейнольдсова числа к бесконечности, и определения коэффициентов этих рядов в том или другом простейшем приближении. При этом выполняется сшивание асимптотических решений в смежных подобластях. Заметим, что такой метод необходим и при численном решении уравнений Навье — Стокса при больших значениях рейнольдсова числа, так как позволяет заранее оценить характерный для каждой подобласти масштаб размеров ячеек применяемой сетки.  [c.701]


Смотреть страницы где упоминается термин Второй метод составления уравнений движения : [c.521]   
Смотреть главы в:

Динамика системы твёрдых тел Т.1  -> Второй метод составления уравнений движения



ПОИСК



159, 160 —Составление

Второй метод

Движение, метод

Составление уравнений

Уравнение метода сил



© 2025 Mash-xxl.info Реклама на сайте