Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бифуркации от бесконечности

Бифуркации от бесконечности . В 2 рассматривалась смена качественных структур, которая происходила вблизи негрубого особого элемента (сложной особой точки, сложного фокуса и т. д.), лежащего внутри области определения динамической системы. Очевидно, можно также рассмотреть и возможные смены качественных структур в том случае, когда негрубый особый элемент лежит на границе области определения динамической системы. Не останавливаясь на случае, когда система (А, ) определена в ограниченной части плоскости, укажем некоторые возможности бифуркаций от бесконечности в случае, когда  [c.194]


В случае, когда правые части динамической системы (А) — многочлены, так что систему можно рассматривать на сфере Пуанкаре (см. гл. 6), бифуркациям от бесконечности соответствуют бифуркации от экватора сферы Пуанкаре. При этом, очевидно, необходимо ввести понятие грубости системы на сфере Пуанкаре и условия грубости и негрубости экватора. Однако в настоящей книге эти вопросы не рассматриваются.  [c.195]

В случае динамических систем на цилиндре можно также отметить следующую бифуркацию от бесконечности  [c.214]

Каскад удвоений. Последовательность бифуркаций удвоения- в однопараметрических семействах происходит следующим образом. Устойчивый первоначально цикл — аттрактор теряет устойчивость с прохождением мультипликатора через —1. В этот момент от него ответвляется, в типичном семействе систем, устойчивый цикл вдвое большего, в момент бифуркации, периода он замыкается после двух обходов теряющего устойчивость цикла (п. 1.2). При дальнейшем изменении параметра новый цикл испытывает ту же бифуркацию удвоения, затем родившийся аттрактор, с примерно четырехкратным, периодом, удваивается еще раз и т. д. Оказывается, весь этот каскад удвоений, в бесконечном количестве, происходит в типичном семействе на конечном отрезке изменения параметра. Более того, промежутки между последовательными удвоениями убывают асимптотически в геометрической прогрессии. Знаменатель этой прогрессии универсален — не зависит от рассматриваемого  [c.79]

Метод Эйлера применим к анализу таких типов потери устойчивости, т. е. таких явлений, которые характеризуются наличием возможности перехода от одной формы равновесия к другой, бесконечно близкой к ней, при фиксированной нагрузке (т. е. равенство нулю производной Р/й/ при некотором значении Р, где Р — сила, а [ — характерный параметр деформации системы). В то же время этот метод не может быть применен в тех случаях, когда потеря устойчивости формы равновесия состоит в переходе не к другой форме равновесия, а к колебательному движению. Остановимся на вопросе о применимости метода Эйлера в случае, если потеря устойчивости принадлежит типу перехода к новой устойчивой форме равновесия, но посредством скачка. Можно отметить два характерных варианта. Водном из них этот переход происходит в точке бифуркации, до которой (Р < Р ) зависимость Р — / линейна. В другом — переход происходит в предельной точке, до которой (Р < Р,) зависимость Р—[ нелинейна. В первом случае метод Эйлера позволяет найти Р, во втором же — этот метод неприменим.  [c.372]


Основная идея определения точек бифуркации с помощью однородных линеаризованных уравнений состоит в следующем. Предположим, что одна какая-то форма равновесия системы известна и нужно найти точки бифуркации этой формы равновесия. Для этого достаточно, не интересуясь поведением системы вдали от известной формы равновесия, найти условия существования других форм равновесия, отличных от исходной, но бесконечно к ней близких. Те точки, в окрестностях которых существуют такие формы равновесия, и будут точками бифуркации.  [c.21]

Линеаризованные уравнения дают возможность найти точки бифуркации, но при этом остаются совершенно не выясненными ни тип точки бифуркации, ни характер поведения системы при конечных отклонениях от исходного положения равновесия. Действительно, однородные линеаризованные уравнения (1.13) и (1.14) принципиально ничем не отличаются одно от другого, хотя точки бифуркации соответствующих систем относятся к разным типам и при отклонениях от исходного положения равновесия эти системы ведут себя качественно различно. Схематично это показано на рис. 1.14, б. Однородное линеаризованное уравнение получено для бесконечно малых величин ф , поэтому оно не может дать никакой информации о поведении системы при конечных отклонениях.  [c.23]

Статья 1 состоит из двух глав. Глава I посвящена классификации критических (теперь их называют особыми) точек линий тока на плоскости. В настоящее время понятие об особых точках рассматривается в курсах дифференциальных уравнений, в обзорных статьях, в справочниках, в курсе гидродинамики [1]. Во времена А. А. Фридмана, т. е. более 65 лет назад, появились за рубежом статьи по критическим точкам линий тока на плоскости, в которых или не было системы в классификации, или содержались некоторые погрешности. А. А. Фридман предложил мне провести разбор случаев плоского коллинеарного движения, применяя методику, исходящую от Пуанкаре. При этом кроме узла, седла, фокуса, центра были выделены также случаи бесконечно удаленной точки. Ввиду простоты и общеизвестности задачи я привожу главу I в сильно сокращенном виде. В главе II рассмотрено упрощенно пространственное движение, в котором пренебрегается вертикальной составляющей скорости. Это отдаленный прообраз современного понятия бифуркации — по параметру. Начало главы II дано без сокращений, но из пяти примеров приведены только два.  [c.51]

Условие единственности основного процесса нагружения в регулярных точках соответствует существованию нетривиального решения системы (V.I) с граничными условиями (V.8). В случае бифуркации основного состояния при достижении параметром нагружения критического значения Я вектор бУ приобретает бесконечно малые, но отличные от нуля значения.  [c.83]

Статический критерий устойчивости состоит в следующем. Рассматриваются состояния равновесия, бесконечно близкие к исходному (основному, тривиальному ) состоянию равновесия. При некотором значении нагрузки возможна наряду с основной формой равновесия другая форма. Иными словами, при одной и той же нагрузке могут осуществляться различные формы равновесия (точка бифуркации, разветвления форм равновесия). Подобное состояние и может рассматриваться как переходное от устойчивого равновесия к неустойчивому. Наименьшая нагрузка, при которой возможны различные формы равновесия, называется критической.  [c.266]

Уравнения бифуркационной потери устойчивости конечного элемента оболочки (уравнения по отысканию нагрузки выпучивания оболочки) следуют непосредственно из равенства (33), если его правую часть приравнять нулю. Прн этом варьирование в функционалах осуществляется по перемещениям в бесконечно близкой, но отличной от основного, осесимметричного, деформированного состояния оболочки. Так, если при осесимметричных нагрузках перемещения в пределах конечного элемента оболочки вращения описываются согласно выражениям (24), когда параметр волнообразования п—О, то в точке бифуркации на исходное осесимметричное поле перемещений накладывается дополнительное бесконечно малое (неосесимметричное. пфО) поле перемещений и варьирование в функционалах равенства (33) осуществляется именно по этим дополнительным перемещениям. Для нахождения точек бифуркации на кривой нагрузка—перемещение основное поле перемещений оболочки представим в виде  [c.288]


Переход от периодических колебаний к хаотическим при изменении параметров в случае а может происходить как путем бесконечной последовательности бифуркаций удвоения периода, так и жестким образом [54, 222, 392]. Первый тип перехода наблюдался, например, при 26 = 1,1 А = 1,73 а = соо = = 1 7 = = 0,27 и увеличении параметра g. Получилась следующая последовательность бифуркационных значений g = 15,66 24,07 25,50 25,80 25,86), которая приводит к следующей последова-  [c.296]

Разумеется, в автономных системах вынуждающая сила в уравнении Дуффинга соответствует моде, которая осциллирует с вынуждающей частотой и управляет двумя другими нелинейно связанными модами (или одним нелинейным осциллятором). Вопрос о том, может лн бесконечная последовательность Фейгенбаума осуществляться в реальных системах, остается пока открытым, поскольку экспериментально наблюдались лишь несколько первых бифуркаций примерно до п = 6. Наблюдению бифуркаций более высокого порядка препятствуют шумы. Экспериментально наблюдались также бифуркации высокого порядка с частотами, отличными от (1/2 )-й исходной частоты, например бифуркации утроения периода.  [c.309]

В приложениях 1-8 затрагиваются некоторые качественные вопросы теории обыкновенных дифференциальных уравнений, от решения которых зависит исследование динамических систем. Обсуждению подлежат такие проблемы как бифуркация рождения предельного цикла из слабого фокуса (ср. с [196-198]) вопросы существования так называемых монотонных предельных циклов, наличия замкнутых траекторий, стягиваемых в точку по двумерным поверхностям, наличия замкнутых траекторий, не стягиваемых в точку по фазовому цилиндру качественные вопросы теории топографических систем Пуанкаре и более общих систем сравнения для динамических систем на плоскости проблемы существования и единственности траекторий, имеющих в качестве предельных множеств бесконечно  [c.6]

В приложениях 1-8 затрагиваются некоторые качественные вопросы теории обыкновенных дифференциальных уравнений, от решения которых зависит исследование динамических систем. Обсуждению подлежат такие проблемы как бифуркация рождения предельного цикла из слабого фокуса (ср. с [196-198]) вопросы существования так называемых монотонных предельных циклов, наличия замкнутых траекторий, стягиваемых в точку по двумерным поверхностям, наличия замкнутых траекторий, не стягиваемых в точку по фазовому цилиндру качественные вопросы теории топографических систем Пуанкаре и более общих систем сравнения для динамических систем на плоскости проблемы существования и единственности траекторий, имеющих в качестве предельных множеств бесконечно удаленные точки для систем на плоскости элементы качественной теории монотонных векторных полей, а также вопросы существования длиннопериодических и устойчивых по Пуассону траекторий. В заключение предлагается некоторая простая методика интегрирования некоторых классов неконсервативных систем через элементарные трансцендентные (в смысле теории функций комплексного переменного) функции.  [c.174]

Точки накопления бифуркационных значений в семействе из ф - -(Л ) и бифуркации в окрестностях этих точек могут быть рассмотрены аналогично соответствующим бифуркациям в семействе Ф (5 ), по крайней мере, если поверхность ориентируема [169]. Однако для поверхностей, на которых система может иметь нетривиальные (т. е. отличные от положения равновесия и цикла) устойчивые по Пуассону траектории, т. е. для всех поверхностей, кроме сферы S , проективной плоскости и бутылки Клейна К , в типичном однопараметрическом семействе могут неустранимым образом встречаться векторные поля с бесконечным неблужающим множеством. Бифуркации в таких семействах совершенно не описаны, кроме бифуракций систем с глобальной секущей на двумерном торе (см. следующий пункт). Однако известно, что существуют типичные однопараметрические семейства на поверхностях, отличных от S , Р , К , которые содержат негрубые векторные поля бесконечной степени негрубости (С. X. Арансон, Функц. анализ и его прил., 1986, 20, № 1, 62—63). Для систем на справедлив следующий результат.  [c.103]

В последнем случае критической является нагрузка Я = Р/, соответствующая касательному модулю упругости < (концепция Шенли). Критическая точка совпадает с первой точкой бифуркации В. Отличие от упругой системы состоит в том, что даже при наличии двух степеней свободы график Р— f характеризуется бесконечным числом точек бифуркации, которые непрерывно заполняют отрезок 8180 на оси Р. Значение силы Р = Р, соответствует приведенному модулю упругости, а значение силы Р = Ре — модулю упругости В начальный момент нагружения.  [c.468]

При использовании бифуркационного критерия потери устойчивости (в условиях мгновенного деформирования или ползучести) на каждом шаге по ведущему параметру решения (прогибу, нагрузке или времени) после определения параметров, описывающих основное состояние оболочки, проверяем возможность перехода оболочки от основной осесимметричной к бесконечно близкой циклически симметричной форме, которой соответствует наличие ненулевых вещественных решений однородного вариационного уравнения (П.58) или системы Ритца (П.38) с коэффициентами (П.63), что имеет место при обращении в нуль определителя системы. Возможность бифуркации и форму потери устойчивости (/) численно фиксируем по перемене знака определителя системы (П.38) на некотором шаге по ведущему параметру для некоторого номера гармоники I, который последовательно выбирается из заранее обусловленного диапазона целых чисел, начиная с нуля.  [c.51]

ФЁДОРОВСКИЕ ГРУППЫ — то же, что пространственные группы симметрии (см. Симметрия кристаллов). ФЁЙГЕНБАУМА УНИВЕРСАЛЬНОСТЬ—явление универсальности, связанное с бесконечными последовательностями бифуркаций удвоения периода устойчивых перио-дич. траекторий. Это явление было обнаружено и исследовано М. Фейгенбаумом (М. Feigenbaum) в 1978 [1—3]. Бифуркация удвоения периода происходит в том случае, когда для периодич, траектории у, зависящей от параметра ц, собственное значение А. (ц) оператора монодромии, задающего сдвиг вдоль Y на период, проходит через значение  [c.276]


А.(ц,)= —1. При прохождении параметра через бифуркац. значение ii от у ответвляется новое периодич. решение У], к-рое при = совпадает с дважды пройденным у. При дальнейшем изменении ц собств. значение (ц) может также пройти через — 1 при нек-ром Цг- и-2)= — после чего от У] ответвляется периодич. траектория с периодом вдвое большим, чем период yi, и т. д. Оказывается, что в типичных ситуациях происходят бесконечные последовательности бифуркаций удвоения, причём бифуркац. значения Hi накапливаются к предельному згтачению = lim fi .  [c.276]

На рис. 75 изображена бифуркационная диаграмма, характеризующая переход динамической системы от порядка к хаосу, который сопровождается бесконечной последовательностью бифуркаций удвоения периода в соответствии с законом Фейгенбаума [188]. В общем случае движение такой системы описывается одномерным точечным отображением с гладким максимумом, для которого функция последования записывается в виде [186]  [c.106]

Что же касается смещения центра элемента, то, как это легко заметить на основе предыдущих примеров вывода уравнений бифуркации (и, в частности, уравнений (1.1) и (1.6)), это смещение при характерных для таких проблем условиях бесконечной малости само по себе в уравнение равновесия не входит и впоследствии возникает при расшифровке угла поворота. Это связано с ррене-брежимой малостью изменения характерных размеров элемента (длины отрезка осевой линии). При написании уравнений равно весия для большинства бифуркационных задач, вообще говоря можно учитывать лишь повороты элемента как жесткого целого Этот минимальный шаг отхода от геометрически линейного при ближения обычно оказывается достаточным для правильной по становки бифуркационной проблемы и, в частности, тех задач, что рассматриваются в дальнейшем. Необходимо, однако, отметить, что в некоторых случаях такое упрощение может оказаться чрезмерным. Так, в рассмотренной выше задаче о стержне, погружаемом в жидкость, неучет изгибания элемента приводит к невозможности отыскания критического параметра.  [c.65]

При отделении от состояния равновесия О" ° устойчивого периодического движенин или устойчивых состояний равповесия происходит мягкий переход от прежнего установившегося движения (состояния равновесия) к новым установившимся движениям (устойчивому периодическому движению или одному из устойчивых состояний равповесия). Напротив, при слиянии с состоянием равповесия О" неустойчивого периодического движепия, неустойчивого равповесия или равновесий переход к новому установившемуся движению носит жесткий характер. К какому именно новому установившемуся движению происходит жесткий переход, локальная теория бифуркаций не указывает. Это может быть равновесие, периодическое, хаотическое или стохастическое автоколебание. Это может быть и уход в бесконечность. Отметим, что общими являются только бифуркации 1 и 3, бифуркация 2 является общей только при часто встречающейся симметрии динамической системы. Подчеркнем, что все эти бифуркации были уже рассмотрены в гл. 5. Теперь они собраны вместе и представлены на дереве возможных бифуркаций, изображенном на рис. 7.1. Они соответствуют переходам через бифуркационные границы УУо н  [c.164]

Прежде всего, остановимся на переходе от порядка к хаосу, сопровождающемся бесконечной последовательностью бифуркаций удвоения периода в соответствии с законом Фейгенбаума [444, 445, 447, 448]. Такой переход характерен для систем, движение которых точно или приближенно описывается одномерным точечным отображением с гладким максимумом. Если вблизи максимума, который без ограничения общности можно считать расположенным в точке а = 0, функция последования записывается в форме  [c.240]

Как уже отмечалось, кроме бесконечной последовательности бифуркаций удвоения периода, в принципе возможна такая же последовательность бифуркаций утроения периода. Она также должна подчиняться ряду универсальных закономерностей [130, 516]. Для систем, описываемых одномерным точечным отображением с функцией последования вида (4.1), эти закономерности подобны закономерностям Фейгенбаума, но с другими константами. Зависимость констант б и а от показателя степени % в выражении (4.1) для последовательности бифуркаций утроения периода продемонстрирована в табл. 8.5 [516]  [c.247]

В системе с периодической зависимостью от времени, одной степенью свободы и односторонней связью qi О имеется, по-видимому, бесконечное множество различных сценариев бифуркации касания. При этом первоочередную роль играет знак элемента Zi2 матрицы монодромии Z , вычисленной по формуле (12) при значениях параметров, непосредственно предшествуюгцих бифуркации (в автономном случае этот элемент всегда равен нулю).  [c.248]

Во второй главе затрагиваются некоторые вопросы качественной теории обыкновенных дифференциальных уравнений, от решений которых зависит исследование как (чисто) диссипативных динамических систем, так и систем с переменной диссипацией, рассматриваемых ниже и возникающих в динамике твердого тела, взаимодействующего со средой. Рассматриваются такие проблемы как бифуркация рождения предельного цикла из слабого фокуса наличия замкнутых траекторий, в том числе, таких, которые охватывают фазовый цилиндр качественные вопросы теории топографических систем Пуанкаре и более общих систем сравнения проблемы существования и единственности траекторий, имеющих в качестве предельных множеств бесконечно удаленные точки для систем на плоскости элементы качественной теории монотонных векторных полей, а также вопросы существования семейств дпинноперио-дических и устойчивых по Пуассону траекторий. Исследуются также возможности перенесения теории двумерных топографических систем Пуанкаре и систем сравнения на многомер-ныйслучай(см. также[168,250, 251, 266, 291, 300]).  [c.69]

Возвратимся к уравнениям (15), не предполагая более параметры аир малыми. Изменение числа состояний равновесия системы (15) происходит при а>1. Будем рассматривать область а<1, где число состояний равновесия не изменяется по сравнению со случаем малого х. Простейшие бифуркации, связанные с предельным циклом, могут быть найдены и сохраняют тот же характер, что и для малых значений о, и р. Появление устойчивого предельного цикла из бесконечности происходит пррх возрастании р от нуля (это видно из уравнений (15) непосредственно, так как при изменении знака р бесконечность из устойчивой становится неустойчивой). Появление неустойчивого предельного цикла из состояния равновесия происходит из кривой  [c.460]

Другие периодические траектории. При уменьшении параметра С от Со до Соо происходит бесконечное число бифуркаций удвоения. При С сСоо также имеются области периодического движения. Периодические траектории рождаются здесь парами (устойчивая и неустойчивая) в результате тангенциальной бифуркации. В качестве примера 2) рождения траектории с периодом 3 на рис. 7.15 отложена зависимость  [c.440]

O, Ф(то(1(12я) —координаты на торе [7]. Если число вращения иррационально, то движение условно-периодично и каждая траектория обматывает тор всюду плотно. Если число вращения рационально, то на торе существуют циклы если циклы невырождены, то их четное число (половина — устойчивые, половина—неустойчивые), и остальные траектории притягиваются к ним при /- - сж. Число вращения ц(е) в системе общего положения представляет собой непрерывную кусочно-постоянную на открытом всюду плотном множестве функцию от е (вроде кан-торовой лестницы, но только суммарная относительная мера интервалов постоянства на отрезке [О, ео] стремится к нулю прн со- О). Существование интервалов постоянства связано с наличием на торе невырожденных циклов при малом изменении е такие циклы не исчезают и, следовательно, число вращения не изменяется. При е- 0 в системе общего положения на торе происходит бесконечная последовательность бифуркаций рождения и исчезновения циклов. Все эти явления не улавливаются формальной процедурой теории возмущений.  [c.164]


Данная задача принадлежит к тем разделам астрономии и гидродинамики, начало которым было положено открытием закона всемирного тяготения. Именно тогда стало возможным объяснять не только движение планет и спутников, но также и саму форму небесных тел. С той поры немало крупных ученых-математиков внесли свой вклад в развитие теории фигур равновесия. Имена Клеро, Маклорена, Якоби и Лиувилля говорят сами за себя. Но наиболее весомый вклад принадлежит А. Пуанкаре и нашему соотечественнику А. М. Ляпунову. В 1884-85 годы они независимо друг от друга установили, что в окрестности определенных сфероидов Маклорена и эллипсоидов Якоби (их множество бесконечное, но все же счетное ) существуют неизвестные науке неэллипсоидальные фигуры равновесия. Научный мир с изумлением взирал на эти открытия. И если можно (а почему бы и нет ) сравнить новые фигуры с драгоценными кристаллами, то шахта для их добычи оказалась круто уходящей вниз, где на большой глубине могут работать лишь сильные разумом и духом исследователи. И именно отсюда, с этой глубины берут свое начало такие отрасли математики, как теория нелинейных интегральных уравнений, теория бифуркаций, здесь же возникло само понятие линейных рядов фигур равновесия.  [c.9]

Аналогичное явление наблюдается для многих дискретных преобразований, в частности для одномерных. Более того, для любого семейства дифференцируемых унимодальных отображений [О, 1]-)-[0, 1], /б[0, 1], непрерывно зависящих от параметра, такого, что / о(л )=0, тахр1(л ) = 1 (см. рис. 18), серии из последовательных бифуркаций удвоения встречаются бесконечное число раз.  [c.216]


Смотреть страницы где упоминается термин Бифуркации от бесконечности : [c.195]    [c.142]    [c.8]    [c.700]    [c.343]    [c.75]    [c.111]    [c.315]   
Смотреть главы в:

Методы и приемы качественного исследования динамических систем на плоскости  -> Бифуркации от бесконечности



ПОИСК



Бифуркация



© 2025 Mash-xxl.info Реклама на сайте