Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивый предельный цикл

Если замкнутая траектория на фазовой плоскости является изолированно , она называется предельным циклом. Наличие устойчивого предельного цикла на фазовой плоскости говорит о том, что в системе возможно установление незатухающих периодических колебаний, амплитуда и период которых в определенных пределах не зависят от начальных условий и определяются лишь значениями параметров системы. Такие периодические движения А. А. Андронов назвал автоколебаниями, а системы, в которых возможны такие процессы, — автоколебательными [ 1 ]. В отличие от вынужденных или параметрических колебаний, возникновение автоколебаний не связано с действием периодической внешней силы или с периодическим изменением параметров системы. Автоколебания возникают за счет непериодических источников энергии и обусловлены внутренними связями и взаимодействиями в самой системе. Одним из признаков автоколебательной системы может служить присутствие так называемой обратной связи, которая управляет расходом энергии непериодического источника. Из всего сказанного непосредственно следует, что математическая модель автоколебательной системы должна быть грубой и существенно нелинейной.  [c.46]


Итак, наличие устойчивых предельных циклов на фазовом портрете системы является определяющим признаком автоколебательной системы. Условие устойчивости пре-  [c.46]

Двигаясь по этим траекториям при значении С > О, изображающая точка приближается к замкнутой траектории (3.5) изнутри, а при значениях С < О — снаружи. Следовательно, замкнутая траектория (3.5) представляет собой устойчивый предельный цикл. К этому результату можно также прийти, вычислив величину характеристического показателя h предельного цикла (3.5) по формуле (3.3). В рассматриваемом случае h = —2 < 0.  [c.47]

Наряду с устойчивыми предельными циклами фазовый портрет автоколебательной системы может содержать также неустойчивые предельные циклы, для которых /г > 0. Двигаясь в окрестности неустойчивого предельного цикла, изображающая точка постепенно удаляется от него. Обычно такой цикл играет роль границы между областями с различным поведением фазовых траекторий.  [c.47]

Заметим, что в автономной системе второго порядка, состояние которой изображается точками на фазовом круговом цилиндре, может встретиться новый тип бифуркации, который невозможен в случае фазовой плоскости, а именно бифуркация, связанная с рождением или исчезновением предельных циклов, охватывающих фазовый цилиндр. В отличие от фазовой плоскости, где устойчивый предельный цикл отображает автоколебательное движение в системе, устойчивый предельный цикл, охватывающий фазовый цилиндр, соответствует периодическому ротационному (вращательному) движению.  [c.52]

На рис. 7. ПО изображены последовательные стадии перехода через общие бифуркации от обычного синхронизма к стохастическому. При переходе от рис. а к б происходит смена узла на фокус. Затем (рис. 7. ПО, в) фокус меняет устойчивость, и от него рождается устойчивый предельный цикл. Одновременно происходит сближение сепаратрис седла 5Г и 5i и соответственно 52 и So. После этого (рис. 7. ПО, г) сепаратрисы пересекаются, причем вместе с пересечением сепаратрис 5а и 52 происходит исчезновение устойчивого предельного цикла.  [c.364]

Подведем некоторый итог. Ради определенности пусть для рассматриваемого нами седлового равновесия при Li = О и X = О седловая величина ст < 1. Тогда при возрастании X вдоль оси j, = О появится устойчивый предельный цикл с некоторой областью притяжения. Исходя из точки X > О, J, = О, будем увеличивать ц. При этом предельный цикл превратится сначала в устойчивый обычный синхронизм. Затем он трансформируется в стохастический синхронизм. При этом область притяжения предельного цикла последовательно будет переходить в область притяжения обычного и стохастического синхронизмов и затем по пересечению границы р = О в область притяжения какого-то нового установившегося движения. Структура разбиения плоскости параметров р, в окрестности точки Л = х = О очень сложная. Достаточно заметить, что при монотонном изменении Я в сторону возрастания вдоль оси j, = О число вращения 7 монотонно убывает от значения ) у = оо. Сказанное основывается на предположении об общем характере бифуркаций и полученных ранее сведениях о точечном отображении Гзя, согласно которым между  [c.376]


Возможные случаи нескольких предельных циклов и теория устойчивости предельных циклов рассматриваются в специальных работах по теории колебаний ). Можно показать, что существует лишь один устойчивый предельный цикл. Весьма эффективным средством качественного анализа автоколебательных и иных нелинейных систем является метод А. А. Андронова ).  [c.280]

Учет влияния членов высших степеней в разложении момента в уравне НИН (98) привел бы к заключению, что размахи колебаний маятника в действительности не растут неограниченно. Движение стремится к некоторому периодическому режиму, параметры которого не зависят от начальных условий. Соответствующая этому режиму фазовая траектория представляет замкнутую кривую (рис. 438, а), называемую устойчивым предельным циклом.  [c.518]

При стремлении k к нулю справа радиус единственного устойчивого предельного цикла постепенно уменьшается, а неустойчивая особая точка типа фокус в начале координат приближается по характеру движения в ее окрестности к особой точке типа центр.  [c.210]

Диаграммой точечного отображения называется зависимость ординат точек пересечения фазовых траекторий с полуосью yi от ординат уо исходного положения точки (рис. 57, в). По этой диаграмме можно судить о числе предельных циклов и их устойчивости, если дополнительно провести на ней прямую yi = j/q. Число предельных циклов равно числу точек пересечения прямой г/1 = г/о с кривой у = У уо). Точки пересечения позволяют также выделить из фазовых траекторий предельные циклы. Для устойчивых предельных циклов производная dyi/dyo меньше единицы, а для неустойчивых — больше единицы (рис. 57, г).  [c.203]

Теория бифуркаций динамических систем описывает качественные, скачкообразные изменения фазовых портретов дифференциальных уравнений при непрерывном, плавном изменении параметров. Так, при потере устойчивости особой точкой может возникнуть предельный цикл, а при потере устойчивости предельным циклом — хаос. Такого рода изменения называются бифуркациями.  [c.12]

В семействе (2 ) при переходе параметра слева направо через О происходит мягкая потеря устойчивости. А именно, при е 0 неподвижная точка О ростка fe устойчива. При е>0 она теряет устойчивость, но возникает устойчивый цикл периода 2 пара точек, близких к Уе, переставляемых диффеоморфизмом /е. Для диффеоморфизма каждая из этих точек неподвижна и устойчива. Этой перестройке соответствует мягкая потеря устойчивости предельным циклом (в предположении, что при 6 0 все остальные мультипликаторы по модулю меньше 1). При е>0 исходный цикл сохраняется, но становится неустойчивым, а рядом с ним на расстоянии порядка Уе появляется устойчивый предельный цикл примерно вдвое большего периода (рис. 18. )  [c.45]

Нелокальные бифуркации периодических решений. Пусть при нулевом значении параметра в типичном однопараметрическом семействе дифференциальных уравнений в трехмерном фазовом пространстве имеется устойчивый предельный цикл с парой мультипликаторов на единичной окружности (устойчивости можно добиться обращением времени). Поскольку семейство однопараметрическое и типичное, можно считать, что со 2пр/<7 при q A. Тогда при прохождении параметра через О в направлении, соответствующем переходу мультипликатора изнутри единичной окружности наружу, рядом с предельным циклом возникает инвариантный тор толщины порядка Ve, где е — параметр семейства. На этом торе при изменении параметра в бесконечном количестве рождаются и умирают длиннопериодические предельные циклы. При дальнейшем возрастании параметра тор теряет гладкость и может превратиться в странный аттрактор, как это описано ниже.  [c.49]

Объединение гиперболического множества, возникающего при гомоклиническом касании, и всех траекторий, которые к нему притягиваются, вообще говоря, имеет в фазовом пространстве меру нуль. Однако множество траекторий положительной меры находится вблизи гиперболического чрезвычайно долгое, по сравнению с периодом цикла, время (с точки зрения физического наблюдателя это время можно считать бесконечным). Поэтому при потере устойчивости предельным циклом вблизи сильного резонанса следует ожидать возникновения хаоса.  [c.62]


Двухшаговый переход от устойчивости к турбулентности. Можно представить себе однопараметрическое семейство векторных полей, в котором значениям параметра меньше первого критического соответствуют поля с глобально устойчивой, особой точкой. При прохождении первого критического значения рождается устойчивый предельный цикл при прохождении второго критического значения этот цикл исчезает, как описано-в п. 4.5. При этом рождается странный аттрактор и наступает хаос.  [c.121]

Поля при е>0 имеют устойчивый предельный цикл L (e), а при е<0— не имеют. Неблуждающее множество V-, V— состоит из особой точки О при е<0, 0[JJ (e) при е>0 и Оиг при е=0, Г — гомоклиническая кривая.  [c.131]

Простейшими аттракторами будут очевидно устойчивое положение равновесия, устойчивый предельный цикл, притягивающий двумерный тор.  [c.159]

Заметим, что область притяжения аттрактора может как менять, так и не менять свой топологический тип при его внутренней бифуркации. Например, для потока на диске при рождении устойчивого предельного цикла из фокуса она из односвязной становится двухсвязной, а при возникновении точки типа седло-узел на устойчивом предельном цикле она двухсвязна и до, и после бифуркации.  [c.160]

Смена устойчивости устойчивого предельного цикла на торе — удвоение периода, либо рождение тора. В этом случае существует значение ei8i Те не является гладким, неустойчивое многообразие седлового цикла накручивается на устойчивый цикл, а не гладко примыкает к нему.  [c.161]

Потеря устойчивости предельным циклом на торе, происходящая жестким образом при е- Е к устойчивому циклу, лежащему на торе, подтягивается седловой цикл удвоенного периода, либо неустойчивый тор, лежащий на границе области притяжения Те при <е и при е=е передает свою неустойчивость этому предельному циклу.  [c.162]

Наконец, последний тип бифуркации проиллюстрирован на рис. 3.5, где показан случай рождения устойчивого предельного цикла из петли сепаратрисы седла. Пусть сепаратрисы седла при некотором значении X имеют расположение, представленное на рис. 3.5, а. Предположим, что при увеличении параметра X ветви сепаратрисы сближаются и при некотором значении Х == Яц сливаются, образуя петлю (рис. 3.5, б). Если при дальнейшем увеличе-1И1И X сепаратрисы седла вновь разделяются так, как показано на рис. 3.5, б, то из петли рождается предельный цикл. Значение А. = в этом случае является бифуркационным.  [c.52]

Существенно, что характер поведения кривой S = f (s) вблизи точки = S полностью определяется характером поведения фазовых траекторий вблизи соответствующего этой точке предельно1о цикла. Это позволяет сформулировать на языке точечных преобразований условие устойчивости предельного цикла. Рассмотрим последовательность точек, определяемую соотношениями  [c.72]

Ламерея , построенная на этих кривых, может содержать самое большее две ступеньки . Это означает, что при любых начальных условиях изображающая точка попадает на отрезок (4.49) скользящих движений не более чем после двух пересечений граничной прямой д + Ру = 0. Соответствующее разбиение фазовой плоскости ху на траектории для рассматриваемого случая О < р < 1 показано на рис. 4..38. Рассмотрение случая р<0 проводится аналогично. Функция последования по-прежнему определяется соотношениями (4.51), а диаграмма Ламерея имеет вид, показанный на рис. 4.39. Таким образом, в случае Р < О точечное отображение (4.51) имеет единственную неподвижную точку, которая является устойчивой. На фазовой плоскости ху этой точке соответствует устойчивый предельный цикл, распо.по/ <-Рнный симметрично относительно начала координат (рис. 4.40). При эгом режи.ме корабль  [c.108]

Если р соответствует устойчивому состоянию равновесия, то на плоскости qq — устойчивый предельный цикл все соседние интеЕральные кривые — спирали, накручивающиеся на этот предельный цикл. Если же р/, соответствует неустойчивому состоянию равновесия, то на плоскости qq — неустойчивый предельный цикл.  [c.126]

Следовательно, если предельные циклы существуют, то они лежат внутри кольцеобразной области, образуемой окружностями радиусов и / о. Докажем с помощью теоремы Пуанкаре—Дюлака, что в рассматриваемом случае в кольцевой области между крайними кругами топографической системы при > , и С < имеется самое большее один устойчивый предельный цикл.  [c.145]

Рождение устойчивого предельного цикла на торе означает синхронизацию колебаний ) — исчезновение квазииериодического и установление нового периодического режима. Это явление, которое в системе со многими степенями свободы может произойти многими способами, препятствует возникновению режима, представляющего собой суперпозицию движений с большим числом несоизмеримых частот. В этом смысле можно сказать, что вероятность реального осуществления именно сценария Ландау — Хопфа очень мала (этим не исключается, конечно, в частных случаях возможность возникновения нескольких несоизмеримых частот прежде, чем произойдет их синхронизация).  [c.162]

Следует подчеркнуть, что в изложенном методе Льенара, учитывающем нелинейную зависимость силы трения от скорости (или обратной э. д.с. на сопротивлении от силы тока) нужно знать лишь ее графическое изображение, которое может быть получено и экспериментально. При этом построении, очевидно, нет никаких существенных ограничений на вид функции потерь ф (у) и ее мгновенное значение, так что данный метод с одинаковым успехом применим как к случаю малых, так и к случаю больших потерь, а также к системам с большой и малой нелинейностью в диссипативном элементе. Последнее обстоятельство придает методу Льенара большую общность и позволяет с его помощью изучать колебательные свойства систем при изменении затухания от малых до весьма больших значений и с учетом различных законов трения (как линейного, так и существенно нелинейных законов). Заметим, что метод Льенара широко используется для построений фазовых портретов автоколебательных систем с разными законами нелинейности, а именно для нахождения устойчивых предельных циклов — замкнутых фазовых траекторий.  [c.57]


Zo3 = y/ e (рис. 5.29). Начало координат на фазовой плоскости является особой точкой типа устойчивого фокуса. Все возмущения, меньшие амплитуды, соответствующей неустойчивому предельному циклу, осцил-ляторно затухают. Возмущения, большие амплитуды, отвечающей неустойчивому предельному циклу, осцилля-торно увеличиваются и амплитуды этих колебаний стремятся к предельному устойчивому циклу изнутри. Если амплитуда колебаний по какой-либо причине стала больше амплитуды, соответствующей устойчивому предельному циклу, то первая постепенно будет уменьшаться, стремясь в пределе снаружи навиться на предельный цикл. При изменении значения k происходит эволюция картины на фазовой плоскости.  [c.210]

Гипотеза. В типичных двупараметрических семействах векторных полей, в которых происходит потеря устойчивости предельным циклом с прохождением через сильный резонанс, встречаются векторные поля с йетривиальными гиперболическими множествами. Соответствующие им значения параметра подходят к критическим узкими языками.  [c.61]

Рассмотрим одЬопараметрическое семейство, в котором происходит потеря устойчивости предельным циклом при переходе пары мультипликаторов через единичную окружность вблизи точки —1. При изменении параметра семейства возможна такая последовательность событий устойчивый цикл мягко теряет устойчивость с образованием тора, на котором быстро образуется перетяжка, так что форма меридиана тора приближается к восьмерке при подходе к центру восьмерки (где находится неустойчивый цикл) притягивающее множество, оставаясь близким к тору с почти стянувшимся в восьмерку меридианом, разрушается вблизи гомоклинической сепаратрисы (Ю. И. Ней-марк).  [c.62]

Теорема ([66], [67]). В окрестности векторного поля, удовлетворяющего условиям теоремы пункта 6.8, но не являющегося граничным для векторных полей Морса—Смейла, на бифуркационной поверхности всюду плотны векторные поля, обладающие 1) предельным циклом типа седло-узел 2) предельным циклом типа неориентируемый узел (с мультипликатором, равным (—1)) 3) бесконечным множеством устойчивых предельных циклов.  [c.147]

Естественно предположить, что невоспроизводимость вольт-амперной характеристики объясняется наличием бесконечного предельного множества (и, в частности, счетного множества устойчивых предельных циклов с различными областями существования по параметру р), содержащего траектории с разными числами вращения фазы .  [c.148]

Рождение торов в трехмерном фазовом пространстве. Рассмотрим двупараметрическое семейство векторных полей на трехмерном многообразии, в котором происходит потеря устойчивости предельным циклом при прохождении пары мультипликаторов через мнимую ось в случае дополнительного вырожде- ия в нелинейных членах, описанного в п. 2.3, гл. 2. Если се-  [c.155]


Смотреть страницы где упоминается термин Устойчивый предельный цикл : [c.47]    [c.49]    [c.59]    [c.60]    [c.73]    [c.76]    [c.78]    [c.98]    [c.114]    [c.130]    [c.131]    [c.171]    [c.640]    [c.115]    [c.198]    [c.203]    [c.191]   
Курс теоретической механики. Т.2 (1983) -- [ c.518 ]

Колебания Введение в исследование колебательных систем (1982) -- [ c.111 ]



ПОИСК



Предельный устойчивый

Предельный цикл неустойчивый устойчивый

Условие устойчивости предельного цикла

Устойчивость предельных циклов

Устойчивость предельных циклов

Цикл предельный

Цикл устойчивый



© 2025 Mash-xxl.info Реклама на сайте