Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бифуркации уравнение

Биомолекулярная асимметрия 436-438 Биохимическая эволюция 450-452 Бифуркации точка 429 Бифуркации уравнение 408, 431 Бифуркационная диаграмма 433 Бифуркация 428-431  [c.451]

Перейдем к рассмотрению бифуркаций состояний равновесия и периодических движений. Пусть правая часть уравнения (7.1) гладко зависит от параметров Состояние равновесия является корнем уравнения  [c.251]


Каждая из этих бифуркаций определяется некоторыми аналитическими условиями. Для их записи примем, что бифуркация происходит при возрастании скалярного параметра 1 в момент обращения его в нуль. Бифуркации (7.19) характеризуются тем, что при = О характеристическое уравнение (7.14) имеет нулевой корень X = 0 q — I корней с положительной и р корней с отрицательной действительными частями в первом случае и соответственно q и р — 1 корней — во втором случае.  [c.254]

Заметим, что основное содержание методов малого параметра [34] и асимптотических методов [20] может трактоваться как исследование специфических бифуркаций и возмущений. Так, теория периодических движений Пуанкаре решает вопрос о рождении периодических движений от семейств периодических движений, теория квазилинейных систем с быстровращающимися фазами — вопрос о рождении интегральных тороидальных многообразий от многопараметрических семейств тороидальных многообразий, теория дифференциальных уравнений с малыми параметрами при старших производных исследует сингулярные возмущения решений дифференциальных уравнений и т. д.  [c.267]

Применяя к уравнению (15.7) операцию Vfe , а к уравнению (15.8) операцию V" и исключая слагаемое, содержащее бф, придем к одному разрешаемому уравнению бифуркации  [c.325]

Если рассмотреть бесконечно малое выпучивание оболочки (пластины) как малое продолжение процесса деформирования за время 6t, то 6w<.w5t, бф=фб<. Уравнения бифуркации (15.7), (15.8) можно записать в скоростях в виде  [c.325]

Для решения системы уравнений (15.10), (15.11) можно воспользоваться методом Бубнова — Галеркина, который приводит задачу к решению системы однородных алгебраических уравнений относительно неопределенных коэффициентов Атп, бтп- Приравнивая нулю определитель, составленный из коэффициентов этой системы, находим условие для определения бифуркационных значений параметра нагрузки N. Иногда это условие можно получить непосредственной подстановкой выражений (15.13), (15.14) в уравнения бифуркации (15.10), (15.11).  [c.326]

В случае плоских пластин kij = 0 уравнения (15.10), (15.11) становятся независимыми и для решения задачи о бифуркации достаточно одного уравнения  [c.326]

В случае чисто пластической бифуркации в уравнениях (16.97) следует положить Ф = 0. В результате получаем  [c.353]

Дифференциальные уравнения процесса выпучивания в точке бифуркации согласно (16.29) имеют вид  [c.361]

Бифуркация - 1) спонтанный переход системы в новое качественное состояние при достижении критических условий (физическое понятие) 2) ветвление решения нелинейных уравнений при вполне определенных начальных условиях (математическое понятие).  [c.147]


Очевидно, это уравнение всегда имеет тривиальное решение V = О, означающее, что при вертикальном положении маятника условие равновесия выполняется при любом значении Р. Имеется и второе решение если <р ф Q, то Р = с/1. Следовательно, линеаризованное уравнение (13.3) дает ту же самую точку бифуркации А, которую мы нашли из нелинейного уравнения (13.1). Но важно подчеркнуть, что линеаризованное уравнение не содержит никакой информации о конечных перемещениях системы при Р > Р р-  [c.512]

Таким образом, каждой точке кривой соответствует определенное положение равновесия. Линеаризуя уравнение, мы, естественно, не можем охватить всего многообразия форм равновесия. При малом значении ф мы получаем только ту часть графика, которая непосредственно примыкает к оси ординат. Мы смотрим на эту картину как бы через узкую щель — через чуть приоткрытую дверь — и видим только ось ординат и часть кривой, проходящей через точку бифуркации Л. Но в пределах малых значений ф эта кривая представляется нам как горизонтальная прямая, и определить угол ф при силе Р=сН мы не можем. Перемещение оказывается неопределенным, угол ф может быть любой малой величиной. При силе, большей с/1, упрощенное линеаризованное уравнение дает нам только форму равновесия, соответствующую точкам, расположенным на оси ординат, т. е. тривиальную форму равновесия.  [c.419]

В соответствии с этим методы определения функций положений и функций перемещений звеньев различны. Функции положений звеньев определяют в результате решения систем уравнений, отображающих зависимости переменных и фиксированных величин, характеризующих кинематические схемы механизмов. Таким образом, методами определения функций положений звеньев являются методы решения уравнений и их систем. Функции перемещений звеньев строятся из отрезков функций положений звеньев по условиям гладкости сопряжений кусков функций положения. Следовательно, методы построения функций перемещения должны основываться на определении левосторонних и правосторонних пределов функций положения и их производных в точках ветвления (бифуркации).  [c.46]

Слово бифуркация означает раздвоение и употребляется как название любого скачкообразного изменения, происходящего при плавном изменении параметров в любой системе динамической, экологической и т. д. Наш обзор посвящен бифуркациям фазовых портретов дифференциальных уравнений — не только бифуркациям положений равновесия и предельных циклов, но перестройкам системы в целом и, прежде всего, ее инвариантных множеств и аттракторов. Такая постановка проблемы восходит к А. А. Андронову.  [c.9]

Связи с теорией бифуркаций пронизывают все естествознание. Дифференциальные уравнения, описывающие реальные физические системы, всегда содержат параметры, точные значения которых, как правило, неизвестны. Если уравнение, моделирующее физическую систему, оказывается структурно неустойчивым, то есть поведение его решений может качественно измениться при сколь угодно малом изменении правой части, то необходимо понять, какие бифуркации фазового портрета происходят при изменении параметров.  [c.9]

Теория бифуркаций динамических систем описывает качественные, скачкообразные изменения фазовых портретов дифференциальных уравнений при непрерывном, плавном изменении параметров. Так, при потере устойчивости особой точкой может возникнуть предельный цикл, а при потере устойчивости предельным циклом — хаос. Такого рода изменения называются бифуркациями.  [c.12]

Вырожденные случаи неустранимы малым шевелением, если рассматривается не индивидуальное уравнение, а семейство уравнений. Поэтому при исследовании вырожденного случая основную ценность представляет не изучение индивидуального вырожденного уравнения, а анализ бифуркаций в семействах общего положения, в которых подобное вырождение встречается неустранимым образом. Технически это исследование проводится с помощью построения специальных — так называемых нереальных — деформаций, в некотором смысле содержащих все остальные.  [c.13]


Редукции к двумерным системам. Бифуркации особых точек с одним нулевым и парой чисто мнимых собственных значений, а также с двумя чисто мнимыми парами достаточно изучать в трехмерном и четырехмерном пространствах соответственно (по теореме сведения). Метод Пуанкаре приводит в этом случае к вспомогательной задаче. Семейство уравнений x—v x, е) превращается в систему  [c.27]

Нелокальные бифуркации периодических решений. Пусть при нулевом значении параметра в типичном однопараметрическом семействе дифференциальных уравнений в трехмерном фазовом пространстве имеется устойчивый предельный цикл с парой мультипликаторов на единичной окружности (устойчивости можно добиться обращением времени). Поскольку семейство однопараметрическое и типичное, можно считать, что со 2пр/<7 при q A. Тогда при прохождении параметра через О в направлении, соответствующем переходу мультипликатора изнутри единичной окружности наружу, рядом с предельным циклом возникает инвариантный тор толщины порядка Ve, где е — параметр семейства. На этом торе при изменении параметра в бесконечном количестве рождаются и умирают длиннопериодические предельные циклы. При дальнейшем возрастании параметра тор теряет гладкость и может превратиться в странный аттрактор, как это описано ниже.  [c.49]

Бифуркации стационарных решений периодических дифференциальных уравнений при сильных резонансах порядка <79 4.  [c.58]

О некоторых бифуркациях состояния равновесия с одним нулевым и парой чисто мнимых корней. В сб. Методы качественной теории дифференциальных уравнений . Горький. 1978, 33—40  [c.212]

Бифуркации удвоения в системах, близких к системам с негрубой гомоклинической кривой. В кн. Методы качественной теории дифференциальных уравнений . Горький, 1980, 31—43  [c.212]

Лукьянов В. И.. О бифуркациях динамических систем с петлей сепаратрисы седло-узла . Дифференц. уравнения, 1982, 18. вып. 9, 1493—1506  [c.213]

Было показано (Б. 3. Брачковский, 1942 Г. Ю. Джанелидзе, 1953, и др.), что подстановка типа (12.1) приводит к разделяюш,имся уравнениям типа Матье — Хилла в том и только в том случае, если формы собственных колебаний упругой системы совпадают с формами потери устойчивости при статических нагрузках (собственными элементами задачи о бифуркациях). Уравнения для обш его случая впервые исследовались В. Н. Челомеем (1938). В. В. Болотин (1953) предложил метод для построения областей неустойчивости в обш,ем случае этот метод основан на разложении решения в матричные ряды. В. А. Якубович (1958), отправляясь от результатов М. Г. Крейна (1955), развил метод, основанный на введении малого параметра. Подозрительным с точки зрения устойчивости являются частоты, лежаш ие вблизи  [c.354]

Напомним, что при этой бифуркации при л = О характеристическое уравнение имеет два чисто мнимых корнягЬио. В случае (7.20) при [х = О, помимо двух чисто мнимых корней 10), имеется еще р — 2 корня с отрицательной действительной частью и с положительной. В случае (7.21) числа корней с отрицательной и положительной  [c.254]

Заметим еще, что выше были рассмотрены основные бифуркации состояний равновесия и периодических движений достаточно гладких систем дифк.1зеренциальных уравнений. На практике довольно часто приходится сталкиваться  [c.267]

Рассмотрим сжатые оболочки или пластины, находящиеся в плоском безмоментном напряженном состоянии. Для исследования возможной бифуркации состояния равновесия или квазистатиче-ского процесса нагружения воспользуемся методом Эйлера. Приложим статически к оболочке или пластине малую поперечную возмущающую распределенную нагрузку интенсивностью tq, которую затем статически же снимем. Допустим, что оболочка либо пластина не вернулась в исходное состояние, а перешла в смежное сколь угодно близкое моментное состояние и на ее поверхности появились локальные выпучины. Каждую такую выпучину с достаточной для практики степенью точности можно рассматривать как пологую оболочку и воспользоваться изложенной в 10.11 теорией упругих пологих оболочек. При переходе оболочки в смежное состояние точки срединной поверхности получат дополнительную деформацию бе,7, прогиб —6mi = y, а усилия и моменты — приращения 6Nij, bMij. На основании уравнений (10.111), (10.126) получим  [c.324]

Так как выпучивание о(5олочек и пластин носит ярко выраженный локальный характер, то каждую выпучину с достаточной для практики степенью точности рассматриваем как пологую оболочку, Поэтому основные дифференциальные уравнения выпучивания в малой окрестности точки бифуркации в скоростях имеют вид  [c.340]

Выше было отмечено, что основные уравнения задачи допускают существенное упрощение, если Nm= onst, т. е. не зависят от х , Х2. Это возможно, если считать, например, N = 20. Для однородного перед бифуркацией напряженного состояния упрощение возможно при аппроксимации  [c.344]

Уравнения (16.64), (16.65) отвечают так называемой модифицированной теории бифуркаций и устойчивости предложенной В. Г. Зубчаниновым, и весьма просты по своей структуре.  [c.346]

Как видим, в уравнениях (16.66), (16.67) переменные разделяются и задача сводится к решению лишь одного дифференциального уравнения (16.66), которое обобщает известное в практике инженерных расчетов на устойчивость уравнение устойчивости пластин Ильюшина [7] на случай сложного нагружения. При 2 = onst оно позволяет решать задачи о бифуркации и устойчивости по всем частным теориям пластичности, которые не учитывают излом траектории в выражениях для Рт, Nm- В этих теориях граница раздела зон пластической догрузки и разгрузки находится из уравнения  [c.348]


Преобразование (32,5) имеет неподвил<ную точку — корень уравнения х, = 1 —Хх . Эта точка становится неустойчивой при X > Л[, где Ai — значение параметра Х, для которого мультипликатор (х = —2Я,л , = —1 из двух написанных уравнений находим Л = 3/4. Это — первое критическое значение параметра Х, определяющее момент первой бифуркации удвоения периода появления 2-цикла. Проследим за появлением последующих бифуркаций с помощью приближенного приема, позволяющего выяснить некоторые качественные особенности процесса, хотя и не дающего точных значений характерных констант затем будут сформулированы точные утверждения.  [c.173]

Отметим также, что для нелокальной теории бифуркаций оказываются особенно полезными конечногладкие нормальные формы локальных семейств дифференциальных уравнений. Эти нормальные формы значительно упрощают отыскание и исследование бифуркаций, а также обоснование и исследование полученных результатов. С другой стороны, нелокальная теория бифуркаций позволяет выделить задачи теории нормальных форм, важные для приложений. На наш взгляд, связь между теорией нормальных форм и нелокальной теорией бифуркаций в настоящее время используется недостаточно.  [c.10]

Бифуркации орбит диффеоморфизмов в главном семействе (1+) изобр1ажены на рис. 17. При отклонении е вправо от нуля неподвижная точка исчезает, а при отклонении влево распадается на две гиперболические притягивающую н отталкивающую. Этой перестройке в соответствующем семействе дифференциальных уравнений на плоскости отвечает столкновение двух предельных циклов — устойчивого и неустойчивого с образованием на мгновение полуустойчивого цикла и последующим его исчезновением при е>0.  [c.44]

Другими словами, мы ограничиваемся исследованием бифуркаций в факторсистеме упрощенной нормальной формы семейства уравнений в окрестности цикла. Истолкование результатов в терминах исходной системы требует дополнительной работы, так как даже топологически бифуркации в исходной системе и в упрощенной нормальной форме не всегда одинаковы (см. например, п. 3.5). Начнем с построения вспомогательных семейств векторных полей на плоскости, сдвиг вдоль которых приближает преобразование монодромни циклов в случае сильного резонанса.  [c.56]

Н. Н. Брушлинская [45], [46] применила теорию бифуркаций торов к гидродинамическим уравнениям Навье — Стокса — область, ставшая модной лишь после того, как Рюэль и Такенс объявили о ее связи с турбулентностью [190] (см., впрочем, доклад А. Н. Колмогорова Эксперимент и математическая теория в изучении турбулентности и Н. Н. Брушлинской [46] на заседании Московского математического общества 18 мая 1965 г.). Обзор современного состояния теории бифуркаций торов, написанный Броером, см. в [129]. Бифуркация рождения цикла в гидродинамике исследовалась также В. И. Юдовичем [118] и подробно обсуждается в книге [173]. Эта книга ценна также обширным списком литературы. Ориентированное на вычислителя изложение теории и приложений бифуркации рождения цикла содержится в [160]. Бифуркации в распределенных системах и их приложения к теории горения обсуждаются в обзорах [54], [55]. О бифуркациях торов, рождающихся при потере устойчивости автоколебаний, см. [М], [123].  [c.208]

Наибольшую сложность в исследовании бифуркаций положения равновесия на плоскости представляет задача о рождении предельных циклон. Как правило, основная часть решения этой задачи сводится к исследованию абелевых или сходных с ними интегралов по фазовым кривым специальной гамильтоновой системы. Эти исследования проводятся либо чисто вещественными методами [43], [72], [88], либо с помощью выхода в комплексную область с применением теоремы Пикара — Лефшеца, теории эллиптических интегралов и уравнений Пикара — Фукса [75], [76], [93], [104], [119], [141], [193].  [c.208]

О бифуркациях динамических систем, близких к системам с сепара-трисным контуром, содержащим седло-фокус. В сб. Методы качественной теории дифференциальных уравнений . Горький, 1980, 44—72  [c.212]


Смотреть страницы где упоминается термин Бифуркации уравнение : [c.351]    [c.40]    [c.157]    [c.171]    [c.69]    [c.11]    [c.61]    [c.156]    [c.208]   
Современная термодинамика (2002) -- [ c.408 , c.431 ]



ПОИСК



Бифуркации стационарных решений периодических дифференциальных уравнений при сильных резонансах порядка

Бифуркация

Некоторые вопросы качественной теории обыкновенных дифференциальных уравнений Замечания по бифуркации рождения цикла Пуанкаре-Андронова-Хопфа

Уравнения равноактивной бифуркации

Уравнения равновесия в проблеме бифуркации

Функциональное представление условий бифуркации. Вариационное уравнение. Формула Тимошенко



© 2025 Mash-xxl.info Реклама на сайте