Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Выбор способа сварки и свойства сварных соединений

ВЫБОР СПОСОБА СВАРКИ И СВОЙСТВА СВАРНЫХ СОЕДИНЕНИЙ  [c.67]

Важной задачей является правильный выбор способа сварки в соответствии с назначением, формой и размерами конструкций. Назначение способа сварки в значительной степени определяется свариваемостью, особенно при соединении разнородных материалов, конструктивным оформлением сварных соединений, степенью их ответственности и производительностью процесса. Необходимо также учитывать тип соединений, присадочный материал, приемы и обеспечение удобства выполнения сборочно-сварочных соединений. Эти условия предопределяют механические свойства соединений и допускаемые напряжения, необходимые для прочностных расчетов конструкций. Так, для сварки длинных швов встык более технологично применение дуговой автоматической сварки. Толстостенные элементы соединяют электрошлаковой сваркой. Для сварки внахлест тонколистовых материалов рационально применение контактной сварки. Некоторые виды свариваемых материалов (алюминиевые и титановые сплавы, нержавеющие стали и т. п.) требуют надежной защиты зоны сварки от окисления, т. е. применения аргонно-дуговой, электронно-лучевой и диффузионной сварки. Необходимо также учитывать возможности механизации и автоматизации процесса выбранного способа сварки.  [c.164]


В производстве металлоконструкций ручная дуговая сварка покрытыми электродами используется чаще других способов сварки. Это обусловлено ее очевидными преимуществами достаточно высокими свойствами сварных соединений, возможностью применения в труднодоступных местах, простотой и надежностью оборудования, широким выбором типов сварочных электродов и, следовательно, большим диапазоном технологических возможностей  [c.109]

Источники питания для дуговой сварки являются основным элементом сварочного оборудования, обеспечивающим зажигание и гашение дуги, ее стабильное горение, управление ее физическими параметрами и технологическими свойствами. Выбор источника питания для дуговой сварки, требования к его проектированию и производству зависят от ряда факторов физических характеристик самой дуги (выступающей в качестве нагрузки в электрической цепи), особенностей конкретного способа сварки и свариваемого материала, требований к качеству сварного соединения и условий выполнения сварки. Первым и определяющим условием функционирования любого источника питания являются электрические характеристики дуги.  [c.110]

Выбор способа сварки определяется характером производства (единичное, серийное и др.), толщиной свариваемого материала, протяженностью шва и пространственным положением его выполнения, требуемыми свойствами сварного соединения. При этом учитывается наличие соответствующего оборудования.  [c.240]

Выбор способа сварки стержней арматуры и закладных деталей зависит от конструкций соединения и условий монтажа. В основном рекомендуются высокопроизводительные способы сварки, в том числе скоростные методы ручной сварки. Сварку следует выполнять в соответствии с заранее разработанным и контролируемым технологическим процессом, устанавливающим последовательность сборочно-сварочных работ, способы сварки, порядок наложения щвов, режимы сварки, диаметры и марки электродов. Технология сварки должна обеспечивать нормальное формирование щвов, хорощее качество и требуемые механические свойства сварных соединений, минимальные деформации свариваемых деталей.  [c.180]

Для сварки никеля и никелевых сплавов применяют следуюш,ие способы сварки газовую, ручную дуговую, под флюсом, вольфрамовым электродом в среде инертных газов. В последнее время находит применение электроннолучевая сварка. Выбор способа и технологии сварки зависит от конкретных условий работы сварной конструкции, т е. сводится к обеспечению наиболее важной для данных условий характеристики свойств сварного соединения. Поэтому даже для одного и того же сплава или группы сплавов технология сварки может быть различной в зависимости от условий эксплуатации сварного изделия.  [c.181]


Однако при сварке, в отличие от способов механического крепления заготовок, возникает ряд специфических проблем, связанных с тепловым воздействием источников нагрева при сварке плавлением, с приложением механических усилий без сопутствующего нагрева при соединении заготовок под давлением. В результате в металле протекают физико-химические процессы, которые могут повести к нежелательному изменению его свойств, развитию физической (структурной) и химической неоднородности и появлению остаточных деформаций и напряжений. Особенно сложны эти проблемы при соединении разнородных металлов, отличающихся кристаллическим строением и теплофизическими характеристиками. Поэтому при проектировании сварных соединений следует учитывать совокупность конструктивных и технологических факторов, а также свойства соединяемых материалов. Принятые конструктивные формы в известной мере ограничивают технологические возможности в смысле выбора способа сварки, от которого зависит, в свою очередь, конечный результат технологического процесса изготовления конструкции. Под технологичностью сварной конструкции понимают такое конструктивное оформление, при котором вместе с удобствами изготовления обеспечивается возможность применения высокопроизводительных технологических процессов при максимальной механизации и автоматизации отдельных технологических операций. При создании наиболее рациональных конструкций необходимо в процессе их проектирования исходить нз условий обеспечения максимальных удобств при выполнении отдельных технологических операций и минимального веса при заданном качестве сварного соединения. Кроме того следует учитывать, что неизбежные искажения формы, вызываемые тепловым эффектом сварочного процесса, должны быть минимальны.  [c.376]

Разработка технологических процессов сварки, обеспечивающих удовлетворительные механические свойства сварных соединений, правильный выбор способа и параметров процесса требуют определения предельно допустимых температурно-временных условий взаимодействия свариваемых металлов.  [c.201]

Выбор способа сварки обычно связан с химическим составом металла и предъявляемыми к сварному соединению требованиями. Наибольшую однородность сварного соединения обеспечивает сварка сопротивлением с защитой от окисления нейтральными или слегка восстановительными газами, а также сварка непрерывным оплавлением. В последнем случае металл стыка обезуглероживается и может иметь несколько отличные от основного металла свойства. Регулирование состава металла при сварке различных специальных сталей может быть обеспечено выбором соответствующей газовой среды. В частности, для изделий, в которых не должно быть обезуглероживания, используется среда из продуктов разложения углеводородов. Однородность состава в некоторых случаях может быть обеспечена также путем диффузионного отжига.  [c.163]

При достаточной свариваемости, т. е. когда в заданных технологических и конструктивных условиях удовлетворяются требуемые эксплуатационные свойства сварных соединений, она классифицируется как хорошая. При недостаточной свариваемости удовлетворительная соответствует случаю, когда достаточную свариваемость можно обеспечить выбором рационального режима сварки ограниченная, когда для этой цели необходимо применять специальные технологические мероприятия или изменить способ сварки плохая, когда никакими мерами невозможно достичь достаточной свариваемости. Степень свариваемости материала устанавливается в каждом конкретном случае в зависимости от заданной технологии, конструктивного оформления сварного соединения и требуемых эксплуатационных свойств.  [c.122]

Ограничения в выборе способов сварки этих металлов и сплавов определяются в основном такими свойствами, как активность по отношению к атмосферным газам, температура плавления, пластические свойства при температурах образования сварного соединения, склонность к понижению пластичности вследствие собирательной рекристаллизации (рост зерна).  [c.55]


Контроль качества сварного соединения с помощью образцов-свидетелей. Для контроля качества сварных соединений применяют периодические испытания контрольных технологических образцов-свидетелей. Эти образцы удобны для проведения испытаний и измерений, и их легко изготовить. При обеспечении одинаковых условий сварки образцов и сварных изделий (однородность материала, подготовка свариваемых поверхностей, режим сварки и др.) можно по измеренным характеристикам сварного соединения образцов судить о качестве сварного соединения готовых изделий. Качество сварки на контрольных образцах оценивают по результатам испытаний и измерений, проводимых соответственно требованиям, предъявляемым к сварным соединениям. Кроме механической прочности, нередко предъявляются требования особых свойств. Например, сохранение электрических свойств одного из металлов без изменения их в зоне сварного соединения или сохранение оптических свойств в сварной зоне и геометрических размеров изделий, получаемых способом ДС кварцевых элементов, и т. д. В ряде случаев к сварным соединениям не предъявляются повышенные требования по прочности. Например, для элементов электродов электролизеров, изготовленных способом ДС из пористых и сетчатых материалов, основной является электрохимическая характеристика, полученная при различных плотностях тока. Имея указанные выше данные, необходимо провести статистическую обработку результатов испытаний и измерений, используя математические методы. Основной задачей такой обработки является оценка среднего значения характеристики того или иного свойства и ошибки в определении этого среднего, а также выбор минимально необходимого количества образцов (или замеров) для оценки среднего с требуемой точностью. Эта задача является стандартной для любых измерений и подробно рассматривается во многих руководствах [8]. Следует иметь в виду, что, несмотря на одинаковые условия сварки образцов и изделий, качество соединения может быть различным по следующим причинам. При сварке деталей, имеющих значительно большие размеры по сравнению с контрольными образцами, возможны неравномерность нагрева вдоль поверхности соединения, а также неравномерность передачи давления. Образцы и изделия вообще имеют различную кривизну свариваемых поверхностей, что не обеспечивает идентичности условий формирования соединения. В ряде случаев, особенно для соединений ответственного назначения, перед разрушающими испытаниями образцов и изделий целесообразно, если это возможно, проводить неразрушающий контроль качества сварного соединения, а также другие возможные исследования для установления корреляции между различными измеряемыми характеристиками. Основные методы определения механических свойств сварного соединения и его отдельных зон устанавливает ГОСТ 6996—66. Имеются стандарты для испытаний на растяжение, ударную вязкость, коррозионную стойкость и т. д. [18]. В этих ГОСТах даны определения характеристик, оцениваемых в результате испытания, типовые формы и размеры образцов, основные требования к испытательному оборудованию, методика проведения испытания и подсчета результатов.  [c.249]

На этапе эскизного проектирования выявляют принципиальную возможность обеспечения заданных служебных свойств изделия при различных вариантах конструктивного оформления. Одновременно с выбором материала и метода получения изделия конструктор назначает расположение сварных соединений, их тип и способ сварки. Таким образом, основные вопросы технологичности сварных конструкций решаются уже на первом этапе проектирования.  [c.430]

При выборе того или иного способа сварки необходимо учитывать специфику технологического процесса, производственные затраты и физико-механические свойства соединяемых пластмасс. Например, сварка нагретым газом и нагретым инструментом является наиболее экономичным процессом. Прочностные характеристики сварного соединения достаточно высоки. Но применение этих способов опасно при укупорке легковоспламеняющихся веществ. Загрязнение поверхностей свариваемых изделий значительно уменьшает прочность сварного соединения при применении этих способов сварки.  [c.5]

Выбор методов исследования сварных соединений при диффузионной сварке определяется спецификой изучаемых явлений и состоянием современных методик. Методы, нашедшие широкое практическое применение для исследования диффузионных соединений металлографическое и электронно-микроскопическое исследование спектральный, микрорентгеноспектральный и рентгеноструктурный анализы метод радиоактивных индикаторов измерение микротвердости определение механических свойств при низких и высоких температурах испытания на длительную прочность и ползучесть соединения исследования термостойкости и коррозионной стойкости соединения и др. Одно из основных требований, предъявляемых к применяемым методам, — локальность. Для получения достоверной картины диффузионной зоны необходимо применение нескольких способов исследований.  [c.33]

При изготовлении сварных конструкций из разнородных сталей используется большинство существующих способов сварки. Наибольшее распространение из них получила ручная дуговая сварка как процесс, обеспечивающий наибольшую гибкость регулирования степени проплавления свариваемых кромок. При сварке сталей одного структурного класса в большинстве случаев отсутствуют ограничения по уменьшению степени проплавления и соответственно могут применяться те же способы и режимы, что и для однородных соединений. При сварке сталей разного структурного класса выбор способа сварки и ее режима определяется предельной степенью проплавления свариваемых кромок. При использовании способов с повышенным проплавлением кромок, как, например, при электрошлаковой сварке, технологическая и конструктивная прочность соединения должны определяться подбором сварочных материалов, обладающих низкой чувствительностью к повышению степени проплавления. Перспективным является использование электронно-лучевой сварки как при непосредственном контактировании свариваемых кромок, так и с вбедением промежуточной прослойки, состав которой выбирают из условия получения оптимальных свойств щва. Для стыковки труб в котлостроении широко применяют контактную сварку сопротивлением, в компрессоро-строении и других отраслях широко внедрена сварка взрывом, все большее распространение находит диффузионная сварка.  [c.438]


При выборе способа сварки плавлением аустенитных сталей необходимо обеспечить их свариваемость, т.е. предотвратить трещины различных типов в металле шва и ЗТВ как при сварке, так и при эксплуатации сварных соединений. При этом главное внимание обращают на технологическую прочность при сварке, так как ее уровень по закону технологического наследования определяет в существенной мере все другие структ)фочувствительные свойства соединений (жаропрочность, коррозионную стойкость и др.).  [c.60]

Однако в некоторых случаях на свойства металла зон термического влияния и особенно наиболее высоконагреваемых при сварке участков, близких к границе сплавления, влияет и правильный выбор сварочных материалов. Это влияние определяется как количеством водорода, диффундирующего из шва в зону термического влияния, так и полем собственных внутренних напряжений в околошовной зоне, связанным с соотношением составов и свойств металлов шва и зоны термического влияния. Пластические свойства сварных соединений, иногда сразу после сварки невысокие, восстанавливаются, возрастая в несколько раз после выдержки при комнатной температуре. Темп и степень такого повышения пластичности часто определяются количеством водорода, вводимого в металл шва при том или ином способе сварки и применяемых сварочных материалах.  [c.14]

Существенную роль при выборе способа сварки играет толщина свариваемых деталей. При сварке тонколистовых деталей для обеспечения требуемой величины проплавления и удовлетворительного формирования шва нет необходимости стремиться применению мощного концентрированного источника тепла. Наоборот, предпочтительны такие способы сварки, которые позволяют производить более мягкий нагрев, обеспечивающий возможность гибкого маневрирования источником теплоты и точное дозирование энергии на каждую едики ду длины шва. Поэтому при выборе способа сварки тонколистовых конструкций следует иметь в виду аргонодуговую, газовую, контактную точечную или шовную сварки в зависимости от свойств свариваемого материала, габаритов конструкции, требований к сварному соединению и массовости производства.  [c.484]

Вопросы точности и стабильности размеров конструкции, конечно, не исчерпываются выбором способа сварки. Существенным является учет сварочных деформаций и напряжений, назначение технологических мероприятий по их уменьшению. Эти вопросы решают на стадии рабочего проектирования как с целью обоснования значений допусков и припусков, так и с точки зрения целесообразности проведения термообработки. Применение термообработ1Ш, с одной стороны, улучшает механические свойства и структуру сварных соединений, способствуя повышению их работоспособности. С другой стороны, многие весьма ответственные изделия вполне надежно работают после сварки без ка-кой-либо термической обработки. Неоправданное назначение операции термообработки может существенно увеличить трудоемкость изготовления изделия, в особенности в условиях серийного производства. Вопрос о необходимости термообработки после сварки решают, принимая во внимание химический состав свариваемого и присадочного металла, способ сварки, конструктивное оформление соединений и узлов, требования к механическим свойствам, условия эксплуатации и т.д.  [c.432]

Аустенитно-ферритные стали можно сваривать как ручной и механизированной электродуговой сваркой, так и другими способами сварки (электроннолучевой, электрошлаковой), плазменнодуговой и др.). Предпочтительнее способы сварки с невысокими погонными энергиями. Техника и режимы сварки аустенитно-ферритных сталей не отличаются от общепринятых для всего класса нержавеющих сталей. При выборе видов швов сварных соединений рекомендуется руководствоваться ГОСТ 5264—69, ГОСТ 8713—70, ГОСТ 14771—69, ОСТ 26-291—71 и стандартами предприятий. Подготовка кромок под все виды сварки производится механическим способом, чтобы исключить возникновение зон термического влияни,я (ЗТВ), снижающих регламентированные свойства сварных соединений. Сварочные материалы, применяемые для сварки аустенитно-ферритных сталей, приведены в табл.  [c.285]

Сварку чугуна применяют в основном при ремонтных работах — восстановление чугунных деталей после поломки или износа, исправление дефектов литья и т. п. Выбор наилучшего способа сварки определяют констрл к-цией детали и условиями ее работы, химическим составом чугуна и характером дефекта. Накопленный опыт позволяет сделать вьшод, что газовая сварка является одним из надежных способов, позволяющих получить наплавленный металл, по свойствам близкий к основному металлу. Это обусловлено тем, что при газовой сварке происходит более равномерный нагрев и охлаждение свариваемой детали, чем при электродуговой сварке. Поэтому газовая сварка обеспечивает лучшие условия для грл-фитизации углерода в наплавленном металле, делает менее вероятным появление в зоне сплавления отбеленного чугуна, а также уменьшает внутренние напряжения в свариваемом изделии и возможность образования трещин. Для получения качественного сварного соединения деталей из чугуна необходимо помнить следующее  [c.127]

В связи- с этим при выборе критериев для расчетного определения режимов сварки тех или иных металлических материалов необходим строго диференцированный подход. Он зависит фиЗико-химиче ских свойств свариваемых материалов и от того, в каких зонах сварного соединения при данном виде или способе сварки возникают опасные дефекты или происходят не1благоприятные изменения структуры и свойств.  [c.40]

Тин сварного соединенпя наряду с общими конструктивными соображениями выбирают с учетом обеспечения равнопрочности соединения основному металлу и технологичности. Выбор разделки кромок зависит от толщины метал.ла, его тепло физических свойств и способа сварки.  [c.373]

Качество сварных соединений в значительной степени определяется надежностью защиты сварочной ванны и максимально разогретой зоны от воздействия окружающей среды, а также отсутствием в шве нор, шлаковых включений и других дефектов. Обеспечение указанных условий получения качественных соединений также связано с выбором способа сваркп. Наиболее эффективны в этом отношении сварка в атмосфере защитных газов и вакууме. Особенно важно правильно выбрать способ сварки при применении материалов, свойства которых ухудшаются при незначительном насыщении газами из окружающего воздуха. Например, для таких тугоплавких металлов, как титан, ниобий, а также для алюминия, магния и высоколегированных сталей предпочтительна дуговая сварка в атмосфере аргона высокой чистоты, а для молибдена и его сплавов — электронным лучом в вакууме. В то же время углеродистые и легированные конструкционные стали успешно сваривают всеми способами дуговой и электрошлаковой сварки. При соответствующем выборе режима и сварочных материалов получают сварные соединения, равнопрочные основному металлу при статических и динамических нагрузках.  [c.377]


Общепринятого критерия оценки пригодности конструкционных сталей к изготовлению сварных деталей и конструкций пока нет. При выборе сталей для сварных деталей и конструкций руководствуются прежде всего механическими свойствами основного металла и сварных соединений, а также технологичностью (штампуемостью, сопротивляемостью к горячим и холодным трещинам при сварке и т. д.), термообрабатываемостью, механической обрабатываемостью, трудоемкостью и т. п. Надежность сварных соединений служит основным и главным критерием в вопросе выбора марки сталей и способов изготовления сварных изделий.  [c.126]


Смотреть страницы где упоминается термин Выбор способа сварки и свойства сварных соединений : [c.47]   
Смотреть главы в:

Дуговая сварка алюминия и его сплавов  -> Выбор способа сварки и свойства сварных соединений



ПОИСК



219 — Сварка и соединения

219 — Сварка и соединения сварные

584-589 - Свойства 585-589 - Способы

Выбор соединений

Выбор способа сварки

Сварк свойства

Сварка Свойства

Сварка сварной шов

Сварные соединения и способы сварки

Свойства сварных соединений

Соединения Свойства

Соединения сварные 203—214 — Способы

Способы сварки

Способы сварки и свойства соединений

Способы соединения



© 2025 Mash-xxl.info Реклама на сайте