Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технологическая прочность

Прохождение упомянутых дисциплин предполагает достаточно глубокое изучение студентами таких вопросов, как классификация способов сварки, теоретические основы источников теплоты, используемых при сварке, физико-металлургические и тепловые процессы при сварке, процессы кристаллизации металла сварного шва и технологическая прочность сварных соединений и т. п.  [c.3]

Установлено, что для получения швов требуемой формы, обладающих высокой технологической прочностью, значения А в формуле (33) следует принимать в пределах, приведенных ниже  [c.194]


Для обеспечения технологической прочности сварных швов, выполненных низколегированными сварочными материалами, со-  [c.248]

Для повышения пластичности сварного шва и увеличения сопротивляемости трещинам содержание углерода в присадочном металле должно быть менее 0,15% целесообразно предусмотреть более широкую разделку кромок, чтобы обеспечить формирование шва в основном за счет более пластичного присадочного металла. Высокая технологическая прочность сварного шва достигается при ограничении содержания легирующих элементов в присадочной проволоке до следующих пределов, % 0,15 С 0,5 51 1,5 Мп 1,5 Ог 2,5 N1 0,5 V 1,0 Mg 0,5 N5.  [c.124]

Термодеформационные процессы и превращения в металлах при сварке определяют технологическую прочность металла шва и зоны термического влияния, т. е. стойкость против образования локальных разрушений в процессе изготовления сварного соединения.  [c.406]

Сварочные процессы определяют технологическую прочность металла шва и зоны термического влияния, т. е. стойкость металла сварного соединения против локальных разрушений в процессе изготовления (сопротивляемость образованию разного рода трешин). Кроме того, они в значительной мере определяют эксплуатационную прочность, работоспособность сварного соединения — степень соответствия его механических, физических и химических свойств требованиям эксплуатации.  [c.434]

Зональная ликвация может существенно ослаблять ось шва и вызывает ряд нежелательных эффектов, в частности понижает пластические и прочностные характеристики шва, снижает его технологическую прочность.  [c.465]

Горячими трещинами называются хрупкие межкристаллитные разрушения сварного шва или околошовной зоны, возникаюш,ие в области температурного интервала хрупкости в результате воздействия термодеформационного сварочного цикла. Горячие трещины чаще всего возникают в сплавах, обладающих выраженным крупнокристаллическим строением, с повышенной локальной концентрацией легкоплавких фаз. Согласно общепринятым представлениям, они возникают в том случае, если интенсивность нарастания деформаций в металле сварного соединения в период остывания приводит к деформациям большим, чем его пластичность в данных температурных условиях. Способность сварного соединения воспринимать без разрушения деформации, вызванные термодеформационным циклом сварки, определяет уровень его технологической прочности.  [c.478]


В МВТУ им. Н. Э. Баумана Н. Н. Прохоровым была разработана теория технологической прочности металлов при сварке, согласно которой сопротивляемость сварного соединения образованию горячих трещин определяется тремя основными факторами пластичностью металла в температурном интервале хрупкости, значением этого интервала и характером нарастания деформации при охлаждении (темпом деформации сварного соединения).  [c.478]

Нис. 12.43. Графическая иллюстрация теории технологической прочности при кристаллизации  [c.479]

Штриховой линией нанесены температуры образования кристаллического каркаса. Заштрихованная область соответствует значениям эффективного интервала кристаллизации Гэф. Из приведенных кривых видно, что с увеличением Гэф возрастает линейная усадка е. а уровень технологической прочности (и р) падает.  [c.480]

Косвенные методы оценки технологической прочности по результатам механических испытаний образцов, проводимых при нагреве или охлаждении их по заданной программе, имитирующей сварочный термический цикл.  [c.482]

Из методов количественной оценки технологической прочности наибольшее распространение получил метод МВТУ им. Н. Э. Баумана, основанный на выше рассмотренной теории. Принципиальная сущность его заключается в деформировании испытуемого сварного шва, находящегося в т.и.х., с заданным темпом деформации вплоть до полного исчерпания пластичности. Показателем сопротивляемости образованию горячих трещин служит та максимальная скорость деформации, при которой трещина не возникает.  [c.482]

Предположим, что пластичность этого участка шва характеризуется кривой П. Темп деформации, вызываемый процессами свободной усадки и деформациями формоизменения Ссв — ф, меньше, чем предельный, и, следовательно существует определенный запас пластических свойств, которые нужно определить. Задавая дополнительный темп машинной деформации v, находят тот предельный, который приводит к исчерпанию запаса пластичности и будет критерием запаса технологической прочности.  [c.484]

Для проведения испытаний по этой методике применяют специальные машины типа ЛТП, разработанные в лаборатории технологической прочности МВТУ им. Н. Э. Баумана, в ИМЕТе совместно с ЦНИИчерметом и в других организациях. Испытания проводят с использованием различных способов сварки и сварочных материалов — штучных электродов, сварочной проволоки и флюсов, защитных газов и т. д.  [c.484]

Технологические пробы можно подразделить на пробы, позволяющие получать количественную или качественную оценку технологической прочности металлов. К первому типу относятся пробы, в которых темп деформации регулируется изменением конструктивных параметров. Как правило, пробы такого типа чаще используют при лабораторных исследованиях. а)  [c.485]

Как уже указывалось, темп деформации в т.и.х. зависит не только от химического состава металла и режима сварки. В значительной степени он определяется и конструктивными особенностями самого изделия, его способностью деформироваться под действием теплового поля или напряжений, возникающих в сварном соединении. Для того чтобы оценить влияние конструктивных факторов самого узла на технологическую прочность сварного соединения, иногда используют так называемый метод эталонного ряда. Для этого конструкцию сваривают с применением электродов или сварочной проволоки и флюсов, запас технологической прочности которых заранее определен. Набор таких материалов с различными показателями v по степени убывания или возрастания и называют эталонным рядом. Подобрав из серии эталонного ряда сварочные материалы, исключающие появление трещин, можно определить требования по запасу технологической прочности, необходимые для бездефектной сварки конструкций данного типа.  [c.486]

Безусловно, эффективное средство повышения технологической прочности — снижение содержания в сварных швах вредных примесей (для сталей, серы, фосфора, по возможности угле-  [c.487]

Обычно высокопрочные, высоколегированные стали и сплавы больше подвержены образованию горячих трещин, чем обычные конструкционные. Это можно объяснить большей направленностью кристаллитной структуры в шве, увеличенной усадкой, многокомпонентным легированием, способствующим образованию эвтектических составляющих по границам зерен. Для повышения технологической прочности таких сплавов кроме очень жесткого ограничения содержания вредных примесей (серы и фосфора) часто прибегают к дополнительному легированию молибденом, марганцем, вольфрамом, а также введением в шов некоторого количества модификаторов, способствующих измельчению структуры.  [c.488]


В отдельных случаях технологическую прочность можно повысить изменением фазового состава металла шва. Так, установлено, что образование в шве двухфазной структуры (аустенит и первичный феррит или карбиды, аустенит и эвтектические фазы) способствует подавлению транскристаллитной первичной структуры, измельчают ее. На рис. 12.49 приведено изменение  [c.488]

Кроме двух рассмотренных выше возможностей повышения технологической прочности — изменение химического состава металла шва и режима сварки — не менее важно правильное конструирование сварных узлов, и грамотно назначенный порядок наложения швов. Все эти факторы определяют значение деформации в т.и.х. и вследствие этого влияют на сопротивляемость образованию трещин. Полностью исключить влияние конструкции на деформацию формоизменения без изменения самих узлов практически невозможно, однако хорошо известны широко применяемые на практике способы уменьшения этих деформаций, например приемы сборки, уменьшающие вероятность образования трещин. К ним относятся технологические планки, привариваемые в начале и конце швов, жесткое закрепление изделия во время сварки с целью уменьшения его коробления, заварка концевых участков швов в направлении к краю и выведению кратера на технологические планки, сопутствующий или предварительный подогрев, многопроходная сварка и другие приемы.  [c.489]

Фазовые и структурные превращения при сварке конструкционных сталей нередко вызывают понижение технологической прочности, механических и эксплуатационных свойств металла сварных соединений. Под технологической прочностью понимают способность материалов без разрушения выдерживать термомеханические воздействия в процессе сварки. В условиях указанных воздействий часто существенно понижаются механические свойства металла, что вместе с довольно высокими сварочными деформациями и напряжениями может служить причиной образования трещин.  [c.511]

Применение конструкционных низколегированных сталей повышенной и высокой прочности, теплоустойчивых и жаропрочных хромомолибденованадиевых, нержавеющих хромоникелевых сталей, биметаллов и композиционных материалов для изготовления аппаратов актуализирует проблему механической неоднородности. Механическая неоднородность, заключающаяся в различии механических характеристик зон (шва Ш, зоны термического влияния ЗТВ и основного металла) сварного соединения, является, с одной стороны, следствием локализованных температурных полей при сварке структурно-неравновесных сталей, с другой - применения технологии сварки отличающимися по свойствам сварочных материалов с целью повышения технологической прочности.  [c.93]

При разработке технологии сварки жаропрочных материалов особую трудность представляет, как правило, выбор сварочных материалов (электродов и сварочных проволок), обеспечивающих необходимые свойства металла шва. Для работы при высоких температурах металл шва, кроме необходимого уровня механических свойств и технологической прочности, должен обеспечивать также достаточную стабильность структуры и свойств при заданных температурах, обладать необходимым сопротивлением ползучести и жаростойкостью, а также рядом других свойств в соответствии с условиями работы данного узла. При этом критерии оценки пригодности того или иного типа сварочных материалов будут существенно зависеть от назначения данного узла конструкции. Так, например, для сварных конструкций камер сгорания газовых турбин пригодность тех или иных электродов будет определяться прежде всего жаростойкостью металла шва. Ряд сварных узлов турбин (рабочие лопатки, роторы и другие) могут работать под воздействием динамических знакопеременных напряжений. Поэтому для данных сварных соединений должна быть проверена их усталостная прочность.  [c.21]

Одним из основных факторов, определяющих свариваемость аустенитных сталей, является склонность аустенитного металла шва к горячим (кристаллизационным) трещинам при сварке. Эти трещины, природа которых до настоящего времени полностью не выяснена, наиболее часто встречаются в швах, имеющих чисто аустенитную структуру без выделений второй фазы (фиг. 13). Поэтому одним из наиболее эффективных средств борьбы с горячими трещинами является переход к двухфазной структуре металла шва. В качестве второй фазы наиболее часто используется ферритная фаза. Аусте-нитно-ферритный двухфазный металл шва (фиг. 13, б), обеспечиваемый при использовании наиболее широко применяемых в настоящее время электродов (табл. 6), в отличие от чисто аустенитного металла шва, не склонен в условиях сварки к горячим трещинам и обладает высокой технологической прочностью даже при выполнении жестких швов большой толщины. По уровню жаропрочности швы, выполненные аустенитно-ферритными электродами, приближаются к аустенитным сталям первой группы. Длительная прочность сварных соединений аустенитных сталей первой группы также в большинстве случаев близка к соответствующим показателям для основного металла.  [c.35]

Для обеспечения технологической прочности сварных швов, выполненных низколегированными сварочными материалами, содержание углерода в шве не должно превышать 0,15%. Уменьшенное, по сравнению с содержанием в свариваемой стали, количество углерода и легирующих элементов приводит к спигкению температуры у -> а-превращения, которую можно оценить уравнением  [c.247]

Высокую технологическую прочность и работоспособность можно получить, если содерн апие легирующих элементов в низколегированном металле шва не превысит (в %) 0,15 С 0,5 Si  [c.249]

Удаление шлаками нежелательных примесей из металла при сварке. В любом металле или сплаве сера — вредная примесь, резко увеличиваюшая склонность металлов к образованию горячих трещин и снижающая технологическую прочность. Сера хорошо удаляется восстановительными и основными шлаками в соответствии с уравнением реакции  [c.366]


Для равновесных условий кристаллизации акад. А. А. Дочвар связывает вероятность образования горячих трещин с эффективным интервалом кристаллизации Гэф, определяемым как интервал температур, заключенный между температурой образования кристаллического каркаса внутри расплава и температурой соли-дуса. На рис. 12.44 изображен участок бинарной диаграммы состояния. По вертикальной оси отложены температура Г, линейная усадка сплава е и критическая скорость определяющая уровень технологической прочности сплава.  [c.480]

При разработке новых сварочных материалов, обладающих повышенной технологической прочностью, часто важно знать не только интегральную оценку их сопротивляемости образованию горячих трещин при сварке, но и отдельно каждую из характеристик, определяющую вероятность их появления. Главная из этих характеристик — значение температурного интервала хрупкости, минимальная пластичность в этом интервале и темп нарастания деформации а в = де1дТ.  [c.487]

Все изнестные способы повышения технологической прочности в конечном итоге сводятся к следующим основным  [c.487]

Показатели сопротивляемости трещинам, получаемые с помощью механических испытаний, оценивают только технологическую прочность металла в условиях СТДЦ, поэтому они не могут быть непосредственно применены для оценки стойкости сварных соединений и конструкций против трещин, так как образование холодных трещин зависит также от значения сварочных напряжений в сварных конструкциях. В принципе такая оценка может быть выполнена путем сопоставления показателя сопротивляемости трещинам и сварочных напряжений в одной и той же зоне сварного соединения.  [c.542]

Сварка отдельных лепестков оболочки корпуса резервуара и элементов днищ выполнялась на заводе Уралхиммаш автоматической сваркой сварочной проволокой марки Св-08МХ по ГОСТ 2246 под флюсом марки АН-348А по ГОСТ 9087. Монтажные швы при сборке оболочки резервуара выполнялись сварочной проволокой марки Св-ЮНЮ по ТУ 14-1-2219, обеспечивающей более высокую технологическую прочность металлу шва.  [c.14]

Внедрение полученных результатов позволило повысить технологическую прочность сварных соединений, исключить трудоемкую операцию подогрева и выполнять сварку на формированных режимах, повысить производительность и улучшить условия труда, расширить область применеггня технологии сварки закаливающихся сталей без термической обработки при производстве нефтехимической аппаратуры и трубопроводов. При этом себестоимость выполнения свароч ных работ 1 пог. м сварочного шва по изменяющимся o Hosi ным расходам от применения ручной электродуговой сиарки с РТЦ снижается в 1,5...2,4 раза автоматической сварки пот, флюсом с РТЦ - в 3...3,3 раза.  [c.106]

Для повышения технологической прочности сварных соединений (предотвращения появления горячих и холодных трещин) щвы в оболочковых конструкциях выполняют мягкими присадками /31 — 34/, В качестве мягких присадков выбирают проволоки, обладающие высокой пластичностью, хотя и меньшей по сравнению с основным ме-таллом прочностью (рис 2 4) Так, например, различие в прочностных характеристиках металла шва и основного металла сферических резервуаров, выполненных из титанового сплава ВТ5-1, достигает 30 % 1Ъ11, а при сварке т зуб из сачава ВТ22 и оболочек из сплава ВТ 14 сварной шов имеет более низкие (до 35 %) прочностные характеристики по отноше-  [c.74]

Второе принципиальное положение, на которое обращено внимание в курсе, состоит в усилении информации (главы IV, VIII, XIX) о самом материале конструкции. Там, где это было мыслимо, применяются понятия физики твердого тела, однако в основном используется феноменологический подход. Эта часть курса в определенном смысле пересекается с предметом физики твердого тела, кристаллографии, материаловедения, включая сюда вопросы технологической прочности. Попали в поле зрения и новые, нетрадиционные материалы, и новые условия работы материалов (радиационные эффекты при высоких уровнях облучения, очень высокие и очень низкие температуры, высокие скорости нагружения, высокие давления и т. п.).  [c.13]

Помимо указанных автоматизированных сварочных установок в МВТУ создан ряд других по оценке конструктивной прочности при сложно-напряженном состоянии, по устранению остаточных деформаций, вызванных сваркой в конструкциях (д-р. техн. наук С. А. Куркин, д-р техн. наук проф. В. А. Винокуров), по оценке технологической прочности при сварке полимерных труб методом трения (канд. техн. наук доц. И. И. Макаров) и т. д. Разработка автоматизированных сварочных процессов является одним из главных направлений кафедры сварочного производства.  [c.174]

Анализ технической литературы показал, что наиболее эффективным методом вварки штуцеров в толстостенные элементы является способ сварки поперечной горки [6]. Эксперименты на образцах и моделях подтвердили, что данный метод вварки штуцеров обеспечивает высокую технологическую прочность и макросплошность, незначительные деформации свариваемых элементов и более высокую производительность. При этом способе сварка производится одновременно двумя сварщиками на диаметрально противоположных участках с одной наружной стороны корпуса. При опробовании различных конструкций разделок установлено, что наиболее оптимальной является F-об-разная разделка со скосом кромок в 6° как со стороны обечайки или днища, так и со стороны штуцера (рис. 2). Если ввариваемый штуцер изготовлен из хродюмолибденовой стали, то на штуцер предпочтительно произвести наплавку материалами, применяемыми для их вварки и после нанлавки подвергнуть термообработке. Метод поперечной горки целесообразно применять для вварки штуцеров с глубиной разделки не более 200 мм. При глубине свыше 200 мм бездефектные швы получить не удается. В этом случае опробована и рекомендуется к применению Z-образная разделка. При этом выступ должен располагаться на штуцере.  [c.78]


Смотреть страницы где упоминается термин Технологическая прочность : [c.485]    [c.488]    [c.139]    [c.150]    [c.150]    [c.151]    [c.187]    [c.192]    [c.256]    [c.39]    [c.118]   
Сварка и резка металлов (2003) -- [ c.31 ]



ПОИСК



158 — Механические свойства 153154—Назначение 153, 156, 158 Полосы прокаливаемости 155—157 Предел выносливости 154, 157 —Сортамент 159 — Технологические свойства 155, 157, 159 — Режимы термообработки 155, 157 — Химический состав пружин 151—Динамическая прочность пружин 151 — Испытание пружин на релаксацию 151 — Коэффи

423—428 — Влияние давления прессования на прочность сплава 426 — Изготовляемые отливки 423, 424 — Основные технологические параметры

580 °С — Виды поставляемого полуфабриката 281 — Длительная прочность 273 — Коэффициент линейного ползучести 273 — Срок работы 271 Технологические свойства 274 — Химический состав 272 — Цена

600 °С — Виды поставляемого полуфабриката 281 — Длительная прочность 279 — Коэффициент линейного нормальной упругости 280 — Назначение 275 — Предел ползучести 279 Технологические свойства 281 — Химический состав 276 — Цены

65 — Статическая прочность после газовой нитроцементации 65—66 — Температура критических точек 64 — Технологические свойства 68 — Ударная

65 — Статическая прочность после газовой нитроцементации 65—66 — Температура критических точек 64 — Технологические свойства 68 — Ударная вязкость 66 — Химический состав

Влияние на прочность Влияющие факторы технологически

Влияние основных конструктивных и технологических факторов на усталостную прочность

Влияние параметров технологического процесса на усталостную прочность деталей

Влияние структурных и технологических факторов на прочность пористых случайно-неоднородных композитов

Влияние технологических дефектов на прочность сварных соединений при статических и переменных нагрузках

Влияние технологических и эксплуатационных факторов на прочность паяных соединений

Втулки — Изготовление — Технологические операции 858 — Размеры Нормальный ряд прочность

Ермишкин В. А., Тамайо П ОПРЕДЕЛЕНИЕ ТЕХНОЛОГИЧЕСКОЙ ПРОЧНОСТИ СПЛАВОВ ПРИ СВАРКЕ ПЛАВЛЕНИЕМ МЕТОДОМ КВАЗИРЕЛАКСАЦИИ

Жаропрочные для работы при температуре 650850 °С — Виды поставляемого полуфабриката 296 — Длительная прочность 293—294 — Коэффициент линейного расширения 294 — Марки 289290 — Механические свойства 292 Модуль нормальной упругости 294 Назначение 289—290 — Предел прочности 293—294 — Твердость 293 Теплопроводность 294 — Технологические свойства 295 — Химический

Запас прочности технологический

Классификация и анализ методов определения технологической прочности металлов в процессе кристаллизации при сварке

Методы оценки технологической прочности сталей в процессе превращений аустенита

Микиртычев С.К. Устройство для определения запаса прочности технологических трубопроводов КС

Некоторые данные испытаний металла шва на технологическую прочность по методике МВТУ и ЖдМИ

Петров Н.Г., Клищевская В.М., Есин Ю.Й., Комаров Д.Н. Прогнозирование остаточной прочности и ресурса работы технологического газового оборудования и ГРС

Покрытия кокильные 95, 105, 106 — Прочность 108, 109 — Свойства: термофизические 106 технологические 110 термохимические 108—110 — Создание в кокиле восстановительной и окислительной

Покрытия кокильные 95, 105, 106 — Прочность 108, 109 — Свойства: термофизические 106 технологические 110 термохимические 108—110 — Создание в кокиле восстановительной и окислительной атмосфер 109, 110 — Структуры 106 Теплопроводность: расчетная

Покрытия кокильные 95, 105, 106 — Прочность 108, 109 — Свойства: термофизические 106 технологические 110 термохимические 108—110 — Создание в кокиле восстановительной и окислительной и легирования

Покрытия кокильные 95, 105, 106 — Прочность 108, 109 — Свойства: термофизические 106 технологические 110 термохимические 108—110 — Создание в кокиле восстановительной и окислительной магниевых сплавов 113 чугуна

Покрытия кокильные 95, 105, 106 — Прочность 108, 109 — Свойства: термофизические 106 технологические 110 термохимические 108—110 — Создание в кокиле восстановительной и окислительной экспериментальная

Природа и механизм образования горячих трещин. Гипотеза технологической прочности

Процессы кристаллизации и технологическая прочность Образование первичной структуры и формирование металла сварного шва

Прочность арматуры трубопроводов Расчет конструктивных и технологических факторов 533 — Расче

Прочность валов и осей (Р. М. ШнейдероПрочность валов в зависимости от конструктивных и технологических факторов

Прочность длительная коррозионно-усталостная — Влияние технологических методов поверхностного упрочнения

Прочность усталостная сварных соединений — Влияние конструктивных и технологических факторов

Пути повышения технологической прочности сварных соединений

Рабче* расчеты) на прочность монтажными стрелами, закрепленными к существующим строительным (технологическим)

Расчет осей и валов на прочность и жесткость конструктивные и технологические способы повышения выносливости валов

Резьбовые Прочность — Влияние технологических и конструктивных факторо

СОВМЕСТИМОСТЬ КОНСТРУКТИВНЫХ ФАКТОРОВ С ТЕХНОЛОГИЧЕСКИМ ПРОЦЕССОМ И ПРОЧНОСТЬ ПАЯНЫХ СОЕДИНЕНИЙ Типы паяных соединений

Сварка твердых сплавов — Зависимость прочности сварного соединения от толщины прослойки 190 — Область применения 188 — Подготовка свариваемой при различных технологических схемах сварки

Сварные соединения — Влияние основных конструктивных и технологических факторов на усталостную прочность

Способы повышения технологической прочности сварных соединений в процессе кристаллизации

Статическая прочность клеевых соединений и технологические показатели клеев

Технологическая прочность в процессе кристаллизации (горячие трещины) (канд техн. наук D. Ф. Якутии)

Технологическая прочность и свариваемость металлов

Технологическая прочность металлов при сварке

Технологическая прочность сварных соединений

Технологическая прочность сварных соединений и методы ее повышении

Технологическая прочность стали в процессе превращений аустенита (холодные трещины) (канд. техн. наук О. Л. Макарон)

Технологические перлитного класса — Виды поставляемого полуфабриката 343 — Длительная прочность 339—340 — Коэффициент линейного расширения

Технологические повышенной прочности, вязкости

Технологические с мягкой прослойкой — Преимущества 175 — Формулы для расчета прочности сварного соединения

Технологические способы повышения усталостной прочности

Технологические факторы повышения усталостной прочности

Технологический Расчет на долговечность и прочность

Усталостная прочность (циклическая) технологических факторов

Факторы, влияющие на технологическую прочность металла шва в процессе кристаллизации, и меры ее повышения



© 2025 Mash-xxl.info Реклама на сайте